Барий физические и химические свойства. Применение в химической промышленности и цветной металлургии

– химический элемент 2-й группы периодической системы, атомный номер 56, относительная атомная масса 137,33. Расположен в шестом периоде между цезием и лантаном. Природный барий состоит из семи стабильных изотопов с массовыми числами 130(0,101%), 132(0,097%), 134(2,42%), 135(6,59%), 136(7,81%), 137(11,32%) и 138 (71,66%). Барий в большинстве химических соединений проявляет максимальную степень окисления +2, но может иметь и нулевую. В природе барий встречается только в двухвалентном состоянии. История открытия. В 1602 Касциароло (болонский сапожник и алхимик) подобрал в окрестных горах камень, который настолько тяжелый, что Касциароло заподозрил в нем золото. Пытаясь выделить золото из камня, алхимик прокалил его с углем. Хотя выделить золото при этом не удалось, опыт принес явно обнадеживающие результаты: охлажденный продукт прокаливания светился в темноте красноватым цветом. Известие о столь необычной находке произвело настоящую сенсацию в алхимической среде и необычный минерал, получивший целый ряд названий – солнечный камень (Lapis solaris ), болонский камень (Lapis Boloniensis ), болонский фосфор (Phosphorum Boloniensis) стал участником разнообразных экспериментов. Но время шло, а золото и не думало выделяться, поэтому интерес к новому минералу постепенно пропал, и долгое время его считали видоизмененной формой гипса или извести. Лишь через полтора столетия, в 1774 известные шведские химики Карл Шееле и Юхан Ган пристально изучили «болонский камень» и установили, что в нем содержится некая «тяжелая земля». Позднее, в 1779, Гитон де Морво назвал эту «землю» барот (barote ) от греческого слова « barue » – тяжелый, а в дальнейшем изменил название на барит (baryte ). Под этим названием бариевая земля фигурировала в учебниках химии конца 18 – начала 19 вв. Так, например, в учебнике А.Л.Лавуазье (1789) барит входит в список солеобразующих землистых простых тел, причем приводится и другое название барита – «тяжелая земля» (terre pesante , лат. terra ponderosa). Содержащийся в минерале неизвестный пока металл стали называть барием (лат. – Barium ). В русской литературе 19 в. также употреблялись названия барит и барий. Следующим известным минералом бария стал природный карбонат бария, открытый в 1782 Витерингом и названный впоследствии в его честь витеритом. Металлический барий был впервые получен англичанином Гэмфри Дэви в 1808 путем электролиза влажного гидроксида бария с ртутным катодом и последующим испарением ртути из амальгамы бария. Следует отметить, что в том же 1808 несколько раньше Дэви амальгаму бария получил шведский химик Йенс Берцелиус . Несмотря на свое название, барий оказался сравнительно легким металлом с плотностью 3,78 г/см 3 , поэтому в 1816 английский химик Кларк выступил с предложением отклонить название «барий» на том основании, что если бариевая земля (оксид бария) действительно тяжелее других земель (оксидов), то металл, наоборот, легче других металлов. Кларк хотел назвать этот элемент плутонием в честь древнеримского бога, властителя подземного царства Плутона, однако это предложение не встретило поддержки у других ученых и легкий металл продолжал именоваться «тяжелым». Барий в природе. В земной коре содержится 0,065% бария, он встречается в виде сульфата, карбоната, силикатов и алюмосиликатов. Основные минералы бария – уже упоминавшиеся выше барит (сульфат бария), называемый также тяжелым или персидским шпатом, и витерит (карбонат бария). Мировые минерально-сырьевые ресурсы барита оценивались в 1999 в 2 млрд. тонн, значительная часть их сосредоточена в Китае (около 1 млрд. тонн) и в Казахстане (0,5 млрд. тонн). Большие запасы барита есть и в США, Индии, Турции, Марокко и Мексике. Российские ресурсы барита оцениваются в 10 миллионов тонн, его добыча ведется на трех основных месторождениях, расположенных в Хакасии, Кемеровской и Челябинской областях. Общая годовая добыча барита в мире составляет около 7 миллионов тонн, Россия производит 5 тыс. тонн и импортирует 25 тыс. тонн барита в год. Получение. Основным сырьем для получения бария и его соединений служат барит и, реже, витерит. Восстанавливая эти минералы каменным углем, коксом или природным газом, получают соответственно сульфид и оксид бария: BaSO 4 + 4C = BaS + 4CO

BaSO 4 + 2CH 4 = BaS + 2C + 4H 2 O

BaCO 3 + C = BaO + 2CO

Металлический барий получают, восстанавливая его оксидом алюминия.

BaO + 2 Al = 3 Ba + Al 2 O 3

Впервые этот проце

cc осуществил русский физико-химик Н.Н.Бекетов . Вот как он описывал свои опыты: «Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния (алюминия) в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния...». Сейчас процесс восстановления алюминием проводят в вакууме при температурах от 1100 до 1250° C , при этом образующийся барий испаряется и конденсируется на более холодных частях реактора.

Кроме того, барий можно получить электролизом расплавленной смеси хлоридов бария и кальция.

Простое вещество. Барий – серебристо-белый ковкий металл, при резком ударе раскалывается. Температура плавления 727° С, температура кипения 1637° С, плотность 3,780 г/см 3 . При обычном давлении существует в двух аллотропных модификациях: до 375° C устойчив a - Ba с кубической объемно-центрированной решеткой, выше 375° С устойчив b - Ba . При повышенном давлении образуется гексагональная модификация. Металлический барий обладает высокой химической активностью, он интенсивно окисляется на воздухе, образуя пленку, содержащую BaO , BaO 2 и Ba 3 N 2 , при незначительном нагревании или при ударе воспламеняется. 2Ba + O 2 = 2BaO; Ba + O 2 = BaO 2 ; 3Ba + N 2 = Ba 3 N 2 , поэтому барий хранят под слоем керосина или парафина. Барий энергично реагирует с водой и растворами кислот, образуя гидроксид бария или соответствующие соли: Ba + 2H 2 O = Ba(OH) 2 + H 2

Ba + 2HCl = BaCl 2 + H 2

С галогенами барий образует галогениды, с водородом и азотом при нагревании – соответственно гидрид и нитрид. Ba + Cl 2 = BaCl 2 ; Ba + H 2 = BaH 2 Металлический барий растворяется в жидком аммиаке с образованием темно-синего раствора, из которого можно выделить аммиакат Ba (NH 3) 6 – кристаллы с золотистым блеском, легко разлагающиеся с выделением аммиака. В этом соединении барий имеет нулевую степень окисления. Применение в промышленности и науке. Применение металлического бария весьма ограничено из-за его высокой химической активности, соединения бария используются гораздо шире. Сплав бария с алюминием – сплав альба, содержащий 56% Ba – основа геттеров (поглотителей остаточных газов в вакуумной технике). Для получения собственно геттера барий испаряют из сплава, нагревая его в вакуумированной колбе прибора, в результате на холодных частях колбы образуется «бариевое зеркало». В небольших количествах барий используется в металлургии для очистки расплавленных меди и свинца от примесей серы, кислорода и азота. Барий добавляют в типографские и антифрикционные сплавы, сплав бария с никелем используется для изготовления деталей радиоламп и электродов свечей зажигания в карбюраторных двигателях. Кроме того, есть нестандартные применения бария. Одно из них – создание искусственных комет: выпущенные с борта космического аппарата пары бария легко ионизируются солнечными лучами и превращаются в яркое плазменное облако. Первая искусственная комета была создана в 1959 во время полета советской автоматической межпланетной станции «Луна-1». В начале 1970-х германские и американские физики, проводя исследования электромагнитного поля Земли, выбросили над территорией Колумбии 15 килограмм мельчайшего порошка бария. Образовавшееся плазменное облако вытянулось вдоль линий магнитного поля, позволив уточнить их положение. В 1979 струи бариевых частиц использовали для изучения полярного сияния. Соединения бария. Наибольший практический интерес представляют соединения двухвалентного бария.

Оксид бария (

BaO ): промежуточный продукт в производстве бария – тугоплавкий (температура плавления около 2020° C ) белый порошок, реагирует с водой, образуя гидроксид бария, поглощает углекислый газ из воздуха, переходя в карбонат: BaO + H 2 O = Ba(OH) 2 ; BaO + CO 2 = BaCO 3 Прокаливаемый на воздухе при температуре 500–600° C , оксид бария реагирует с кислородом, образуя пероксид, который при дальнейшем нагревании до 700° C вновь переходит в оксид, отщепляя кислород: 2BaO + O 2 = 2BaO 2 ; 2BaO 2 = 2BaO + O 2 Так получали кислород вплоть до конца 19 в., пока не был разработан метод выделения кислорода перегонкой жидкого воздуха.

В лаборатории оксид бария можно получить прокаливанием нитрата бария:

2Ba(NO 3) 2 = 2BaO + 4NO 2 + O 2 Сейчас оксид бария используется как водоотнимающее средство, для получения пероксида бария и изготовления керамических магнитов из феррата бария (для этого смесь порошков оксидов бария и железа спекают под прессом в сильном магнитном поле), но основное применение оксида бария – изготовление термоэмиссионных катодов. В 1903 молодой немецкий ученый Венельт проверял закон испускания электронов твердыми телами, открытый незадолго до этого английским физиком Ричардсоном . Первый из опытов с платиновой проволокой полностью подтвердил закон, но контрольный эксперимент не удался: поток электронов резко превышал ожидаемый. Поскольку свойства металла не могли измениться, Венельт предположил, что на поверхности платины есть какая-то примесь. Перепробовав возможные загрязнители поверхности, он убедился в том, что дополнительные электроны испускал оксид бария, входивший в состав смазки вакуумного насоса, используемого в эксперименте. Однако научный мир не сразу признал это открытие, так как его наблюдение не удавалось воспроизвести. Лишь почти через четверть века англичанин Колер показал, что для проявления высокой термоэлектронной эмиссии оксид бария нужно прогревать при очень низких давлениях кислорода. Объяснить это явление смогли только в 1935. Немецкий ученый Поль предположил, что электроны испускаются небольшой примесью бария в оксиде: при низких давлениях часть кислорода улетучивается из оксида, а оставшийся барий легко ионизируется с образованием свободных электронов, которые покидают кристалл при нагревании: 2BaO = 2Ba + O 2 ; Ba = Ba 2+ + 2 е Правильность этой гипотезы была окончательно установлена в конце 1950-х советскими химиками А.Бунделем и П.Ковтуном, которые измерили концентрацию примеси бария в оксиде и сопоставили ее с потоком термоэмиссии электронов. Сейчас оксид бария является активной действующей частью большинства термоэмиссионных катодов. Так например, пучок электронов, формирующий изображение на экране телевизора или компьютерного монитора, испускается оксидом бария.

Гидроксид бария, октагидрат (

Ba (OH ) 2 ·8 H 2 O ). Белый порошок, хорошо растворимый в горячей воде (больше 50% при 80° C ), хуже в холодной (3,7% при 20° C ). Температура плавления октагидрата 78° C , при нагревании до 130° C он переходит в безводный Ba (OH ) 2 . Гидроксид бария получают растворяя оксид в горячей воде или нагревая сульфид бария в потоке перегретого пара. Гидроксид бария легко реагирует с углекислым газом, поэтому его водный раствор, называемый «баритовой водой» используют в аналитической химии в качестве реактива на CO 2 . Кроме того, «баритовая вода» служит реактивом на сульфат- и карбонат-ионы. Гидроксид бария применяется для удаления сульфат-ионов из растительных и животных масел и промышленных растворов, для получения гидроксидов рубидия и цезия, в качестве компонента смазок.

Карбонат бария (

BaCO 3). В природе – минерал витерит. Белый порошок, нерастворимый в воде, растворимый в сильных кислотах (кроме серной). При нагревании до 1000° С разлагается с выделением CO 2: BaCO 3 = BaO + CO 2

Карбонат бария добавляют в стекло для увеличения его коэффициента преломления, вводят в состав эмалей и глазурей.

Сульфат бария (

BaSO 4). В природе – барит (тяжелый или персидский шпат) – основной минерал бария – белый порошок (температура плавления около 1680° C ), практически нерастворимый в воде (2,2 мг/л при 18° C ), медленно растворяется в концентрированной серной кислоте.

С сульфатом бария издавна связано производство красок. Правда, вначале его использование носило криминальный характер: в измельченном виде барит подмешивали к свинцовым белилам, что значительно удешевляло конечный продукт и, одновременно, ухудшало качество краски. Тем не менее, такие модифицированные белила продавались по той же цене, что и обычные, принося значительную прибыль владельцам красильных заводов. Еще в 1859 в департамент мануфактур и внутренней торговли поступили сведения о жульнических махинациях ярославских заводчиков, добавлявших к свинцовым белилам тяжелый шпат, что «вводит потребителей в обман на счет истинного качества товара, причем поступила и просьба о воспрещении означенным заводчикам употребления шпата при выделке свинцовых белил». Но эти жалобы ни к чему не привели. Достаточно сказать, что в 1882 в Ярославле был основан шпатовый завод, который, в 1885 выпустил 50 тысяч пудов измельченного тяжелого шпата. В начале 1890-х Д.И.Менделеев писал: «...В подмесь к белилам на многих заводах примешивается барит, так как и привозимые из-за границы белила, для уменьшения цены, содержат эту подмесь».

Сульфат бария входит в состав литопона – неядовитой белой краски с высокой кроющей способностью, широко востребованной на рынке. Для изготовления литопона смешивают водные растворы сульфида бария и сульфата цинка, при этом происходит обменная реакция и в осадок выпадает смесь мелкокристаллических сульфата бария и сульфида цинка – литопон, а в растворе остается чистая вода.

BaS + ZnSO 4 = BaSO 4 Ї + ZnS Ї

В производстве дорогих сортов бумаги сульфат бария играет роль наполнителя и утяжелителя, делая бумагу белее и плотнее, его используют и в качестве наполнителя резин и керамики.

Более 95% добываемого в мире барита используется для приготовления рабочих растворов для бурения глубоких скважин.

Сульфат бария сильно поглощает рентгеновские и гамма-лучи. Это свойство широко используется в медицине для диагностики желудочно-кишечных заболеваний. Для этого пациенту дают проглотить суспензию сульфата бария в воде или его смесь с манной кашей – «бариевую кашу» и затем просвечивают рентгеновскими лучами. Те участки пищеварительного тракта, по которым проходит «бариевая каша», на снимке выглядят темными пятнами. Так врач может получить представление о форме желудка и кишок, определить место возникновения заболевания. Сульфат бария используется также для изготовления баритобетона, используемого при строительстве атомных электростанций и атомных заводов для защиты от проникающей радиации.

Сульфид бария (

BaS ). Промежуточный продукт в производстве бария и его соединений. Торговый продукт представляет собой серый рыхлый порошок, плохо растворимый в воде. Сульфид бария применяется для получения литопона, в кожевенной промышленности для удаления волосяного покрова со шкур, для получения чистого сероводорода. BaS – компонент многих люминофоров – веществ, светящихся после поглощения световой энергии. Именно его получил Касциароло, прокаливая барит с углем. Сам по себе сульфид бария не светится: необходимы добавки веществ-активаторов – солей висмута, свинца и других металлов.

Титанат бария (

BaTiO 3). Одно из самых промышленно важных соединений бария – белое тугоплавкое (температура плавления 1616° C ) кристаллическое вещество, нерастворимое в воде. Получают титанат бария сплавлением диоксида титана с карбонатом бария при температуре около 1300° C : BaCO 3 + TiO 2 = BaTiO 3 + CO 2

Титанат бария – один из лучших сегнетоэлектриков (см . также СЕГНЕТОЭЛЕКТРИКИ ), очень ценных электротехнических материалов. В 1944 советский физик Б.М.Вул обнаружил незаурядные сегнетоэлектрические способности (очень высокую диэлектрическую проницаемость) у титаната бария, который сохранял их в широком температурном диапазоне – почти от абсолютного нуля до +125°

C . Это обстоятельство, а также большая механическая прочность и влагостойкость титаната бария способствовали тому, что он стал одним из самых важных сегнетоэлектриков, используемых, например, для изготовления электрических конденсаторов. Титанат бария, как и все сегнетоэлектрики, обладает и пьезоэлектрическими свойствами: изменяет свои электрические характеристики под действием давления. При действии переменного электрического поля в его кристаллах возникают колебания, в связи с чем их используют в пьезоэлементах, радиосхемах и автоматических системах. Титанат бария применяли при попытках обнаружить гравитационные волны. Другие соединения бария. Нитрат и хлорат (Ba (ClO 3) 2) бария – составная часть фейерверков, добавки этих соединений придают пламени ярко-зеленую окраску. Пероксид бария входит в состав запальных смесей для алюминотермии. Тетрацианоплатинат(II ) бария (Ba [ Pt (CN ) 4 ]) светится под воздействием рентгеновских и гамма-лучей. В 1895 немецкий физик Вильгельм Рентген , наблюдая свечение этого вещества предположил существование нового излучения, названного впоследствии рентгеновским. Сейчас тетрацианоплатинатом(II ) бария покрывают светящиеся экраны приборов. Тиосульфат бария (BaS 2 O 3) придает бесцветному лаку жемчужный оттенок, а, смешав его с клеем, можно добиться полной имитации перламутра. Токсикология соединений бария. Все растворимые соли бария ядовиты. Сульфат бария, применяемый при рентгеноскопии, практически нетоксичен. Смертельная доза хлорида бария составляет 0,8–0,9 г, карбоната бария – 2–4 г. При приеме внутрь ядовитых соединений бария возникают жжение во рту, боли в области желудка, слюнотечение, тошнота, рвота, головокружение, мышечная слабость, одышка, замедление пульса и падение артериального давления. Основной метод лечения отравлений барием – промывание желудка и употребление слабительных средств.

Основными источниками поступления бария в организм человека являются пища (особенно морепродукты) и питьевая вода. По рекомендации Всемирной организацией здравоохранения содержание бария в питьевой воде не должно превышать 0,7 мг/л, в России действуют гораздо более жесткие нормы – 0,1 мг/л.

Юрий Крутяков

ЛИТЕРАТУРА Фигуровский Н.А. История открытия элементов и происхождения ихneназваний . М., Наука, 1970
Венецкий С.И. О редких и рассеянных. Рассказы о металлах . М.,neМеталлургия, 1980
Популярная библиотека химических элементов . Под. ред.neИ.В.Петрянова-Соколова М., Наука, 1983
Информационно-аналитический обзор Состояние и перспективы мирового и внутреннего рынков цветных, редких и благородных металлов . Выпуск 18. Барит. М., 2002

Министерство образования и науки РФ

«БАРИЙ. СВОЙСТВА. ИСТОРИЯ ОТКРЫТИЯ».

1.Некоторые свойства бария

БАРИЙ (лат. Barium), Ba, химический элемент II группы периодической системы, атомный номер 56, атомная масса 137,33; относится к щелочноземельным металлам.

Название: от греческого "barys" (тяжелый).

Минералы: барит BaSO 4 и витерит BaCO 3 .

Свойства: серебристо-белый мягкий металл. Плотность 3,78 г/см 3 , tпл 727 °C. Химически очень активен, при нагревании воспламеняется. Соединения бария, растворимые в воде, очень сильные яды. Признаки отравления: рвота, колики, спазмы, при дозах 500 - 800 мг наступает общий паралич и смерть.

Химические свойства: Образует устойчивый оксид:

2Ba + O 2 =2 BaO ;

Активно взаимодействует с водой:

Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Реагирует с кислотами:

Ba +2 HCl = BaCl 2 + H 2

Получение: 1. Нагревание оксида с кальцием или алюминием в вакууме.

2. Выпаривание ртути из амальгамы, которая образуется при электролизе растворов солей бария на ртутном катоде.

Применение: применяют в вакуумной технике как газопоглотитель, в сплавах (типографские, подшипниковые); соли бария - в производстве красок, стекол, эмалей, в пиротехнике, медицине.

2. История бария

В 1602 году болонский сапожник и по совместительству алхимик Касциароло подобрал в окрестных горах камень, который оказался настолько тяжелым, что не заподозрить в нем присутствие золота мог только полный профан. Но Касциароло был не таков. Перед ним засияли радужные перспективы, и он, притащив находку в свою сапожно-алхимическую мастерскую, тут же принялся за работу.

Для начала решено было прокалить камень с углем и олифой. И хоть выделить золото при этом почему-то не удалось, опыт принес явно обнадеживающие результаты: охлажденный продукт прокаливания светился в темноте красноватым светом.

Будучи человеком общительным, Касциароло не стал скрывать от своих коллег-алхимиков тайну необычного камня. Это сенсационное сообщение привело золотоискательскую братию в состояние поисковой горячки: найденный минерал, получивший ряд названий - "солнечный камень", "болонский камень", "болонский самоцвет", стал главным участником всевозможных реакций и экспериментов. Но время шло, золото и не думало выделяться, и интерес к новому минералу постепенно пропал.

Лишь спустя полтора столетия, в 1774 году, известные шведские химики Карл Шееле и Юхан Ган подвергли "болонский камень" тщательному исследованию и установили, что в нем содержится особая "тяжелая земля", которую сначала назвали "барот", а затем - "барит" (от греческого слова "барос"-тяжелый).

Сам же металл, образующий эту "землю", был наречен барием.

В 1808 году англичанин Гэмфри Дэви электролитическим путем выделил из барита металлический барий. И поскольку он оказался сравнительно легким металлом (плотность 3,7 г/см3), английский химик Кларк предложил сменить название "барий", не соответствующее его истинному положению среди других металлов, на "плутоний" - в честь мифического властителя подземного царства бога Плутона. Однако предложение Кларка не встретило поддержки у других ученых, и легкий металл продолжал именоваться "тяжелым" (в русской химической литературе начала XIX века этот элемент иногда фигурировал под названием "тяжелец"). Заметим, что по современной технической классификации барий - действительно самый тяжелый представитель группы легких металлов.

В наши дни металлический барий - мягкий белый металл – получают алюминотермическим восстановлением его окиси. Впервые этот процесс осуществил русский физико - химик Н. Н. Бекетов, положивший тем самым начало алюминотермии. Вот как ученый описывает свои опыты: "Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния (т. е. алюминия - С. В.) в углевой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния..."

Сейчас этот процесс проводится в вакууме при 1100 – 1200 С. Одновременно с восстановлением окиси бария алюминием происходит дистилляция восстановленного бария, который затем конденсируется в чистом виде.

Барий химически очень активен; он легко самовоспламеняется при нагреве или от удара, хорошо взаимодействует с кислородом (блестящая поверхность только что полученного бария на воздухе быстро покрывается пленкой окисла), азотом, водородом, водой, поэтому его, как и некоторые другие металлы со "вспыльчивым характером", приходится хранить под слоем керосина. Отчасти этим объясняется весьма ограниченное применение металлического бария. Основная его "специальность" – поглотитель остаточных газов (геттер) в технике глубокого вакуума. В небольших количествах барий используют в металлургии меди и свинца для раскисления, очистки от серы и газов. Часть бария идет на изготовление подшипниковых и типографских сплавов: их основной компонент свинец становится заметно крепче, приняв даже малые дозы бария. Сплав этого элемента с никелем служит для изготовления электродов запальных свечей двигателей и деталей радиоламп.

Гораздо более широкое поле деятельности у соединений бария. С сернокислым барием, или тяжелым шпатом (тем самым камнем, что попался когда-то под ноги Касциароло), издавна связано производство красок. Правда, поначалу участие сернокислого бария в этом деле носило нелегальный характер: в измельченном виде шпат подмешивали к свинцовым белилам, в результате чего они оказывались значительно дешевле, и хоть качество их явно страдало, владельцы красильных заводов без зазрения совести продавали свою эрзац-продукцию почти по тем же ценам, неплохо нагревая руки на этой операции.

Еще в 1859 году до департамента мануфактур и внутренней торговли дошли сведения о жульнических махинациях ярославских заводчиков, добавлявших к свинцовым белилам тяжелый шпат, что "вводит потребителей в обман на счет истинного качества товара, причем поступила и просьба о воспрещении означенным заводчикам употребления шпата при выделке свинцовых белил". Об этом же сообщалось несколько позднее и министру финансов, "которым как слышно и предписано было Ярославскому начальству сделать дознание, но как это произведено было через главного покровителя заводчикам полицмейстера Красовского, то, конечно, результат вышел тот, что они покаялись в его кабинете и принялись с большею смелостию за подделку своих злокачественных произведений". Далее содержалась просьба "раскрыть это зло и на Нижегородской ярмарке, откуда белилы развозятся до последних пределов империи, и раскрыть это весьма легко, стоит опросить всех белильных заводчиков, на какой конец выписывают они в огромных размерах шпат, какое из него делают употребление и если употребление для белил, то каковы последствия такого смешения".

Но все эти петиции ни к чему не привели. Достаточно сказать, что в 1882 году в Ярославле был основан шпатовый завод, который, например, в 1885 году выпустил 50 тысяч пудов измельченного тяжелого шпата, предназначенного все для тех же целей. В начале 90-х годов прошлого века Д.И. Менделеев писал: "...В подмесь к белилам на многих заводах примешивается барит, так как и привозимые из-за границы белила, для уменьшения цены, содержат эту подмесь".

Со временем сернокислый барий обретает в лакокрасочной промышленности права гражданства: он входит в состав литопона - белой краски с высокой кроющей способностью, пользующейся хорошей репутацией у потребителей. В производстве бумаги дорогих сортов (в частности, для денежных знаков, облигаций, документов) сульфат бария играет роль наполнителя и утяжелителя, делая бумагу белее и плотнее. Взвесь этой соли в воде используют как рабочую жидкость при бурении глубоких нефтяных и газовых скважин. Сернокислый барий задерживает рентгеновские лучи значительно лучше, чем мягкие ткани человеческого организма. Этим свойством медики пользуются для диагностики желудочных заболеваний. Больному дают на завтрак "бариевую кашу"-смесь сульфата бария с манной кашей (или водой) - и затем просвечивают рентгеновскими лучами: непрозрачная для них "бариевая каша" позволяет врачу получить точное представление о состоянии желудочно-кишечного тракта и определить место заболевания. Благодаря способности поглощать рентгеновские лучи и гамма-лучи барит служит надежным защитным материалом в рентгеновских установках и ядерных реакторах.

Поскольку речь зашла о рентгеновских лучах, уместно упомянуть о том, что их открытие связано с платиносинеродистым барием. В 1895 году зеленое свечение этого вещества в темноте навело выдающегося немецкого физика Вильгельма Конрада Рентгена на мысль о каком-то неведомом прежде излучении, под действием которого и светилась соль бария. Желая подчеркнуть загадочную природу новых лучей, ученый назвал их Х-лучами, но уже вскоре в большинстве стран они стали именоваться рентгеновскими – в честь своего первооткрывателя.

Все мы не раз любовались радужными переливами жемчуга или перламутра.

Немудрено, что с давних пор велись поиски красителей, которые позволили бы искусственным путем получать материалы с перламутровой окраской. В старину для этого использовали отвар рыбьей чешуи. Да и сейчас еще кое-где таким способом, конечно, во многом усовершенствованным, производят жемчужный краситель. Но в век химии делать ставку на рыбью чешую просто несерьезно - ее с успехом заменяет тиосульфат бария. Кристаллики этого вещества, смешанные с каким-либо бесцветным лаком, превращают его в "жемчужный".

Если же их ввести в желатиновый или столярный клей и нанести слой его на изделия из дерева, картона или папье-маше, то можно добиться полной имитации перламутра.

Работники стекольной промышленности хорошо знакомы с другим соединением бария - карбонатом, который они добавляют в стекольную массу, чтобы повысить коэффициент преломления стекла. Иногда для той же цели вместо карбоната бария вводят нитрат. Но основное "увлечение" нитрата - пиротехника: эта соль бария, как и его хлорат, принимает участие во всех салютах и фейерверках, внося в общий красочный букет ярко-зеленую лепту. В свою очередь хлорат бария не ограничивается осветительной ролью и слывет среди работников сельского хозяйства стойким борцом с сорняками.

Вот уже почти пять тысячелетий несет свою вахту страж египетских пирамид Большой сфинкс. Высеченный по велению фараона Хефрена из цельного куска известняковой скалы, он имеет львиное тело и голову, которой приданы черты самого Хефрена. Быть может, фараон и блистал красотой, но за долгие годы гигантская копия его явно потеряла привлекательность: под действием песчаных бурь, дождей и резких смен температуры сфинкс почти лишился носа, левый глаз его стал заметно косить, лицо покрылось глубокими морщинами.

Особую тревогу вызывает постоянно худеющая шея статуи. "Сфинкс болен, - писала одна из каирских газет, - и если не будут приняты срочные меры, шея может не выдержать". Несколько лет назад сфинкса пробовали "лечить": чтобы укрепить части, грозящие рухнуть, ему сделали "инъекции" солей бария. Они помогли, но не надолго. Спустя четыре года каменное изваяние пришлось "закрыть" на капитальный ремонт.

Следующую интересную страницу в биографию окиси бария вписал в 1903 году молодой немецкий ученый Венельт. Произошло это, как говорится, нежданно-негаданно. Однажды ему поручили проверить на платиновой проволочке закон испускания электронов нагретыми телами, открытый незадолго до этого английским физиком Ричардсоном. Первый же опыт полностью подтвердил закон, но Венельт спустя некоторое время решил повторить эксперимент с другой проволочкой. Каково же было его удивление, когда платина стала испускать поток электронов, во много раз больший, чем накануне: прибор, измерявший электронную эмиссию, едва не вышел из строя.

Поскольку свойства металла не могли так резко измениться, оставалось предположить, что виновником электронного "шквала" является случайно попавшее на поверхность проволочки вещество с более высокой способностью к эмиссии электронов, чем платина. Но что же это за вещество?

Ученый стал поочередно наносить на платину различные материалы, подозреваемые в изменении электронного потока, но все они без труда доказывали свою явную непричастность к этому делу. И когда Венельт уже решил, что докопаться до истины ему вряд ли удастся, он вдруг вспомнил, что в смазке насосной установки, принимавшей "участие" в эксперименте, содержалась окись бария, которая могла случайно попасть на платиновую проволочку. Ученый вновь включил приборы. А уже через несколько мгновений его радость не знала границ. Так было открыто вещество, которое по способности испускать электроны при нагреве не имеет себе равных.

Однако к такому выводу научный мир пришел не сразу. После того как Венельт опубликовал результаты своих опытов, многие физики занялись их проверкой.

Одно за другим начали появляться в печати сообщения о том, что Венельт сильно преувеличил эмиссионную способность окиси бария. Да и самому Венельту больше не удавалось подтвердить свое открытие. Разочарованный ученый вскоре прекратил опыты.

Лишь спустя почти четверть века окисью бария заинтересовался англичанин Коллер. Он провел ряд более совершенных экспериментов и сумел установить, что если окись бария нагревать в вакууме при очень низких давлениях кислорода, то электронная эмиссия вещества будет весьма высокой; если же давление кислорода во время нагрева повышается, то эмиссия резко падает.

Этот вывод, с одной стороны, восстанавливал научное реноме Венельта, но, с другой, вполне совпадал с мнением его оппонентов. А так как при нагреве окись бария не меняла ни своего химического состава, ни кристаллической структуры, возникла новая загадка: почему одно и то же вещество ведет себя столь различно, хотя по всем законам его свойства должны быть одинаковыми?

Примерно в эти же годы немецкий ученый Поль обнаружил отклонения от общепринятых норм в поведении ряда других простых веществ и тем самым подлил масла в огонь. Впрочем, точнее сказать, он бросил в огонь соли.

Да-да, кристаллы обычной поваренной соли, или хлористого натрия. Прогревая эти кристаллы в парах натрия, Поль с удивлением наблюдал, как они становились фиолетовыми. Нечто подобное произошло и с кристаллами хлористого калия: при нагреве в калиевых парах вещество посинело. Но ведь и с этими соединениями, как и с окисью бария, в результате проведенных опытов ничего не должно было произойти.

Ничего? Оказывается, кое-что все-таки происходило. Объяснить сущность загадочных явлений сумел в 1935 году тот же Поль. По его гипотезе, для каждого кристаллического вещества характерно постоянное соотношение в кристалле не атомов разного вида, а так называемых узлов решетки. Для поваренной соли, например, одни узлы принадлежат катионам натрия, а другие - анионам хлора. Каждая пара таких узлов обязательно образует как бы "двухкомнатную квартиру", причем "жильцы" могут там и не находиться. Если соотношение разнородных ионов в кристаллах не соответствует стехиометрическому соотношению, характерному для данного вещества (такие кристаллы получили позднее название нестехиометрических), то и свойства его могут меняться.

Поль резонно предположил, что при нагреве соли в парах натрия на поверхность кристалла могут попасть атомы этого элемента. При этом каждый из них отдает электрон, превращаясь в катион, и строит для себя "комнатку" (узел решетки), но тут же к нему, покинув свое прежнее "жилье" в кристалле, пристраивается анион хлора - будущий сосед по новой "двухкомнатной квартире". Освободившееся от аниона хлоpa "помещение" (вакансия) становится на первых порах пристанищем для электрона, отпущенного атомом натрия. Но электроны-"свободолюбивый народ" и долго находиться взаперти им не по душе. Чтобы вырваться наружу, электрон должен получить энергию, соответствующую кванту желтого цвета. Поэтому нестехиометрические кристаллы поваренной соли, содержащие избыток натрия, поглощают желтый свет и, повинуясь законам спектра, принимают фиолетовую окраску. Тщательные измерения позволили дать ответ и на вопрос, сколько же избыточных атомов натрия необходимо для такого изменения цвета; оказалось, что всего лишь тысячные доли процента.

Но вернемся к окиси бария. В 1953 году американский ученый Спроул нагрел бесцветные крупицы этого вещества в жидком барии - кристаллы стали красными. По-видимому, решил Спроул, в них произошли те же изменения, что и в поваренной соли, с той лишь разницей, что там вакансия одновалентного хлора задерживала один электрон, а в окиси бария вакансия двухвалентного кислорода была вправе рассчитывать на электронную пару. Именно этим, по мнению ученого, и объяснялась высокая эмиссия электронов, так как вакансии кислорода служили их естественными источниками. Гипотеза подкупала своей простотой. Оставалось лишь провести некоторые измерения, чтобы убедиться в том, что поток электронов находится в прямой зависимости от количества избыточного бария в кристаллах. И вот тут-то снова произошла осечка: опыты, проведенные в лаборатории американской фирмы "Белл телефон", казалось бы, не оставляли от гипотезы Спроула камня на камне. В чем же дело?

Для решения этой проблемы понадобилось 15 лет кропотливого труда. В конце 50-х годов советские химики А. Бундель и П. Ковтун, ознакомившись с экспериментами фирмы "Белл телефон", предположили, что ее сотрудники допустили ошибку в самой методике проведения опытов: на металлическую подложку наносилась тонкая пленка окиси бария и в ней определяли избыток бария. Столь малого количества вещества оказывалось недостаточно для точного химического анализа. К тому же при высоких температурах пленка могла загрязниться примесями подложки, что, разумеется, искажало истинную картину. Но, как известно, на ошибках учатся.

Чтобы не повторить просчетов американских коллег, Бундель и Ковтун в своих опытах использовали чистейшую окись бария, взяв ее в большом количестве, а доступ примесям был "категорически воспрещен" тем, что нагрев проводился в специально подобранном химически стойком материале. Из года в год совершенствовалась методика и техника эксперимента, но задача была настолько трудна, что лишь совсем недавно удалось поставить точки над i: именно крохотные количества избыточного бария, измеренные с ювелирной точностью, действительно, как и полагал Спроул, обусловливают эмиссию электронов. Так окончательно была разгадана природа явления, открытого еще в начале нашего века. Добавим лишь, что изображение, возникающее на экране вашего телевизора, "нарисовано" пучком электронов, вырвавшихся из нестехиометрических кристаллов окиси бария.

В последние годы окись бария (вполне нормальная со стехиометрической точки зрения) понадобилась для изготовления так называемых керамических магнитов. Для этого смесь порошков окиси бария и железа спекают под прессом в сильном магнитном поле. Образующийся феррат бария обладает интересными магнитными свойствами и все чаще применяется в технике.

Но, пожалуй, самым важным соединением бария сегодня с полным правом можно считать его титанат, получивший мировое признание как отличный сегнетоэлектрик. Своим названием этот новый класс химических веществ обязан французскому аптекарю Э. Сеньету, который еще в середине XVII века открыл двойную калиево-натриевую соль винной кислоты - сегнетову соль, завоевавшую вскоре репутацию неплохого слабительного средства. На этом скромном поприще соль трудилась более двух с половиной столетий, пока в 1918 году американский ученый Д. Андерсон не установил, что в интервале температур от (-15) до +22 С она обладает весьма высокой диэлектрической проницаемостью, оставаясь поляризованной даже в отсутствие внешних электрических полей.

В 1944 году советский физик Б. М. Вул обнаружил незаурядные сегнетоэлектрические способности у титаната бария, который сохранял их в широком температурном диапазоне - почти от абсолютного нуля до +125ёС.

Поскольку титанат бария характеризуется большой механической прочностью и влагостойкостью и может быть получен без особых хлопот, неудивительно, что он занял среди сегнетоэлектриков одно из самых почетных мест, являясь прекрасным материалом для электрических конденсаторов. Благодаря сильно выраженному пьезоэффекту (изменению электрических характеристик под действием давления) эта соль бария нашла постоянную работу в пьезоэлементах.

В наш век - век небывалого технического прогресса - все шире становится круг химических элементов, которые претендуют на "ответственные должности" в науке, промышленности, сельском хозяйстве и других областях человеческой деятельности. Однако многие элементы с трудом делают карьеру из-за того, что их очень мало в земной коре. В этом отношении барию повезло: оболочка нашей планеты содержит 0,05% бария - в несколько раз больше, чем, например, никеля, кобальта, цинка и свинца, вместе взятых. Значит, дело за ним самим, да за учеными, которые призваны находить металлам, сплавам, соединениям новые интересные роли.

Одна из таких ролей - создание искусственных комет. Да, не удивляйтесь: выпущенные с борта космического аппарата на большом удалении от Земли пары бария превращаются в яркое плазменное облако, с помощью которого ученые осуществляют разнообразные исследования, ведут оптические наблюдения, определяют траекторию движения космических летательных аппаратов. Впервые искусственная комета была образована в 1959 году во время полета советской автоматической межпланетной станции "Луна-1". В начале 70-х годов западногерманские и американские физики, проводя совместные исследования электрического и магнитного поля Земли, выбросили над территорией Колумбии (на очень большой высоте) около 15 килограммов мельчайших частиц бария, которые образовали плазменное облако, наблюдавшееся из разных точек Америки. Вытянувшись вдоль магнитных линий земного шара, барий позволил уточнить их расположение.

Тяжеловес в легком весе. Так можно представить барий . Его имя переводится с греческого, как «тяжелый». В сравнении с другими щелочноземельными элементами, вещество, действительно увесисто. В «сражении» же с металлами из иных групп, как правило, проигрывает.

Имя бария связано с историей его открытия. В 17-ом веке была актуальна идея выделения из бросовых материалов. Сапожник из Болони Касциароло нашел исключительно тяжелый камень. Золото, как известно, металл не из легких. Вот мужчина и заподозрил его присутствие в булыжнике.

Выделить драгоценность не удалось. Зато, после прокаливания начал светиться красным. Явление привлекло внимание химика Карла Шееле. Он установил присутствие в породе нового элемента – «тяжелой земли». Когда же в 1808-ом году Гэмфри Дэви из Англии выделил эту «землю», она оказалась легкой. Но, менять название не стали.

Химические и физические свойства бария

Атомная масса бария равна 137-ми граммам на моль. Металл не только легкий, но и мягкий. Твердость по не превышает 3-х баллов. Материал ковкий и слегка вязкий. Плотность элемента около 3,7 граммов на кубический сантиметр. Если присутствуют загрязнения , барий становится хрупким.

Цвет элемента серебристо-серый. Но, визитной карточкой бария считается зеленый. Он проявляется в характерной для 56-го вещества реакции. В ней участвуют элемента, к примеру, сульфат бария .

Если погрузить в него стеклянную палочку и поднести к горелке, вспыхнет зеленое пламя. Так можно определить присутствие даже ничтожно малых примесей тяжелого металла.

Барий – вещество с кубической решеткой. Ее можно лицезреть не только в лабораторных условиях. Металл встречается в чистом виде и в природе. Известно 2-е модификации элемента. Одна из них устойчива до 365-ти градусов Цельсия, другая – от 375-ти до 710-ти. Закипает барий при температуре в 1696 градусов Цельсия.

Синтезировано несколько радиоактивных изотопов металла. Формула бария с атомной массой 140 – результат распада тория, плутония и урана. Изотоп извлекают хроматографическим способом, то есть абсорбируют, ориентируясь на цвет вещества.

133-ий барий образуется в процессе облучении цезия. На него воздействуют ядрами одного из изотопов водорода – дейтронами. Выделенная при этом радиоактивная форма щелочноземельного металла распадается чуть больше, чем за 3-е суток. Цикл 140-го бария длиннее, только на полураспад уходит 13,5 дней.

Как и все щелочноземельные металлы, барий химически активен. В группе числится в середнячках, опережая, к примеру, и . Последние хранят на воздухе. С барием такое не пройдет. 56-ой элемент помещают под парафиновое масло, или же петролевый эфир.

Взаимодействие бария с кислородом приводит к потере блеска. После, материал желтеет, коричневеет и, в итоге, становится серым. Так выглядит оксид бария – итог его разрушения на воздухе. Если атмосферу нагреть, 56-ой металл в ней взорвется.

Взаимодействие элемента с водой обратно реакции с кислородом. Здесь разлагается уже жидкость. Процесс возможен лишь при контакте с чистым металлом. После реакции он переходит в гидроксид бария .

Если же изначально поместить в воду не самородный элемент, а его соли, ничего не произойдет. Хлорид бария , и не только, не растворимы в H 2 O, активно взаимодействуют лишь с кислотами .

Барий легко реагирует с водородом. Единственное условие – нагрев. Образуется гидрид металла. При нагреве реакция протекает и с аммиаком. Получается нитрид. Он может перейти в цианид, если продолжить повышать температуру.

Раствор бария синего цвета – итог взаимодействия все с тем же аммиаком, но в жидком виде. Из смеси выделяют аммиакат. У него золотистый цвет, вещество легко разлагается.

Стоит добавить катализатор, и получишь амид бария . Правда, применяется он лишь как реактив. А каково использование других соединений металла и его самого?

Применение бария

Поскольку чистый металл требует особой техники хранения, применяют его нечасто. Закрыть глаза на неудобство элемента готовы специалисты вакуумных технологий. Уж очень хорошо барий поглощает остаточные газы, то есть служит геттером.

В качестве очистителя металл применяют и при производстве некоторых и . Здесь элемент впитывает не только газы, но и примеси , а так же, раскисляет смеси.

Как компонент сплавов 56-ой элемент применяют в дуэте со свинцом. Смесь идет на производство подшипников. Сплавы с барием , так же, вытесняют используемые ранее полиграфические составы из свинца и сурьмы. Щелочноземельный металл лучше упрочняет сплав.

Сплав с – сырье для изготовления электродов запальных свечей. Они нужны в двигателях внутреннего сгорания и радиолампах. На этом применение чистого бария заканчивается. В игру вступают соединения металла.

Тяжелый камень, найденный когда-то в Болони, — известный краситель. По химическому составу порода является сернокислым барием, относится к классу . Сырье измельчают и добавляют в литопоний. Это белая краска известна кроющей способностью.

На фото лампа, для производства которой используется барий

Бариевая порода присутствует и в дорогих сортах , к примеру, предназначенных для печати денег. Сульфат бария утяжеляет банкноты, делает их более плотными и белыми.

Интересно, что изначально болонский камень в красящей промышленности использовали нелегально. Дешевым компонентом разбавляли свинцовые белила. Качество продукта снижалось, зато предприниматели обогащались. В современных красителях бариевый шпат – добавка улучшающая, а не ухудшающая их параметры.

Осадки бария , в том числе сернокислую форму, применяют и в медицине. Шпат задерживает рентгеновские лучи. Сульфат бария добавляют в кашу и дают пациенту с подозрением на заболевания желудочно-кишечного тракта. После этого результаты рентгенографии проще расшифровывать.

Уравнения бария свидетельствуют о способности поглощать не только рентгеновские, но и гамма-лучи. Так что, соединения 56-го элемента защищают многие атомные реакторы.

Карбонат бария нужен для приготовления стекломассы. Нитрат бария – составная . Раствор гидроксида бария эффективно очищает животные жиры и растительные масла. В качестве яда используют раствор хлорида бария .

На фото салют — ещё одна отрасль, применяющая элемент барий

Из 56-го металла, так же, получают родизонат натрия. Барий используют даже для инъекций статуе Сфинкса. Песчаное изваяние разрушается. Тяжелый металл помогает укрепить конструкцию.

Добыча бария

Металлический барий получают несколькими путями. Их объединяет атмосфера. Реакции проводят в вакууме из-за бурного взаимодействия 56-го элемента с кислородом.

Метод металлотермического восстановления применяют к окиси и хлориду бария. Из последнего соединения элемент выделяют с помощью карбида кальция. С окисью работает порошок алюминия. Требуется нагрев до 1200-от градусов Цельсия.

Из гидрида и нитрида 56-го элемента тоже можно выделить чистый барий. Калий получают подобным образом, то есть не путем восстановления, а по средствам термического разложения.

Процесс проходит в герметичных капсулах и или фарфора. Применяют и электролиз. Он подходит для работы с расплавленным хлоридом бария . Катод берут ртутный.

Цена бария

На металлический барий цены на рынке договорные. Товар специфический, редко запрашиваемый. Реализуют элемент, как правило, химические лаборатории и металлургические предприятия. Стоимость соединений металла – не секрет.

Хлористый барий , к примеру, обходится в 50-70 рублей за килограмм. Баритовый песок можно приобрести и по 10 рублей за 1000 граммов. Килограмм гидроокиси оценивают примерно в 80-90 рублей. За сернокислый барий просят минимум 50 рублей, обычно, около ста. При оптовых поставках ценник, зачастую, немного скидывают.

Барий

БА́РИЙ -я; м. [лат. Barium от греч. barys - тяжёлый].

1. Химический элемент (Ba), мягкий серебристо-белый химически активный металл (применяется в технике, промышленности, медицине).

2. Разг. О сернокислой соли этого элемента (принимается внутрь в качестве контрастного вещества при рентгенологическом обследовании желудка, кишечника и т.п.). Выпить стакан бария.

Ба́риевый, -ая, -ое (1 зн.). Б-ые соли. Б. катод.

ба́рий

(лат. Barium), химический элемент II группы периодической системы, относится к щёлочноземельным металлам. Название от греческого barýs - тяжёлый. Серебристо-белый мягкий металл; плотность 3,78 г/см 3 , t пл 727°C. Химически очень активен, при нагревании воспламеняется. Минералы: барит и витерит. Применяют в вакуумной технике как газопоглотитель, в сплавах (типографские, подшипниковые); соли бария - в производстве красок, стёкол, эмалей, в пиротехнике, медицине.

БАРИЙ

БА́РИЙ (лат. Baryum), Ва (читается «барий»), химический элемент с атомным номером 56, атомная масса 137,327. Расположен в шестом периоде в группе IIА периодической системы. Относится к щелочноземельным элементам. Природный барий состоит из семи стабильных изотопов с массовыми числами 130 (0,101%), 132 (0,097%), 134 (2,42%), 135 (6,59%), 136 (7,81%), 137 (11,32%) и 138 (71,66%). Конфигурация внешнего электронного слоя 6s 2 . Степень окисления +2 (валентность II). Радиус атома 0,221 нм, радиус иона Ва 2+ 0,138 нм. Энергии последовательной ионизации равны 5,212, 10,004 и 35,844 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 0,9.
История открытия
Название элемента происходит от греческого «барис» - тяжелый. В 1602 один болонский ремесленник обратил внимание на тяжелый минерал барит (см. БАРИТ) BaSO 4 (плотность 4,50 кг/дм 3). В 1774 швед К. Шееле (см. ШЕЕЛЕ Карл Вильгельм) , прокаливая барит, получил оксид ВаО. Только в 1808 англичанин Г. Дэви (см. ДЭВИ Гемфри) использовал электролиз для восстановления активных металлов из расплавов их солей.
Распространенность в природе
Содержание в земной коре 0,065%. Важнейшие минералы - барит и витерит (см. ВИТЕРИТ) ВаСО 3 .
Получение
Основное сырье для получения бария и его соединений - баритовый концентрат (80-95% BaSO 4). Его нагревают в насыщенном растворе соды Na 2 CO 3:
BaSO 4 + Na 2 CO 3 = ВаCO 3 + Na 2 SO 4
Осадок растворимого в кислотах карбоната бария перерабатывают далее.
Основной промышленный метод получения металлического бария - восстановление его порошком алюминия (см. АЛЮМИНИЙ) при 1000-1200 °C:
4ВаО + 2Аl = 3Ва + ВаOАl 2 О 3
Восстановлением барита каменным углем или коксом при нагревании получают BaS:
BaSO 4 + 4С = BaS + 4СО
Образующийся растворимый в воде сульфид бария, перерабатывают на другие соединения бария, Ba(OH) 2 , ВаCO 3 , Ва(NO 3) 2 .
Физические и химические свойства
Барий - серебристо-белый ковкий металл, кристаллическая решетка - кубическая, объемно центрированная, а = 0,501 нм. При температуре 375 °C переходит в b-модификацию. Температура плавления 727 °C, кипения 1637 °C, плотность 3,780 г/см 3 . Стандартный электродный потенциал Ва 2+ /Ва равен –2,906 В.
Имеет высокую химическую активность. Интенсивно окисляется на воздухе, образуя пленку, содержащую оксид бария ВаО, пероксид ВаО 2 .
Энергично реагирует с водой:
Ва + 2Н 2 О = Ва(ОН) 2 + Н 2
При нагревании взаимодействует с азотом (см. АЗОТ) с образованием нитрида Ва 3 N 2:
Ba + N 2 = Ba 3 N 2
В токе водорода (см. ВОДОРОД) при нагревании барий образует гидрид ВаН 2 . С углеродом барий образует карбид ВаС 2 . С галогенами (см. ГАЛОГЕНЫ) барий образует галогениды:
Ва + Сl 2 = ВаСl 2 ,
Возможно взаимодействие с серой (см. СЕРА) и другими неметаллами.
BaO - основный оксид. Он реагирует с водой с образованием гидроксида бария:
ВаО + Н 2 О = Ва(ОН) 2
При взаимодействии с кислотными оксидами BaO образует соли:
ВаО +СО 2 = ВаСО 3
Основный гидроксид Ва(ОН) 2 немного растворим в воде, обладает щелочными свойствами.
Ионы Ва 2+ бесцветны. Хлорид, бромид, иодид, нитрат бария хорошо растворимы в воде. Нерастворимы карбонат, сульфат, средний ортофосфат бария. Сульфат бария BaSO 4 нерастворим в воде и кислотах. Поэтому образование белого творожистого осадка BaSO 4 является качественной реакцией на ионы Ва 2+ и сульфат-ионы.
BaSO 4 растворяется в горячем растворе концентрированной Н 2 SO 4 , образуя кислый сульфат:
BaSO 4 +Н 2 SO 4 = 2Ba(НSO 4) 2
Ионы Ва 2+ окрашивают пламя в желто-зеленый цвет.
Применение
Сплав Ba с Al - основа геттеров (газопоглотителей). BaSO 4 - компонент белых красок, его добавляют при выделке некоторых сортов бумаги, используют при выплавке алюминия, в медицине - для рентгеновского обследования.
Соединения бария используют в стеклопроизводстве, при изготовлении сигнальных ракет.
Титанат бария BaTiO 3 - компонент пьезоэлементов, малогабаритных конденсаторов, используется в лазерной технике.
Физиологическое действие
Соединения бария токсичны, ПДК в воздухе 0,5 мг/м 3 .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "барий" в других словарях:

    барий - гидрототығы. хим. Суда еритін, түссіз кристалды зат (ҚСЭ, 2, 167). Барий карбонаты. хим. Тұз және азот қышқылдарында оңай еритін, түссіз кристал. Б а р и й к а р б о н а т ы – барийдың өте маңызды қосылыстарының бірі (ҚСЭ, 2, 167). Барий сульфаты … Қазақ тілінің түсіндірме сөздігі

    - (лат. barium, от греч. barys тяжелый). Желтоватый металл, названный так потому, что в связи с другими металлами дает тяжелые соединения. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БАРИЙ лат. barium, от греч.… … Словарь иностранных слов русского языка

    Ва (лат. Baryum, от греч. bаrys тяжёлый * a. barium; н. Barium; ф. barium; и. bario), хим. элемент главной подгруппы 11 группы периодич. системы элементов Менделеева, ат. н. 56, ат. м. 137,33. Природный Б. состоит из смеси семи стабильных … Геологическая энциклопедия

    - (от греч. barys тяжёлый; лат. Barium), Ba, хим. элемент II группы периодич. системы элементов подгруппы щёлочноземельных элементов, ат. номер 56, ат. масса 137,33. Природный Б. содержит 7 стабильных изотопов, среди к рых преобладает 138Ba… … Физическая энциклопедия

    БАРИЙ - (от греч. barys тяжелый), двухатомный металл, ат. в. 137,37, хим. обозначение Ва, встречается в природе только в форме солей, гл. обр., в виде сернокислой соли (тяжелый шпат) и углекислой соли (витерит); в незначительных количествах соли Б.… … Большая медицинская энциклопедия

    - (Barium), Ba, химический элемент II группы периодической системы, атомный номер 56, атомная масса 137,33; относится к щелочноземельным металлам. Открыт шведским химиком К. Шееле в 1774, получен Г. Дэви в 1808 … Современная энциклопедия

    - (лат. Barium) Ba, химический элемент II группы периодической системы, атомный номер 56, атомная масса 137,33, относится к щелочноземельным металлам. Название от греч. barys тяжелый. Серебристо белый мягкий металл; плотность 3,78 г/см³, tпл… … Большой Энциклопедический словарь барий - сущ., кол во синонимов: 2 металл (86) элемент (159) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Барий (лат. Baryum), Ba, химический элемент II группы периодической системы Менделеева, атомный номер 56, атомная масса 137,34; серебристо-белый металл. Состоит из смеси 7 стабильных изотопов, среди которых преобладает 138 Ва (71,66%). При ядерном делении урана и плутония образуется радиоактивный изотоп 140 Ва, используемый как радиоактивный индикатор. Барий был открыт шведским химиком К. Шееле (1774) в виде оксида ВаО, названной "тяжелой землей", или баритом (от греч. barys -тяжелый). Металлический Барий (в виде амальгамы) получил английский химик Г. Дэви (1808) электролизом влажного гидрооксида Ва(ОН) 2 с ртутным катодом. Содержание Бария в земной коре 0,05% по массе, в свободном состоянии в природе не встречается. Из минералов Бария промышленное значение имеют барит (тяжелый шпат) BaSO 4 и реже встречающийся витерит ВаСО 3 .

Физические свойства Бария. Кристаллическая решетка Бария кубическая объемноцентрированная с периодом а = 5,019Å; плотность 3,76 г/см 3 , t nл 710°С, t кип 1637-1640°С. Барий - мягкий металл (тверже свинца, но мягче цинка), его твердость по минералогической шкале 2.

Химические свойства Бария. Барий относится к щелочноземельным металлам и по химические свойствам сходен с кальцием и стронцием, превосходя их по активности. Барий реагирует с большинством других элементов, образуя соединения, в которых он, как правило, 2-валентен (на внешней электронной оболочке атома Бария 2 электрона, ее конфигурация 6s 2). На воздухе Барий быстро окисляется, образуя на поверхности пленку из оксида (а также пероксида и нитрида Ba 3 N 2). При нагревании легко воспламеняется и горит желто-зеленым пламенем. Энергично разлагает воду, образуя гидрооксид бария: Ва + 2Н 2 О = Ва(ОН) 2 + Н 2 . Из-за химические активности Барий хранят под слоем керосина. Оксид ВаО - бесцветные кристаллы; на воздухе легко переходит в карбонат ВаСО 3 , с водой энергично взаимодействует, образуя Ва(ОН) 2 . Нагреванием ВаО на воздухе при 500 °С получают пероксид ВаО 2 , разлагающуюся при 700°С на ВаО и О 2 . Нагреванием пероксида с кислородом под высоким давлением получен высший пероксид ВаО 4 - вещество желтого цвета, разлагающееся при 50-60°С. С галогенами и серой Барий соединяется, образуя галогениды (например, ВаCl 2) и сульфид BaS, с водородом - гидрид ВаН 2 , бурно разлагающийся водой и кислотами. Из обычно применяемых солей Бария хорошо растворимы хлорид бария ВаCl 2 и другие галогениды, нитрат Ba(NO 3) 2 , сульфид BaS, хлорат Ва(ClО 3) 2 , трудно растворимы - сульфат бария BaSO 4 , карбонат бария ВаСО 3 и хромат ВаСrО 4 .

Получение Бария. Основным сырьем для получения Бария и его соединений служит барит, который восстанавливают углем в пламенных печах: BaSO 4 + 4C = BaS + 4CO. Образующийся растворимый BaS перерабатывается на других соли Бария. Основной промышленный метод получения металлического Бария - термическое восстановление его оксида порошком алюминия: 4ВаО + 2Al = 3Ва + ВаО·Аl 2 О 3 .

Смесь нагревают при 1100-1200°С в вакууме (100 мн/м 2 , 10 -3 мм рт. ст.). Барий улетучивается, осаждаясь на холодных частях аппаратуры. Процесс ведут в электровакуумных аппаратах периодического действия, позволяющих последовательно проводить восстановление, дистилляцию, конденсацию и отливку металла, получая за один технологический цикл слиток Бария. Двойной перегонкой в вакууме при 900°С металл очищают до содержания в нем примесей менее 1·10 -4 %.

Применение Бария. Практическое применение металлического Бария невелико. Оно ограничено также и тем, что манипуляции с чистым Барий затруднительны. Обычно Барий или помещают в защитную оболочку из другого металла, или сплавляют с каким-либо металлом, придающим Барию стойкость. Иногда металлический Барий получают непосредственно в приборах, помещая в них таблетки из смеси оксидов Бария и алюминия и проводя затем термическое восстановление в вакууме. Барий, а также его сплавы с магнием и алюминием применяют в технике высокого вакуума в качестве поглотителя остаточных газов (геттера). В небольших количествах Барий применяют в металлургии меди и свинца для их раскисления, очистки от серы и газов. В некоторые антифрикционные материалы добавляют незначительное количество Бария. Так, добавка Бария к свинцу заметно увеличивает твердость сплава, применяемого для типографских шрифтов. Сплавы Барий с никелем применяют при изготовлении электродов запальных свечей двигателей и в радиолампах.

Широко применяются соединения Бария. Пероксид ВаО 2 служит для получения пероксида водорода, для отбеливания шелка и растительных волокон, как дезинфицирующее средство и как один из компонентов запальных смесей в алюминотермии. Сульфидом BaS удаляют волосяной покров со шкур. Перхлорат Ва(ClО 4) 2 - один из лучших осушителей. Нитрат Ba(NO 3) 2 используют в пиротехнике. Окрашенные соли Бария - хромат BaCrO 4 (желтый) и манганат ВаМnO 4 (зеленый) - хорошие пигменты при изготовлении красок. Платиноцианатом Бария Ba покрывают экраны при работе с рентгеновским и радиоактивным излучением (в кристаллах этой соли под действием излучений возбуждается яркая желто-зеленая флуоресценция). Титанат Бария ВаТiO 3 - один из наиболее важных сегнетоэлектриков. Поскольку Барий хорошо поглощает рентгеновские лучи и гамма-излучение, его вводят в состав защитных материалов в рентгеновских установках и ядерных реакторах. Соединения Бария являются инертными носителями при извлечении радия из урановых руд. Нерастворимый сульфат Бария нетоксичен и применяется как контрастная масса при рентгенологическом исследовании желудочно-кишечного тракта. Карбонат Бария используется для уничтожения грызунов.

Барий в организме. Барий присутствует во всех органах растений; его содержание в золе растения зависит от количества Бария в почве и колеблется от 0,06-0,2 до 3% (на месторождениях барита). Коэффициент накопления Бария (Барий в золе / Барий в почве) у травянистых растений равен 0,2-6, у древесных 1-30. Концентрация Бария больше в корнях и ветвях, меньше - в листьях; она увеличивается по мере старения побегов. Для животных Барий (его растворимые соли) ядовит, поэтому травы, содержащие много Бария (до 2-30% в золе), вызывают у травоядных отравление. Барий отлагается в костях и в небольших количествах в других органах животных. Доза 0,2-0,5 г хлористого Бария вызывает у человека острое отравление, 0,8-0,9 г - смерть.