Что такое изотопы в химии определение. Изотопы

Изотопы

ИЗОТО́ПЫ -ов; мн. (ед. изото́п, -а; м.). [от греч. isos - равный и topos - место] Спец. Разновидности одного и того же химического элемента, различающиеся массой атомов. Радиоактивные изотопы. Изотопы урана.

Изото́пный, -ая, -ое. И. индикатор.

изото́пы

История исследований
Первые экспериментальные данные о существовании изотопов были получены в 1906-10 гг. при изучении свойств радиоактивных превращений атомов тяжелых элементов. В 1906-07 гг. было обнаружено, что продукт радиоактивного распада урана - ионий и продукт радиоактивного распада тория - радиоторий имеют те же химические свойства, что и торий, однако отличаются от последнего атомной массой и характеристиками радиоактивного распада. Более того: все три элемента имеют одинаковые оптические и рентгеновские спектры. По предложению английского ученого Ф. Содди (см. СОДДИ Фредерик) , такие вещества стали называть изотопами.
После того как изотопы были обнаружены у тяжелых радиоактивных элементов, начались поиски изотопов у стабильных элементов. Независимое подтверждение существования стабильных изотопов химических элементов было получено в экспериментах Дж. Дж. Томсона (см. ТОМСОН Джозеф Джон) и Ф. Астона (см. АСТОН Фрэнсис Уильям) . Томсон в 1913 г. обнаружил стабильные изотопы у неона. Астон, проводивший исследования с помощью сконструированного им прибора, названного масс-спектрографом (или масс-спектрометром), используя метод масс-спектрометрии (см. МАСС-СПЕКТРОМЕТРИЯ) , доказал, что и многие другие стабильные химические элементы имеют изотопы. В 1919 г. он получил доказательства существования двух изотопов 20 Ne и 22 Ne, относительное содержание (распространенность) которых в природе составляет приблизительно 91% и 9% . В дальнейшем был обнаружен изотоп 21 Ne с распространенностью 0,26%, изотопы хлора, ртути и ряда других элементов.
Масс-спектрометр несколько другой конструкции в те же годы был создан А. Дж. Демпстером (см. ДЕМПСТЕР Артур Джефри) . В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей была составлена почти полная таблица изотопных составов. В 1932 г. был открыт нейтрон - частица, не имеющая заряда, с массой, близкой к массе ядра атома водорода - протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное определение понятия изотопов: изотопы - это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Примерно к 1940 г. изотопный анализ был проведен для всех известных к тому времени химических элементов.
При изучении радиоактивности было открыто около 40 природных радиоактивных веществ. Они были объединены в радиоактивные семейства, родоначальниками которых являются изотопы тория и урана. К природным относятся все стабильные разновидности атомов (их около 280) и все естественно радиоактивные, входящие в состав радиоактивных семейств (их 46). Все остальные изотопы получены в результате ядерных реакций.
Впервые в 1934 г. И. Кюри (см. ЖОЛИО-КЮРИ Ирен) и Ф. Жолио-Кюри (см. ЖОЛИО-КЮРИ Фредерик) получили искусственным путем радиоактивные изотоп азота (13 N), кремния (28 Si) и фосфора (30 P), отсутствующие в природе. Этими экспериментами они продемонстрировали возможность синтеза новых радиоактивных нуклидов. Среди известных в настоящее время искусственных радиоизотопов более 150 принадлежат трансурановым элементам (см. ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ) , не встречающимся на Земле. Теоретически допускается, что число разновидностей изотопов, способных к существованию, может достигать порядка 6000.


Энциклопедический словарь . 2009 .

  • изотопов разделение
  • изотермический процесс

Смотреть что такое "изотопы" в других словарях:

    ИЗОТОПЫ Современная энциклопедия

    Изотопы - (от изо... и греческого topos место), разновидности химических элементов, у которых ядра атомов (нуклидов) отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе химических … Иллюстрированный энциклопедический словарь

    ИЗОТОПЫ - (от изо... и греч. topos место) разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Различают… … Большой Энциклопедический словарь

    ИЗОТОПЫ - ИЗОТОПЫ, хим. элементы, расположенные в одной и той же клетке периодической системы и следовательно обладающие одинаковым атомным номером или порядко вым числом. При этом И. не должны, вообще говоря, обладать одинаковым атомным весом. Различные… … Большая медицинская энциклопедия

    ИЗОТОПЫ - разновидности данного хим. элемента, различающиеся по массе ядер. Обладая одинаковыми зарядами ядер Z, но различаясь числом нейтронов, И. имеют одинаковое строение электронных оболочек, т. е. очень близкие хим. св ва, и занимают одно и то же… … Физическая энциклопедия

    изотопы - атомы одного и того же хим. элемента, ядра которых содержат одинаковое число протонов, но различное число нейтронов; имеют разные атомные массы, обладают одними и теми же хим. свойствами, но различаются по своим физ. свойствам, в частности… … Словарь микробиологии

    ИЗОТОПЫ - атомы хим. элемента, обладающие разными массовыми числами, но имеющие одинаковый заряд атомных ядер и поэтому занимающие одно место в периодической системе Менделеева. Атомы разных изотопов одного и того же хим. элемента отличаются по числу… … Геологическая энциклопедия

    Изотопы - Isotopes нуклиды, имеющие одинаковый атомный номер, но различные атомные массы (например, уран 235 и уран 238). Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

    ИЗОТОПЫ - (от изо... и греч. topos место), элементы с одинаковым порядковым номером, но с разной атомной массой. Большинство радиоактивных изотопов, важных для экологии, обладают энергией от 0,1 до 5 Мэв (чем выше энергия радиоактивных изотопов, тем больше … Экологический словарь

    изотопы - Нуклиды, имеющие одинаковый атомный номер, но различные атомные массы (например, уран 235 и уран 238). Тематики атомная энергетика в целом EN isotopes … Справочник технического переводчика

    ИЗОТОПЫ - разновидности атомов данного хим. элемента, ядра которых содержат одинаковое число протонов, но различное число нейтронов. И. имеют разные атомные (см.) и одинаковое число электронов в атомной оболочке, что определяет их очень близкие физ. хим.… … Большая политехническая энциклопедия

Наверное, нет на земле такого человека, который не слышал бы об изотопах. Но далеко не все знают, что это такое. Особенно пугающе звучит словосочетание «радиоактивные изотопы». Эти непонятные химические элементы нагоняют ужас на человечество, но на самом деле они не так страшны, как это может показаться на первый взгляд.

Определение

Чтобы разобраться с понятием радиоактивных элементов, необходимо для начала сказать, что изотопы - это образцы одного и тот же химического элемента, но с разной массой. Что это значит? Вопросы исчезнут, если для начала мы вспомним строение атома. Состоит он из электронов, протонов и нейтронов. Число первых двух элементарных частиц в ядре атома всегда постоянно, тогда как нейтроны, имеющие собственную массу, могут встречаться в одном и том же веществе в разных количествах. Это обстоятельство и порождает разнообразие химических элементов с разными физическими свойствами.

Теперь мы можем дать научное определение исследуемому понятию. Итак, изотопы - это совокупный набор похожих по свойствам химических элементов, но имеющих разную массу и физические свойства. Согласно более современной терминологии, они носят название плеяды нуклеотидов химического элемента.

Немного истории

В начале прошлого века ученые обнаружили, что у одного и того же химического соединения в разных условиях могут наблюдаться разные массы ядер электронов. С чисто теоретической точки зрения, такие элементы можно было посчитать новыми и начать заполнять ими пустые клеточки в периодической таблице Д. Менделеева. Но свободных ячеек в ней всего девять, а новые элементы ученые открывали десятками. К тому же и математические подсчеты показали, что обнаруженные соединения не могут считаться ранее не известными, ведь их химические свойства полностью соответствовали характеристикам уже существующих.

После длительных обсуждений было решено назвать эти элементы изотопами и помещать их в одну клеточку с теми, ядра которых содержат с ними одинаковое количество электронов. Ученым удалось определить, что изотопы - это всего лишь некоторые вариации химических элементов. Однако причины их возникновения и длительность жизни изучались еще почти целое столетие. Даже в начале XXI века утверждать, что человечество знает абсолютно все об изотопах, нельзя.

Стойкие и нестойкие вариации

Каждый химический элемент имеет несколько изотопов. Из-за того, что в их ядрах есть свободные нейтроны, они не всегда вступают в стабильные связи с остальными составляющими атома. Через некоторое время свободные частицы покидают ядро, из-за чего меняется его масса и физические свойства. Так образуются другие изотопы, что ведет в конце концов к образованию вещества с равным количеством протонов, нейтронов и электронов.

Те вещества, которые распадаются очень быстро, называются радиоактивными изотопами. Они выпускают в пространство большое количество нейтронов, образующих мощное ионизирующее гамма-излучение, известное своей сильной проникающей способностью, которая негативно влияет на живые организмы.

Более стойкие изотопы не являются радиоактивными, поскольку количество выделяемых ими свободных нейтронов не способно образовывать излучения и существенно влиять на другие атомы.

Достаточно давно учеными была установлена одна важная закономерность: у каждого химического элемента есть свои изотопы, стойкие или радиоактивные. Интересно, что многие из них были получены в лабораторных условиях, а их присутствие в естественном виде невелико и не всегда фиксируется приборами.

Распространение в природе

В естественных условиях чаще всего встречаются вещества, масса изотопа которых напрямую определяется его порядковым числом в таблице Д. Менделеева. К примеру, водород, обозначаемый символом Н, имеет порядковый номер 1, а его масса равна единице. Изотопы его, 2Н и 3Н, в природе встречаются крайне редко.

Даже человеческий организм имеет некоторое количество радиоактивных изотопов. Попадают они внутрь через пищу в виде изотопов углерода, который, в свою очередь, впитывается растениями из почвы или воздуха и переходит в состав органических веществ в процессе фотосинтеза. Поэтому и человек, и животные, и растения излучают определенный радиационный фон. Только он настолько низкий, что не мешает нормальному функционированию и росту.

Источниками, которые способствуют образованию изотопов, выступают внутренние слои земного ядра и излучения из космоса.

Как известно, температура на планете во многом зависит от ее горячего ядра. Но только совсем недавно стало понятно, что источником этого тепла выступает сложная термоядерная реакция, в которой участвуют радиоактивные изотопы.

Распад изотопов

Поскольку изотопы - это нестойкие образования, можно предположить, что они по прошествии времени всегда распадаются на более постоянные ядра химических элементов. Это утверждение верно, поскольку ученым не удалось обнаружить в природе огромного количества радиоактивных изотопов. Да и большинство из тех, которые были добыты в лабораториях, просуществовали от пары минут до нескольких дней, а потом снова превратились в обычные химические элементы.

Но есть в природе и такие изотопы, которые оказываются очень устойчивыми к распаду. Они могут существовать миллиарды лет. Образовались такие элементы в те далекие времена, когда земля еще формировалась, а на ее поверхности не было даже твердой коры.

Радиоактивные изотопы распадаются и вновь образуются очень быстро. Поэтому с той целью, чтобы облегчить оценку стойкости изотопа, учеными было принято решение рассматривать категорию периода его полураспада.

Период полураспада

Не всем читателям может быть сразу понятно, что имеется в виду под этим понятием. Определим же его. Период полураспада изотопа - это время, за которое перестанет существовать условная половина взятого вещества.

Это не означает, что оставшаяся часть соединения будет уничтожена за такое же количество времени. Применительно к этой половине необходимо рассматривать иную категорию - период времени, за который исчезнет ее вторая часть, то есть четверть изначального количества вещества. И такое рассмотрение продолжается до бесконечности. Можно предположить, что время полного распада изначального количества вещества посчитать просто невозможно, поскольку этот процесс практически бесконечен.

Однако ученые, зная период полураспада, могут определить, какое количество вещества существовало вначале. Эти данные успешно используются в смежных науках.

В современном научном мире понятие полного распада практически не используется. Относительно каждого изотопа принято указывать время его полураспада, которое варьирует от нескольких секунд до многих миллиардов лет. Чем меньше показатель полураспада, там большее излучение исходит от вещества и тем выше его радиоактивность.

Обогащение ископаемых

В некоторых отраслях науки и техники использование относительно большого количества радиоактивных веществ считается обязательным. Но при этом в естественных условиях таких соединений совсем немного.

Известно, что изотопы - это нераспространенные варианты химических элементов. Количество их измеряется несколькими процентами от самой стойкой разновидности. Именно поэтому ученым необходимо проводить искусственное обогащение ископаемых материалов.

За годы исследований удалось узнать, что распад изотопа сопровождается цепной реакцией. Освобожденные нейтроны одного вещества начинают влиять на другое. В результате этого тяжелые ядра распадаются на более легкие и получаются новые химические элементы.

Это явление получило название цепной реакции, в результате которой можно получить более стойкие, но менее распространенные изотопы, которые в дальнейшем используются в народном хозяйстве.

Применение энергии распада

Также учеными было выяснено, что в ходе распада радиоактивного изотопа выделяется огромное количество свободной энергии. Ее количество принято измерять единицей Кюри, равной времени деления 1 г радона-222 за 1 секунду. Чем выше этот показатель, тем больше энергии выделяется.

Это стало поводом для разработки способов использования свободной энергии. Так появились атомные реакторы, в которые помещается радиоактивный изотоп. Большая часть энергии, выделяемой им, собирается и превращается в электричество. На основании этих реакторов создаются атомные станции, которые дают самое дешевое электричество. Уменьшенные варианты таких реакторов ставят на самоходные механизмы. Учитывая опасность аварий, чаще всего такими машинами выступают подводные лодки. В случае отказа реактора количество жертв на подлодке будет легче свести к минимуму.

Еще один очень страшный вариант использования энергии полураспада - атомные бомбы. Во время Второй мировой войны они были испытаны на человечестве в японских городах Хиросима и Нагасаки. Последствия оказались очень печальными. Поэтому в мире действует соглашение о неиспользовании этого опасного оружия. В месте с тем большие государства с ориентацией на милитаризацию и сегодня продолжают исследования в этой отрасли. Кроме того, многие из них втайне от мирового сообщества изготавливают атомные бомбы, которые в тысячи раз опаснее тех, которые использовались в Японии.

Изотопы в медицине

В мирных целях распад радиоактивных изотопов научились использовать в медицине. Направив излучение на пораженный участок организма, можно приостановить течение болезни или помочь пациенту полностью излечиться.

Но чаще радиоактивные изотопы используют для диагностики. Все дело в том, что их движение и характер скопления проще всего зафиксировать по излучению, которое они производят. Так, в организм человека вводится определенное неопасное количество радиоактивного вещества, а по приборам медики наблюдают, как и куда оно попадет.

Таким образом проводят диагностику работы головного мозга, характера раковых опухолей, особенности работы желез внутренней и внешней секреции.

Применение в археологии

Известно, что в живых организмах всегда есть радиоактивный углерод-14, полураспад изотопа которого равен 5570 лет. Кроме того, ученные знают, какое количество этого элемента содержится в организме до момента его смерти. Это значит, что все спиленные деревья излучают одинаковое количество радиации. Со временем интенсивность излучения падает.

Это помогает археологам определить, как давно умерло дерево, из которого построили галеру или любой другой корабль, а значит, и само время строительства. Этот метод исследования получил название радиоактивного углеродного анализа. Благодаря ему ученым легче установить хронологию исторических событий.

Изотопы - это разновидности любого химического элемента , обладающие разным атомным весом. Различные изотопы любого химического элемента имеют одно и то же число протонов в ядре и такое же число электронов на оболочках атома, имеют одинаковый атомный номер и занимают определенные, свойственные данному химическому элементу, места в таблице Д. И. Менделеева.

Различие в атомном весе у изотопов объясняется тем, что ядра их атомов содержат разное число нейтронов.

Изотопы радиоактивные - изотопы любого элемента периодической системы Д. И. Менделеева, которых имеют неустойчивые ядра и переходят в устойчивое состояние путем радиоактивного распада, сопровождающегося излучением (см. ). У элементов с порядковым номером больше 82 все изотопы радиоактивны и распадаются путем альфа- или бета-распада. Это - так называемые естественные радиоактивные изотопы, встречающиеся обычно в природе. Атомы, образующиеся при распаде этих элементов, если у них порядковый номер выше 82, в свою очередь подвергаются радиоактивному распаду, продукты которого также могут быть радиоактивны. Получается как бы последовательная цепочка, или так называемое семейство радиоактивных изотопов.

Известно три естественных радиоактивных семейства, называемых по первому элементу ряда семействами , и актиноурана (или актиния). К семейству урана относятся (см.) и (см.). Последний элемент каждого ряда превращается в результате распада в один из устойчивых изотопов с порядковым номером 82. Кроме этих семейств, известны отдельные естественные радиоактивные изотопы элементов с порядковыми номерами меньше 82. Это калий-40 и некоторые другие. Из них важен калий-40, так как он содержится в любом живом организме.

Радиоактивные изотопы всех химических элементов можно получить искусственным путем. Это - искусственно радиоактивные изотопы. Существует несколько способов их получения. Радиоактивные изотопы таких элементов, как , йод, бром и другие, занимающих средние места в периодической системе, являются продуктами деления ядра урана. Из смеси таких продуктов, полученных в ядерном реакторе (см. ), их выделяют, пользуясь радиохимическими и другими методами. Радиоактивные изотопы почти всех элементов могут быть получены на ускорителе заряженных частиц (см.) путем бомбардировки определенных устойчивых атомов протонами или дейтронами.

Распространен способ получения радиоактивных изотопов из устойчивых изотопов того же элемента путем облучения их нейтронами в ядерном реакторе. Способ основан на так называемой реакции радиационного захвата. Если вещество облучают нейтронами, последние, не имея заряда, могут беспрепятственно приблизиться к ядру атома и как бы «прилипнуть» к нему, образовав новое ядро того же элемента, но с одним лишним нейтроном. При этом выделяется определенное количество энергии в виде (см.), почему процесс и называется радиационным захватом. Ядра с избытком нейтронов неустойчивы, поэтому полученный изотоп радиоактивен. За редкими исключениями, таким путем можно получить радиоактивные изотопы любого элемента.

При распаде изотопа может образоваться изотоп, также радиоактивный. Например, стронций-90 превращается в -90, барий-140 - в лантан-140 и т. п.

Искусственным путем были получены не известные в природе трансурановые элементы с порядковым номером больше 92 (нептуний, америций, кюрий и т. д.), все изотопы которых радиоактивны. Один из них дает начало еще одному радиоактивному семейству - семейству нептуния.

При работе реакторов и ускорителей радиоактивные изотопы образуются в материалах и деталях этих установок и окружающего оборудования. Эта «наведенная активность», сохраняющаяся более или менее долгое время после прекращения работы установок, представляет нежелательный источник излучения. Наведенная активность возникает и в живом организме, подвергавшемся воздействию нейтронов, например при аварии или при атомном взрыве.

Активность радиоактивных изотопов измеряется в единицах кюри (см. « ») или производных от нее - милликюри и микрокюри.

Обнаруживают и измеряют количество радиоактивных изотопов по их излучению, пользуясь для этого обычным способом измерения радиоактивности (см. Дозиметрия, ионизирующих излучений). Эти способы позволяют измерять активность порядка сотых и тысячных долей микрокюри, что соответствует весовому количеству изотопа менее миллиардных долей миллиграмма. Из этого видно, что ничтожная примесь радиоактивных изотопов какого-либо элемента к его устойчивым атомам позволяет легко обнаружить этот элемент. Его атомы становятся, таким образом, мечеными атомами. Их меткой является излучение.

По химическим и физико-химическим свойствам радиоактивные изотопы практически не отличаются от природных элементов; их примесь к какому-либо веществу не меняет его поведения в живом организме.

Можно такими мечеными атомами заменять устойчивые изотопы в различных химических соединениях. Свойства последних от этого не изменятся, и, если ввести их в организм, они будут вести себя как обычные, немеченные вещества. Однако благодаря излучению легко обнаруживать их присутствие в крови, тканях, клетках и т. п. Радиоактивные изотопы в этих веществах служат, таким образом, показателями, или индикаторами, распределения и судьбы введенных в организм веществ. Поэтому их называют «радиоактивными индикаторами». Синтезировано множество неорганических и органических соединений, меченных различными радиоактивными изотопами, для (см.) и для различных экспериментальных исследований.

Многие радиоактивные изотопы (йод-131, фосфор-32, -198 и др.) применяются для лучевой терапии (см.).

Искусственно радиоактивные изотопы (кобальт-60, цезий-137 и некоторые другие, являющиеся гамма-излучателями) полностью заменили радий, применявшийся ранее в качестве источника излучения (см. ) для медицинских и технических целей. См. также статьи по названию элементов.

Определенного элемента, имеющие одинаковый , но разные . Обладают ядрами с одинаковым числом и разл. числом , имеют одинаковое строение электронных оболочек и занимают одно и то же место в периодич. системе хим. элементов. Термин "изотопы" предложен в 1910 Ф. Содди для обозначения химически неразличимых разновидностей , отличающихся по своим физ. (прежде всего радиоактивным) св-вам. Стабильные изотопы впервые обнаружены в 1913 Дж. Томсоном с помощью разработанного им т. наз. метода парабол - прообраза совр. . Он установил, что у Ne имеется, по крайней мере, 2 разновидности с маc. ч. 20 и 22. Названиями и символами изотопов обычно служат названия и символы соответствующих хим. элементов; указывают сверху слева от символа. Напр., для обозначения прир. изотопов используют запись 35 Сl и 37 С1; иногда внизу слева указывают также элемента, т.е. пишут 35 17 Сl и 37 17 Cl. Только изотопы самого легкого элемента -водорода с маc. ч. 1, 2 и 3 имеют спец. названия и символы: (1 1 Н), (D, или 2 1 Н) и (Т, или 3 1 H) соответственно. Из-за большой разницы в массах поведение этих изотопов существенно различается (см. , ). Стабильные изотопы встречаются у всех четных и большинства нечетных элементов с [ 83. Число стабильных изотопов у элементов с четными номерами м. б. равно 10 (напр., у ); у элементов с нечетными номерами не более двух стабильных изотопов. Известно ок. 280 стабильных и более 2000 радиоактивных изотопов у 116 природных и искусственно полученных элементов. Для каждого элемента содержание отдельных изотопов в прир. смеси претерпевает небольшие колебания, к-рыми часто можно пренебречь. Более значит. колебания изотопного состава наблюдаются для метеоритов и др. небесных тел. Постоянство изотопного состава приводит к постоянству встречающихся на Земле элементов, представляющей собой среднее значение массы данного элемента, найденное с учетом распространенности изотопов в природе. Колебания изотопного состава легких элементов связаны, как правило, с изменением изотопного состава при разл. процессах, протекающих в природе ( , и т.п.). Для тяжелого элемента Рb колебания изотопного состава разных образцов объясняются разл. содержанием в , и др. источниках и - родоначальников естеств. . Различия св-в изотопов данного элемента наз. . Важной практич. задачей является получение из прир. смесей отдельных изотопов -

· Изотопы · Изобары · Период полураспада · Массовое число · Цепная ядерная реакция

Терминология

История открытия изотопов

Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906-07 выяснилось, что продукт радиоактивного распада урана - ионий и продукт радиоактивного распада тория - радиоторий, имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Ф. Содди , стали называть изотопами.

Изотопы в природе

Считается, что изотопный состав элементов на Земле одинаков во всех материалах. Некоторые физические процессы в природе приводят к нарушению изотопного состава элементов (природное фракционирование изотопов, характерное для лёгких элементов, а также изотопные сдвиги при распаде природных долгоживущих изотопов). Постепенное накопление в минералах ядер - продуктов распада некоторых долгоживущих нуклидов используется в ядерной геохронологии.

Применение изотопов человеком

В технологической деятельности люди научились изменять изотопный состав элементов для получения каких-либо специфических свойств материалов. Например, 235 U способен к цепной реакции деления тепловыми нейтронами и может использоваться в качестве топлива для ядерных реакторов или ядерного оружия . Однако в природном уране лишь 0,72 % этого нуклида, тогда как цепная реакция практически осуществима лишь при содержании 235 U не менее 3 %. В связи с близостью физико-химических свойств изотопов тяжёлых элементов, процедура изотопного обогащения урана является крайне сложной технологической задачей, которая доступна лишь десятку государств в мире. Во многих отраслях науки и техники (например, в радиоиммунном анализе) используются изотопные метки.

См. также

  • Изотопная геохимия

Нестабильные (менее суток): 8 C: Углерод-8, 9 C: Углерод-9, 10 C: Углерод-10, 11 C: Углерод-11

Стабильные: 12 C: Углерод-12, 13 C: Углерод-13

10-10 000 лет: 14 C: Углерод-14

Нестабильные (менее суток) : 15 C: Углерод-15, 16 C: Углерод-16, 17 C: Углерод-17, 18 C: Углерод-18, 19 C: Углерод-19, 20 C: Углерод-20, 21 C: Углерод-21, 22 C: Углерод-22