Польза и вред радиоактивного излучения. Как ещё используется радиоактивность

Цель занятия: Изучить явление радиоактивности

В конце прошлого столетия были сделаны два крупнейших открытия. В 1895г. В Рентген обнаружил лучи, которые возникали при пропускании тока высокого напряжения через стеклянный баллон с разряженным воздухом, в 1896 г. А. Беккерель открыл явления радиоактивности. А. Беккерель обнаружил, что соли урана самопроизвольно испускают невидимые лучи, вызывающие почернение фотопластинки и флуоресценцию некоторых веществ. В 1898г. Супруги Пьер Кюри и Мария Склодовская-Кюри открыли еще два элемента- полоний и радий, которые давали подобные излучения, но интенсивность их во много раз превышала интенсивность излучения урана. Впоследствии были установлены свойства этих излучений и определена их природа. Кроме того, было обнаружено, что радиоактивные вещества непрерывно выделяют энергию в виде тепла.

Явление самопроизвольного излучения было названо радиоактивностью, а вещества испускающие излучения –радиоактивными.

Радиоактивность – это свойство ядер определенных элементов самопроизвольно (т.е. без каких-либо внешних воздействий) превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным излучением. Само явление называется радиоактивным распадом. На скорость течения радиоактивных превращений не оказывают никакого воздействия изменения температуры и давления, наличие электрического и магнитного полей, вид химического соединения данного радиоактивного элемента и его агрегатного состояния.

Радиоактивные явления, происходящие в природе, называются естественной радиоактивностью ; аналогичные процессы, происходящие в искусственно полученных веществах (через соответствующие ядерные реакции), - искусственной радиоактивностью. Однако, деление это условно, так как оба вида радиоактивности подчиняются одним и тем же законам.

Естественная радиоактивность и радиоактивные семейства

Радиоактивные элементы распространены в природе в ничтожных количествах. Они содержатся в твердых породах земной коры, в воде, в воздухе, а так же в растительных и животных организмах, в которые они попадают из окружающей среды.

В земной коре естественно- радиоактивные элементы содержатся преимущественно в урановых рудах, и почти все они являются изотопами тяжелых элементов с атомным номером более 83. Ядра тяжелых элементов неустойчивы. Они претерпевают в ряде случаев многократные последовательные ядерные превращения. В результате возникает целая цепочка радиоактивных распадов, в которой изотопы оказываются генетически связанных между собой. Такая цепочка- совокупность всех изотопов ряда элементов, возникающих в результате последовательных радиоактивных превращений из одного материального элемента, называется радиоактивным семейством или рядом. Семейство названы по первым элементам, с которых начинаются радиоактивные превращения, т.е. по их родоначальникам.

В настоящее время известно три естественно- радиоактивных семейства: урана-радия (238 92 U-Ra), тория (232 90 Th) и актиния (235 89 Ac). Исходный элемент семейства урана 238 92 U в результате 14 последовательных радиоактивных превращений (восьми альфа- и шести бета -превращений), переходит в устойчивый изотоп свинца 206 82 Pb. Поскольку это семейство включает в себя очень важный радиоактивный элемент – радий, а так же продукты его распада, то оно часто обозначается как семейство урана-радия.

Родоначальник семейства тория 232 90 Th путем десяти последовательных превращений (шести альфа – и четырех бета превращений) переходит в стабильный изотоп свинца 208 82 Pb.

Родоначальником семейства актиния является изотоп урана 235 92 U, который раньше называли актиния-урана AcU . Так как среди членов ряда имеется изотоп актиния 227 89 Ac, то это семейство получило названия семейства актиния или актиния-урана. Путем одиннадцати превращений (семи альфа- и четырех бета превращений) 235 92 U переходит в стабильный изотоп свинца 205 82 Pb. Для родоначальных элементов указанных семейств характерно, что они обладают очень большим периодом полураспада.

Характеристика радиоактивных излучений

Радиоактивное излучение невидимо. Оно обнаруживается с помощью различных явлений, происходящих при его действии на вещество (свечение люминофоров или флуоресцирующих экранов, ионизация вещества, почернение фотоэмульсии после проявления и т.п.).

Характер испускаемого радиоактивными веществами излучения изучен как по поглощению его в веществе, так и по отклонению этих лучей в электрическом и магнитном поле. Было обнаружено, что радиоактивное излучение в поперечном магнитном поле разделяется обычно на три пучка. Пока не была выяснена природа этих излучений, лучи отклоняющиеся к отрицательно заряженной пластинке, условно были названы альфа-лучами, отклоняющиеся к положительно заряженной пластинке – бета-лучами, а лучи, которые совсем не отклонялись, были названы гамма-лучами. Такое разделение радиоактивного излучения в электрическом поле позволило установить, что только гамма-лучи представляют собой истинные лучи, так как они даже в сильном электрическом или магнитном поле не отклоняются; альфа - и бета-лучи являются заряженными частицами и способны отклоняться.

Альфа-частицы (α) представляют собой ядра атомов гелия (4 2 Н) и состоят из двух протонов и двух нейтронов, они имеют двойной положительный заряд и относительно большую массу, равную 4,003 а.е.м. Эти частицы превышают массу электрона в 7300 раз; энергия их колеблется в пределах 2-11 МэВ. Для каждого данного изотопа энергия α-частиц постоянна. Пробег альфа-частиц в воздухе составляет в зависимости от энергии 2-10 см, в биологических тканях – несколько десятков микрон. Так как альфа-частицы массивны и обладают сравнительно большей энергией, путь их в веществе прямолинеен; они вызывают сильно выраженные эффекты ионизации и флуоресценции. В воздухе на 1 см пути альфа-частица образует 100-250 тыс. пар ионов. Поэтому альфа-излучатели при попадании в организм крайне опасны для человека и животных.

Вся энергия α-частиц передается клеткам организма, и наносит им вред

Бета-излучение (β) представляет поток частиц (электроны или позитроны), испускаемых ядрами при бета-распаде. Физическая характеристика электронов ядерного происхождения (масса, заряд) такая же, как и у электронов атомной оболочки.

В отличие от α-частиц бета-частицы одного и того же радиоактивного элемента обладают различным запасом энергии (от нуля до некоторого максимального значения).

Поскольку β-частицы одного и того же радиоактивного элемента имеют различный запас энергии, то величина их пробега в одной и той же среде будет неодинаковой. Путь бета-частиц в веществе извилист, так как, обладая крайне малой массой, они легко изменяют направление движения под действием электрических полей встречных атомов. β-частицы обладают меньшим эффектом ионизации, чем альфа-излучение. Они образуют 50-100 пар ионов на 1 см пути в воздухе и имеют «рассеянный тип ионизации».

Пробег β-частиц в воздухе может составлять в зависимости от энергии до 25 м, в биологических тканях – до 1 см.

Гамма-излучение (γ) представляет собой поток электромагнитных волн; это как и радиоволны, видимый свет, ультрафиолетовые и инфракрасные лучи, а также рентгеновское излучение. Различные виды электромагнитного излучения отличаются условиями образования и определенными свойствами (длиной волны и энергией).

Рентгеновское излучение возникает при торможении быстрых электронов в электрическом поле ядра атомов вещества (тормозное рентгеновское излучение) или при перестройке электронных оболочек атомов при ионизации и возбуждении атомов и молекул (характеристическое рентгеновское излучение). При различных переходах атомов и молекул из возбужденного состояния в невозбужденное может происходить испускание лучей. Гамма-кванты – это излучение ядерного происхождения. Они испускаются ядрами атомов при альфа- и бета-распаде природных и искусственных радионуклидов в тех случаях, когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (α- или β-частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.

Гамма-кванты лишены массы покоя. Это значит, что фотоны существуют только в движении. Они не имеют заряда и поэтому в электрическом и магнитном поле не отклоняются. В веществе и вакууме гамма-излучение распространяется прямолинейно и равномерно во все стороны от источника. Скорость распространения излучения в вакууме равняется скорости света (3·10 10 см/с).

Энергия гамма-излучения естественных радиоактивных элементов колеблется от нескольких кэВ до 2-3 МэВ и редко достигает 5-6 МэВ.

Гамма-кванты, не имея заряда и массы покоя, вызывают слабое ионизирующее действие, но обладают большой проникающей способностью. Путь пробега в воздухе достигает 100-150 м.

Контрольные вопросы:

1 Что такое радиоактивность?

2 Виды радиоактивности.

3 Дайте характеристику альфа частицам.

4 Дайте характеристику бетта частицам.

5 Дайте характеристику гамма излучению.

В настоящее время радиация находит полезное применение не только для получения электрической и тепловой энергии. Полезные свойства радиации нашли применение в различных областях естествознания, технике, медицине:

Ø в промышленности:

o гамма-дефектоскопия – контроль целостности различных сварных металлических оболочек (корпусов реакторов, подводных и надводных кораблей, трубопроводов и т. п.), нейтронный каротаж;

o разведка нефти и воды;

Ø в сельском хозяйстве:

o предпосевная обработка семян, повышающая урожайность;

o обеззараживание стоков животноводческих ферм;

Ø в космонавтике:

o создание атомных источников энергии спутников, орбитальных комплексов;

Ø в криминалистике:

o нанесение специальных меток на предметы хищения, облегчающие их поиск, идентификацию и изобличение преступников;

Ø в археологии:

o определение возраста геологических пород – уран-свинцовым методом оценен возраст Земли (около 4,5 млрд. лет);

o радиоуглеродный метод позволяет установить возраст предметов, имеющих биологическую природу, с точностью 50 лет в диапазоне 1000 – 50000 лет: например, на основе измерения содержания углерода в веревочных сандалиях, найденных в пещере в штате Орегон, был подтвержден факт существования 9000 лет назад доисторических людей на территории США;

Ø в медицине:

o диагностика заболеваний;

o лечение онкологических больных;

o стерилизация медицинских инструментов и материалов.

Открытие радиоактивности оказало огромное влияние на развитие науки и техники, оно ознаменовало начало эпохи интенсивного изучения свойств и структуры веществ. Новые перспективы, возникшие в энергетике, промышленности, военной области, медицине и других областях человеческой деятельности благодаря овладению ядерной энергией, были вызваны к жизни обнаружением способности химических элементов к самопроизвольным превращениям. Однако, наряду с положительными факторами использования свойств радиоактивности в интересах человечества все равно можно привести примеры и негативного их вмешательства в нашу жизнь. К числу таких относятся затонувшие корабли и подводные лодки с атомными двигателями и атомным оружием, захоронение радиоактивных отходов в море и на земле, аварии на атомных электростанциях и др.

В настоящее время достигнуты значительные успехи в решении проблемы использования атомной энергии в народном хозяйстве. Основным энергопроизводящим узлом атомных устройств, использующих внутриядерную энергию, является реактор. В активной зоне реактора созданы необходимые условия для возникновения и поддержания на определенном уровне цепной реакции деления тяжелых ядер. Высвобождающаяся при этом тепловая энергия аккумулируется теплоносителем и выносится за пределы активной зоны.

Одной из важнейших задач обеспечения радиационной безопасности на ядерных реакторах является надежное удержание образуемых при их работе огромных количеств радиоактивных веществ. Удержание продуктов деления внутри реактора осуществляется применением системы трех барьеров (оболочка твэла, первый контур, внешняя защита реактора).

Радиоактивное излучение (или ионизирующее) – это энергия, которая высвобождается атомами в форме частиц или волн электромагнитной природы. Человек подвергается такому воздействию как через природные, так и через антропогенные источники.

Полезные свойства излучения позволили успешно использовать его в промышленности, медицине, научных экспериментах и исследованиях, сельском хозяйстве и других областях. Однако с распространением применения этого явления возникла угроза здоровью людей. Малая доза радиоактивного облучения способна повысить риск приобретения серьёзных заболеваний.

Отличие радиации от радиоактивности

Радиация, в широком смысле, означает излучение, то есть распространение энергии в виде волн или частиц. Радиоактивные излучения делят на три вида:

  • альфа-излучение – поток ядер гелия-4;
  • бета-излучение – поток электронов;
  • гамма-излучение – поток высокоэнергетических фотонов.

Характеристика радиоактивных излучений основана на их энергии, пропускных свойствах и виде испускаемых частиц.

Альфа-излучение, которое представляет собой поток корпускул с положительным зарядом, может быть задержано толщей воздуха или одеждой. Этот вид практически не проникает через кожный покров, но при попадании в организм, например, через порезы, очень опасен и пагубно действует на внутренние органы.

Бета-излучение обладает большей энергией – электроны движутся с высокой скоростью, а их размеры малы. Поэтому данный вид радиации проникает через тонкую одежду и кожу глубоко в ткани. Экранировать бета-излучение можно при помощи алюминиевого листа в несколько миллиметров или толстой деревянной доски.

Гамма-излучение – это высокоэнергетическое излучение электромагнитной природы, которое обладает сильной проникающей способностью. Для защиты от него нужно использовать толстый слой бетона или пластину из тяжёлых металлов таких, как платина и свинец.

Феномен радиоактивности был обнаружен в 1896 году. Открытие сделал французский физик Беккерель. Радиоактивность – способность предметов, соединений, элементов испускать ионизирующее изучение, то есть радиацию. Причина явления заключается в нестабильности атомного ядра, которое при распаде выделяет энергию. Существует три вида радиоактивности:

  • естественная – характерна для тяжёлых элементов, порядковый номер которых больше 82;
  • искусственная – инициируется специально с помощью ядерных реакций;
  • наведённая – свойственна объектам, которые сами становятся источником радиации, если их сильно облучить.

Элементы, обладающие радиоактивностью, называют радионуклидами. Каждый из них характеризуется:

  • периодом полураспада;
  • видом испускаемой радиации;
  • энергией радиации;
  • и другими свойствами.

Источники радиации

Человеческий организм регулярно подвергается действию радиоактивного излучения. Приблизительно 80% ежегодно получаемого количества приходится на космические лучи. В воздухе, воде и почве содержатся 60 радиоактивных элементов, являющихся источниками естественной радиации. Основным природным источником излучения считается инертный газ радон, высвобождающийся из земли и горных пород. Радионуклиды также проникают в организм человека с пищей. Часть ионизирующего облучения, которому подвергаются люди, исходит от антропогенных источников, начиная от атомных генераторов электричества и ядерных реакторов до используемой для лечения и диагностики радиации. На сегодняшний день распространёнными искусственными источниками излучения являются:

  • медицинское оборудование (основной антропогенный источник радиации);
  • радиохимическая промышленность (добыча, обогащение ядерного топлива, переработка ядерных отходов и их восстановление);
  • радионуклиды, применяющиеся в сельском хозяйстве, лёгкой промышленности;
  • аварии на радиохимических предприятиях, ядерные взрывы, радиационные выбросы
  • строительные материалы.

Радиационное облучение по способу проникновения в организм делится на два типа: внутреннее и внешнее. Последнее характерно для распылённых в воздухе радионуклидов (аэрозоль, пыль). Они попадают на кожу или одежду. В таком случае источники радиации можно удалить, смыв их. Внешнее же облучение вызывает ожоги слизистых оболочек и кожных покровов. При внутреннем типе радионуклид попадает в кровоток, например, введением в вену или через раны, и удаляется путём экскреции или с помощью терапии. Такое облучение провоцирует злокачественные опухоли.

Радиоактивный фон существенно зависит от географического положения – в некоторых регионах уровень радиации может превышать средний в сотни раз.

Влияние радиации на здоровье человека

Радиоактивное излучение из-за ионизирующего действия приводит к образованию в организме человека свободных радикалов – химически активных агрессивных молекул, которые вызывают повреждение клеток и их гибель.

Особенно чувствительны к ним клетки ЖКТ, половой и кроветворной систем. Радиоактивное облучение нарушает их работу и вызывает тошноту, рвоту, нарушение стула, температуру. Воздействуя на ткани глаза, оно может привести к лучевой катаракте. К последствиям ионизирующего излучения также относят такие повреждения, как склероз сосудов, ухудшение иммунитета, нарушение генетического аппарата.

Система передачи наследственных данных имеет тонкую организацию. Свободные радикалы и их производные способны нарушать структуру ДНК – носителя генетической информации. Это приводит к возникновению мутаций, которые сказываются на здоровье последующих поколений.

Характер воздействия радиоактивного излучения на организм определяется рядом факторов:

  • вид излучения;
  • интенсивность радиации;
  • индивидуальные особенности организма.

Результаты радиоактивного излучения могут проявиться не сразу. Иногда его последствия становятся заметны через значительный промежуток времени. При этом большая однократная доза радиации более опасна, чем долговременное облучение малыми дозами.

Поглощённое количество радиации характеризуется величиной, называемой Зиверт (Зв).

  • Нормальный радиационный фон не превышает 0,2 мЗв/ч, что соответствует 20 микрорентгенам в час. При рентгенографии зуба человек получает 0,1 мЗв.
  • Смертельная разовая доза составляет 6-7 Зв.

Применение ионизирующих излучений

Радиоактивное излучение широко применяется в технике, медицине, науке, военной и атомной промышленности и других сферах человеческой деятельности. Явление лежит в основе таких устройств, как датчики задымления, генераторы электроэнергии, сигнализаторы обледенения, ионизаторы воздуха.

В медицине радиоактивное излучение используется в лучевой терапии для лечения онкологических заболеваний. Ионизирующая радиация позволила создать радиофармацевтические препараты. С их помощью проводят диагностические обследования. На базе ионизирующего излучения устроены приборы для анализа состава соединений, стерилизации.

Открытие радиоактивного излучения было без преувеличения революционным – применение этого явления вывело человечество на новый уровень развития. Однако это также стало причиной возникновения угрозы экологии и здоровью людей. В связи с этим поддержание радиационной безопасности является важной задачей современности.

Атом состоит из ядра, окруженного облаками частиц, называемых электронами (см. рис.). В ядрах атомов — мельчайших частиц, из которых состоят все вещества, - содержится значительный запас . Именно эта энергия высвобождается в виде радиации при распаде радиоактивных элементов. Радиация опасна для жизни, однако ядерные реакции могут использоваться для производства . Радиация также используется в медицине.

Радиоактивность

Радиоактивность - это свойство ядер не­стабильных атомов излучать энергию. Большинство тяжелых атомов нестабильны, а у более легких атомов бывают радиоизотопы, т.е. радиоактивные изотопы. Причина радиоактивности в том, что атомы стремятся стать стабильными (см. статью « «). Существуют три вида радиоактивного излучения: альфа-лучи , бета-лучи и гамма-лучи . Они называются так по трем первым буквам греческого алфавита. Вначале ядро испускает альфа или бета-лучи, а если оно все еще остается нестабильным, ядро испускает и гамма-лучи. На рисунке вы видите три атомных ядра. Они нестабильны, и каждый из них испускает один из трех видов лучей. Бета-частицы – это электроны с очень большой энергией. Они возникают при распаде нейтрона. Альфа-частицы состоят из двух протонов и двух нейтронов. Точно такой же состав имеет ядро атома гелия. Гамма-лучи – это электромагнитное излучение большой энергии, распространяющееся со скоростью света.

Альфа-частицы движутся медленно, и слой вещества бо­лее толстый, чем лист бумаги, задерживает их. Они ничем не отличаются от ядер атомов гелия. Ученые полагают, что гелий на Земле есть продукт естественной радиоактивности. Альфа-частица пролетает менее 10 см, и лист плотной бумаги задержит её. Бета-частица пролетает в воздухе около 1 метра. Задержать её может лист меди толщиной 1 миллиметр. Интенсивность гамма-лучей спадает наполовину при проходе через слой свинца в 13 миллиметров или слой в 120 метров.

Радиоактивные вещества транспортируются в свинцовых контейнерах с толстыми стенками, чтобы предотвратить утечку радиации. Воз­действие радиации вызывает у человека ожоги, катаракту, рак. Уровень радиации измеряется при помощи счетчика Гейгера . Этот прибор издаёт щелчки при обнаружении радиоактивного излучения. Испустив части­цы, ядро приобретает новый атомный номер и превращается в ядро другого элемента. Этот процесс называют радиоактивным распадом . Если новый элемент также нестабилен, процесс распада продолжается до тех пор, пока не образуется стабильное ядро. К примеру, когда атом плутония-2 (его масса 242) испускает альфа-частицу относительная атомная масса которой 4 (2 протона и 2 нейтрона), он превращается в атом урана — 238 (атомная масса 238). Период полураспада - это время, за которое распадается половина всех атомов в образце данного вещества. Разные имеют разные периоды полураспада. Период полураспада радия-221 равен 30 секунд, тогда как у урана он составляет 4,5 млрд. лет.

Ядерные реакции

Существуют два вида ядерных реакций: ядерный синтез и деление (расщепление) ядра . «Синтез» означает «соединение»; при ядерном синтезе два ядра соединяют­ся и одно большое. Ядерный синтез может происходить только при очень высоких . При синтезе выделяется огромное количество энергии. При ядерном синтезе два ядра соединяются в одно большое. В 1992 году спутник КОБЕ обнаружил в космосе особый вид радиации, что подтверждает теорию о том, что образовалась в результате так называемого Большого взрыва . Из термина «расщепление» ясно, что ядра раскалываются, высвобождая ядерную энергию. Такое возможно при бомбардировке ядер нейтронами и происходит в радиоактивных веществах либо в особом устройстве, называемом ускорителем частиц . Ядро делит­ся, излучая ней­троны и выделяя колоссальную энергию.

Ядерная энергия

Энергию, высвобождаемую при ядерных реакциях, можно использовать для производства электричества и как источник энергии на атомных подводных лодках и на авианосцах. Действие атомной электростанции основано делении ядер в ядерных реакторах. Стержень, сделан из радиоактивного вещества, например урана, бомбардируют нейтронами. Ядра урана расщепляются, излучая энергию. При этом освобождаются новые нейтроны. Такой процесс называют цепной реакцией . Из единицы массы топлива электростанции производит больше энергии, чем любые другие электростанции, однако меры безопасности и захоронение радиоактивных отходов стоит чрезвычайно дорого.

Ядерное оружие

Действие ядерного оружия основано на том, что неконтролируемый выброс огромного количества ядерной энергии приводит к страшному взрыву. В конце второй мировой войны США сбросили атомные бомбы на японские города Хиросиму и На­гасаки. Сотни тысяч людей погибли. Атомные бомбы основаны на реакциях деления , водородные — на реакциях синтеза . На рисунке изображена атомная бомба, сброшенная на Хиросиму.

Радиоуглеродный метод

Радиоуглеродным методом определяют время, прошедшее после смерти организма. В живой содержится небольшое количество углерода-14, радиоактивного изо­топа углерода. Его период полураспада составляет 5700 лет. Когда организм умирает, запасы уг­лерода-14 в тканях, истощаются, изо­топ распадается, и по оставшемуся его количеству можно определить, как давно организм умер. Благодари радиоуглеродному методу можно узнать, как давно произошло извержение . Для этого используют застывших в лаве насекомых и пыльцу.

Как ещё используется радиоактивность

В промышленности при помощи радиации определяют толщину листа бумаги или пластика (см. статью « «). По интенсивности бета-лучей, проходящих сквозь лист, можно обнаружить даже небольшую неоднородность его толщины. Продукты питания - фрукты, мясо - облучают гам­ма-лучами, чтобы они остались свежими. Используя радиоактивность, медики прослеживают путь вещества в организме. Например, чтобы определить, как сахар распределяет­ся в теле пациента, врач может ввести немного углерода-14 в молекулы сахара и следить за излучением этого вещества, попавшего в организм. Радиотерапия, то есть облучение больного строго дозированными порциями излучения, убивает раковые клетки – чрезмерно разросшиеся клетки организма.

ЯДЕРНО-ФИЗИЧЕСКИЕ СВОЙСТВА

Здесь мы рассмотрим некоторые свойства горных пород, содержащих радиоактивные элементы, а также с процессы прохождения радиоактивных излучений через горные породы..

Явление радиоактивности

Радиоактивность - это свойство ядер некоторых элементов самопроизвольно преобразовывать свой состав и энергетическое состояние. Радиоактивность – это внутреннее свойство ядер, которое не зависит от внешних условий.

Как известно, ядро состоит из положительно заряженных протонов и нейтральных нейтронов; сумма протонов и нейтронов (нуклонов) равна атомному весу элемента. Силы, удерживающие нуклоны в ядре, называются ядерными силами. Они носят обменный характер, т.е. между протонами и нейтронами в ядре происходит постоянный обмен p-мезоном.

Основным свойством ядерных сил, влияющим на радиоактивность, является их короткое действие. В ядре каждый нуклон ядерными силами связан не со всеми нуклонами, а только с близлежащими. Радиус действия ядерных сил порядка 10 -15 м. Ядро такого размера, в котором ядерные силы достигают насыщения, наиболее устойчиво. Это ядро гелия с двумя протонами и двумя нейтронами или a-частица, если это ядро имеет кинетическую энергию. Ядра других элементов, которые могут быть составлены из ядер гелия, обладают также максимальной устойчивостью и наибольшей распространенностью в горных породах. Это ядра элементов кислорода (8 протонов и 8 нейтронов), кремния (14, 14), кальция (20, 20). Напротив, ядро бериллия, состоящее из 5 нейтронов и 4 протонов (2a-частицы+нейтрон), аномально неустойчиво, распадается при облучении гамма-квантами относительно небольшой энергии.

Энергия связи нуклонов в ядре может быть легко рассчитана

E=Δm×c 2 (7.1)

где Dm -дефект массы; с - скорость света в вакууме. Расчеты показывают: чем сложнее ядро, чем больше в нем протонов и нейтронов, тем меньше энергия связи в расчете на нуклон. Поэтому радиоактивность - это свойство преимущественно тяжелых элементов. Все элементы, порядковый номер которых больше 81 (таллий), являются радиоактивными или содержат радиоактивные изотопы.

В горных породах наблюдаются в основном три вида радиоактивных превращений: альфа-превращение, бета-превращение, гамма-излучение.

Альфа-превращение заключается в испускании ядром α-частицы, Примером такой реакции в горных породах может служить α -превращение радия в радиоактивный газ радон:

286 88 Ra → 2 4 α + 222 86 Rn + γ

Бета-превращение состоит в испускании ядром b-частицы (электрона) при преобразовании в ядре нейтрона в протон (n ® p + е -)-88% ядер радиоактивного изотопа 40 К испытывает этот тип превращения:


В 12% случаев ядро 40 К превращается посредством электронного захвата, т.е. в захвате ядром электрона с внутреннего K-слоя и превращении протона в нейтрон:

40 19 К + е - → 40 18 Ar+ γ

Образовавшиеся в ходе радиоактивного превращения ядра чаще всего оказываются в возбужденном состоянии. Переходя в нормальное состояние, они излучают избыток энергии в виде гамма-квантов.

Гамма-излучение - это жесткое электромагнитное излучение, сопровождающее ядерные превращения. Энергия g-излучения индивидуальна для каждого вида ядер и является параметром конкретного ядерного превращения.

В сравнении с другими видами электромагнитного излучения гамма-излучение характеризуется большей энергией и большей частотой колебаний. Последнее вытекает из соотношения

где ħ постоянная Планка; v - частота.

Для гамма-излучения более характерны корпускулярные, нежели волновые, свойства. Гамма-излучение можно представлять как поток частиц массы m=ħ×ν/c 2 , распространяющихся со скоростью света. Благодаря значительно более высокой проникающей способности g-лучей в сравнении с α-и b-частицами в методах разведочной геофизики используется в основном g-излучение.

Время распада отдельно взятого ядра предсказать невозможно, так как радиоактивное превращение - явление случайное. Закономерность проявляется для большого числа атомов. Она выражена законом радиоактивного превращения, заключающимся в том, что количество превращающихся ядер пропорционально имеющемуся количеству радиоактивных ядер. Коэффициент этой пропорциональности есть параметр распадающегося атома l и имеет смысл вероятности распада за единицу времени.

В интегральном виде закон радиоактивного превращения отражает изменение количества радиоактивного вещества со временем

N = N 0 ×e - λt (7.2)

где t - время с начала превращения; N 0 , N - количество атомов превращающегося элемента соответственно в момент времени 0 и t.

Более удобным для использования параметром распадающегося ядра является период полураспада T 1/2 , зависящий только от l:

Период полураспада равен времени, за которое превращается половина атомов. Так, если период полураспада радона 3,82 суток, то именно через это время в воде, взятой из радонового источника, останется всего половина атомов радона. Приближенно через 10×T 1/2 , т. е. через 38 дней, все атомы радона распадутся. Ниже приводятся периоды полураспада наиболее распространенных радиоактивных изотопов горных пород:

Отметим, во-первых, низкое содержание радиоактивных элементов в земной коре. Сравним, например, с распространенностью таких породообразующих элементов, как Si (27,7%) или Са (3,63%). Содержание других радиоактивных элементов еще ниже. Во-вторых, у урана, тория и калия очень большой период полураспада, т.е. они относительно слаборадиоактивные элементы. Например, радий распадается в миллионы раз быстрее, чем уран, а радон - в миллиарды раз. Но во столько же раз этих элементов меньше в земной коре в сравнении с ураном. В этом проявляется зависимость распространенности элемента в природе от стабильности его ядра.

Если при превращении ядра 40 К образуются сразу стабильные изотопы Са и Аr, то при распаде ядер урана и тория вновь образованные изотопы также являются радиоактивными. Вслед за распадом U и Th тянутся целые цепочки радиоактивных превращений, заканчивающиеся образованием стабильных изотопов свинца. Изотопы элементов, участвующие в этих последовательных превращениях, образуют так называемые радиоактивные ряды, родоначальниками которых являются уран и торий. Так, радий и радон входят в состав уранового ряда

Главной особенностью радиоактивных рядов является та, что наиболее долгоживущим (наименее радиоактивным) элементом ряда является его родоначальник, т.е. уран или торий. Все остальные элементы ряда распадаются быстро. Это обстоятельство, а также экспоненциальный характер закона радиоактивного превращения приводят к важному свойству радиоактивных рядов - радиоактивному равновесию. Оно проявляется, в неизменности количеств элементов середины ряда, поскольку число распадающихся и образующихся атомов уравновешено. Количества атомов радиоактивных элементов ряда взаимосвязаны между собой и с количеством атомов родоначальника, т.е. урана или тория:

λ 1 ×N 1 = λ 2 ×N 2 = … = λ i ×N i = … = λ n ×N n (7.3)

где l i , - постоянная распада i-го элемента ряда; Ni - количество атомов этого элемента. Согласно соотношению (7.3), зная количество атомов одного элемента ряда, можно определить количество всех остальных.

Произведение λ×N = A называется активностью вещества. Учитывая смысл l, как вероятности распада за единицу времени, активность равна числу распадающихся атомов за единицу времени. Активность в один распад в секунду называется беккерелем (Бк).

Согласно уравнению радиоактивного равновесия (7.3) активность элементов ряда может быть выражена через активность его родоначальника

где n - количество элементов в ряду.

Иными словами, чтобы оценить радиоактивность уранового или ториевого ряда, достаточно знать количество урана или тория. Это обстоятельство очень упрощает изучение радиоактивности пород, так как в случае радиоактивного равновесия отпадает необходимость в определении содержаний тех радиоактивных элементов, которые входят в состав рядов.