Синтаксис Wolfram Alpha.

Основные операции Примеры
  • 314+278; 314—278; 314*278; 314^278;
  • (a^2+b^2)+(a^2-b^2); (a^2+b^2)/(a^2-b^2); (a+b)^(2+2/3).
Знаки сравнения Логические символы Основные константы Основные функции

модуль x: abs(x)

Решение уравнений

Чтобы получить решение уравнения вида достаточно записать в строке Wolfram|Alpha: f[x]=0, при этом Вы получите некоторую дополнительную информацию, которая генерируется автоматически. Если же Вам необходимо только решение, то необходимо ввести: Solve=0, x].

Примеры

  • Solve+Cos+Sin=0,x] или Cos[x]+Cos+Sin=0;
  • Solve или x^5+x^4+x+1=0;
  • Solve-Log=0,x] или \Log-Log=0.

Если Ваше уравнение содержит несколько переменных, то запись: f=0 даст весьма разнообразный набор сведений, таких как решение в целых числах, частные производные функции и т. д. Чтобы получить решение уравнения вида по какой-либо одной из переменных, нужно написать в строке: Solve=0, j], где — интересующая Вас переменная.

Примеры

  • Cos=0 или Solve=0,x] или Solve=0,y];
  • x^2+y^2-5=0 или Solve или Solve;
  • x+y+z+t+p+q=9.
Решение неравенств

Решение в Wolfram Alpha неравенств типа , полностью аналогично решению уравнения . Нужно написать в строке WolframAlpha: f[x]>0 или f[x]>=0 или Solve>0, x] или Solve>=0,x].

Примеры

  • Cos-1/2>0 или Solve-1/2>0,x];
  • x^2+5x+10>=0 или Solve.

Если Ваше неравенство содержит несколько переменных, то запись: f>0 или f>=0 даст весьма разнообразный набор сведений, как и в случае соответствующих уравнений. Чтобы получить решение такого неравенства по какой-либо одной из переменных нужно написать в строке: Solve>0,j] или Solve>=0,j], где — интересующая Вас переменная.

Примеры

  • Cos>0 или Solve>0,x] или Solve>0,y];
  • x^2+y^3-5=9.
Решение различных систем уравнений, неравенств и уравнений

Решение систем различного вида в Wolfram Alpha крайне просто. Достаточно набрать уравнения и неравенства Вашей системы, точно так, как это описано выше в пунктах 7. и 8., соединяя их союзом «И», который в Wolfram Alpha имеет вид &&.

Примеры

  • x^3+y^3==9&&x+y=1;
  • x+y+z+p==1&&x+y-2z+3p=2&&x+y-p=-3;
  • Sin+Cos==Sqrt/4&&x+y²=1;
  • Log=0&&x+y+z Infinity].

Найти предел функции при можно совершенно аналогично: Limit, x -> a].

Примеры

  • Limit/x, x -> 0];
  • Limit[(1-x)/(1+x), x -> −1].
Производные

Для того, чтобы найти производную функции нужно написать в строке WolframAlpha: D, x]. Если Вам требуется найти производную n-го порядка, то следует написать: D, {x, n}]. В том случае, если Вам требуется найти частную производную функции напишите в окне гаджета: D, j], где — интересующая Вас переменная. Если нужно найти частную производную по некоторой переменной порядка n, то следует ввести: D, {j, n}], где означает тоже, что и Выше.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение производной при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры

  • D;
  • D;
  • D, x];
  • D, y],
  • D.
Интегралы

Для того, чтобы найти неопределенный интеграл от функции нужно написать в строке WolframAlpha: Integrate f[x], x. Найти определенный интеграл так же просто: Integrate, {x, a, b}] либо Integrate f(x), x=a..b.

Важно подчеркнуть, что Wolfram Alpha выдает пошаговое нахождение интеграла при нажатии на «Show Steps» в правом верхнем углу выдаваемого ей ответа.

Примеры

  • Integrate/x², x];
  • Integrate, x];
  • Integrate[(x+Sin[x])/x, {x,1,100}];
  • Integrate/x^5, {x,1,Infinity}].
Дифференциальные уравнения и их системы

Чтобы найти общее решение дифференциального уравнения нужно написать в строке WolframAlpha: F (при k-й производной y ставится k штрихов).

Если Вам требуется решить задачу Коши, то впишите: F, y[s]==A,y"[s]==B, …. Если нужно получить решение краевой задачи, что краевые условия, так же перечисляются через запятую, причем они должны иметь вид y[s]==S.

Решение систем дифференциальных уравнений также просто, достаточно вписать: {f_1,f_2,…,f_n}, где f_1, f_2, …, f_n — дифференциальные уравнения, входящие в систему. К сожалению, решение задач Коши и краевых задач для систем дифференциальных уравнений пока-что не поддерживается.

Примеры

  • y"""+y""+y=Sin[x];
  • y""+y"+y=ArcSin[x];
  • y""+y+y^2=0;
  • y""=y, y==0, y"=4;
  • y+x*y"=x, y=2;
  • y"""[x]+2y""[x]-3y"[x]+y=x, y=1, y=2, y"=2;
  • {x"+y"=2, x"-2y"=4}.
Ошибки при работе с системой

Система может допускать некоторые ошибки при решении сложных задач. К примеру, если попытаться решить неравенство , для чего ввести запрос solve (3x^2-18x+24)/(2x-2)-(3x-12)/(2x^2-6x+4) 0) (sin x)/x и посмотрите ответ. Если нужно вычислить какой-то предел при x , стремящемся к бесконечности, следует вводить x -> inf .

12. Исследование функции и построение графика .
Пример . Чтобы исследовать функцию x 3 - 3 x 2 и построить ее график, просто введите x^3-3x^2 . Вы получите корни (точки пересечения с осью ОХ ), производную, график, неопределенный интеграл, экстремумы.

13. Нахождение наибольшего и наименьшего значений функции на отрезке .
Пример . Чтобы найти минимальное значение функции x 3 - 3 x 2 на отрезке ,
нужно ввести minimize (x^3-x^2), {x, 0.5, 2}
Чтобы найти максимальное значение функции x 3 - 3 x 2 на отрезке ,
нужно ввести maximize (x^3-x^2), {x, 0.5, 2}

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.