Скорость больше световой. Преодолеть скорость света возможно - ученые

Скорость больше скорости света в вакууме - это реальность. Теория относительности Эйнштейна запрещает лишь сверхсветовую передачу информации. Поэтому есть довольно много случаев, когда объекты могут двигаться быстрее света и ничего при этом не нарушать. Начнем с теней и солнечных зайчиков.

Если создать на далекой стене тень от пальца, на который светите фонариком, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и «солнечные зайчики». Например, пятнышко от лазерного луча, направленного на Луну. Расстояние до Луны 385 000 км. Если слегка поводить лазером сдвинув его едва лишь на 1 см, то он успеет пробежать Луну со скоростью примерно на треть больше световой.

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара, нейтронной звезды, может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность облака, то создается световое кольцо, увеличивающееся быстрее скорости света.

Все это примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать сверхсветовое сообщение, так что и общение быстрее света не получается.

А вот уже пример, который связан с физическими телами. Забегая вперед, скажем, что опять же сверхсветовых сообщений не получится.

В системе отсчёта, связанной с вращающимся телом, удалённые объекты могут двигаться со сверхсветовой скоростью. Например, Альфа Центавра в системе отсчёта, связанной с Землёй, движется со скоростью, более чем в 9600 раз превышающей скорость света, «проходя» расстояние около 26 световых лет в сутки. И точно такой же пример с Луной. Встаньте к ней лицом и повернитесь вокруг своей оси за пару секунд. За это время она повернулась вокруг вас на примерно на 2,4 миллиона километров, то есть в 4 раза быстрее скорости света. Ха-ха, скажете вы, так это ж не она вертелась, а я…А вспомните, что в теории относительности все системы отсчета независимы, включая и вращающиеся. Так что, с какой стороны еще посмотреть…

И что же делать? Ну на самом деле, никаких противоречий здесь нет, ведь опять же, это явление не может быть использовано для сверхсветовой передачи сообщений. Кроме того заметьте, в своей окрестности Луна не превышает скорости света. А именно на превышение локальной скорости света все запреты и накладываются в общей теории относительности.

Скорость света — одна из универсальных физических констант, она не зависит от выбора инерциальной системы отсчета и описывает свойства пространства-времени в целом. Скорость света в вакууме равна 299 792 458 метров в секунду, и это предельная скорость движения частиц и распространения взаимодействий. Так учат нас школьные книги по физике. Еще можно вспомнить о том, что масса тела как раз не является постоянной и при приближении скорости к скорости света стремится к бесконечности. Именно поэтому со скоростью света движутся фотоны — частицы без массы, а частицам с массой это значительно труднее.

Однако международный коллектив ученых масштабного эксперимента OPERA, расположенного недалеко от Рима, готов поспорить с азбучной истиной.

Ему удалось обнаружить нейтрино, которые, как показали эксперименты, движутся со скоростью больше скорости света,

сообщает пресс-служба Европейской организации ядерных исследований (CERN).

Эксперимент OPERA (Oscillation Project with Emulsion-tRacking Apparatus) изучает самые инертные частицы Вселенной — нейтрино. Они настолько инертны, что могут пролететь насквозь через весь Земной шар, звезды и планеты, а для того, чтобы они ударились в преграду из железа, размер этой преграды должен быть от Солнца до Юпитера. Каждую секунду через тело каждого человека на Земле проходит порядка 10 14 нейтрино, испущенных Солнцем. Вероятность того, что хотя бы одно из них ударится в ткани человека на протяжении всей его жизни, стремится к нулю. По этим причинам регистрировать и изучать нейтрино чрезвычайно трудно. Лаборатории, которые этим занимаются, находятся глубоко под горами и даже подо льдами Антарктиды.

OPERA получает пучок нейтрино из CERN, где находится Большой адронный коллайдер. Его «младший брат» — суперпротонный синхротрон (SPS) — направляет пучок прямо под землей в сторону Рима. Получаемый пучок нейтрино проходит сквозь толщу земной коры, тем самым очищаясь от других частиц, которые вещество коры задерживает, и попадает прямиком в лабораторию в Гран-Сассо, укрытую под 1200 м скалы.

Подземный путь в 732 км нейтрино преодолевают за 2,5 миллисекунды.

Детектор проекта OPERA, состоящий из примерно 150 тысяч элементов и весящий 1300 т, «ловит» нейтрино и изучает их. В частности, основной целью является изучение так называемых нейтринных осцилляций — переходов из одного типа нейтрино в другой.

Ошеломляющие результаты о превышении скорости света подкреплены серьезной статистикой: лаборатория в Гран-Сассо наблюдала около 15 тыс. нейтрино. Ученые выяснили, что

нейтрино движутся со скоростью, на 20 миллионных долей превышающей скорость света — «непогрешимый» предел скорости.

Этот результат стал для них неожиданностью, его объяснения пока не предложено. Естественно, для его опровержения или подтверждения требуются независимые эксперименты, проведенные другими группами на другом оборудовании, — этот принцип «двойного слепого контроля» реализован и на Большом адронном коллайдере CERN. Коллаборация OPERA незамедлительно опубликовала свои результаты, чтобы дать возможность коллегам по всему миру проверить их. Детальное описание работ доступно на сайте препринтов Arxiv.Org .

Официальное представление результатов состоится сегодня на семинаре в CERN в 18.00 по Москве, будет вестись онлайн-трансляция .

«Эти данные стали полной неожиданностью. После месяцев сбора, анализа и очистки данных, а также перекрестных проверок мы не нашли ни в алгоритме обработке данных, ни в детекторе возможного источника системной ошибки. Поэтому мы публикуем наши результаты, продолжаем работу, а также надеемся, что независимые измерения других групп помогут понять природу этого наблюдения», — заявил руководитель эксперимента OPERA Антонио Эредитато из Университета Берна, слова которого приводит пресс-служба CERN.

«Когда ученые-экспериментаторы обнаруживают некий неправдоподобный результат и не могут найти артефакта, который бы его объяснял, они обращаются к своим коллегам из других групп, чтобы началось более широкое исследование вопроса. Это хорошая научная традиция, и коллаборация OPERA сейчас следует ей.

Если наблюдения превышения скорости света подтвердятся, это может изменить наше понимание физики, но мы должны удостовериться в том, что они не имеют другого, более банального объяснения.

Для этого и нужны независимые эксперименты», — заявил научный директор CERN Серджо Бертолуччи.

Проводимые в OPERA измерения чрезвычайно точны. Так, расстояние от точки пуска нейтрино до точки их регистрации (более 730 км) известно с точностью до 20 см, а время пролета измеряется с точностью до 10 наносекунд.

Эксперимент OPERA работает с 2006 года. В нем принимают участие примерно 200 физиков из 36 институтов и 13 стран, в том числе и из России.

Мы частенько говорим о том, что скорость света максимальна в нашей Вселенной, и что нет ничего, что могло бы двигаться быстрее скорости света в вакууме. И уж тем более - мы. Приближаясь к околосветовой скорости, объект приобретает массу и энергию, которая либо его разрушает, либо противоречит общей теории относительности Эйнштейна. Допустим, мы поверим в это и будем искать обходные пути (вроде или будем разбираться ), чтобы лететь к ближайшей звезде не 75 000 лет, а пару недель. Но поскольку мало кто из нас обладает высшим физическим образованием, непонятно: почему на улицах говорят, что скорость света максимальна, постоянна и равна 300 000 км/с ?

Есть много простых и интуитивных объяснений, почему все так, но их можно начинать ненавидеть. Поиск в Интернете выведет вас на понятие «релятивистской массы» и на то, что она требует больше сил для ускорения объекта, который и так движется с высокой скоростью. Это привычный способ интерпретации математического аппарата специальной теории относительности, но он вводит многих в заблуждение, и особенно вас, наши дорогие читатели. Поскольку многие из вас (да и нас тоже) пробуют высокую физику на вкус, словно погружая один палец в ее соленую воду, прежде чем войти искупаться. В результате, становится куда более сложной и менее красивой, чем является на самом деле.

Давайте обсудим этот вопрос с точки зрения геометрической интерпретации, которая согласуется с общей теорией относительности. Она менее очевидна, но немногим сложнее, чем рисование стрелочек на бумаге, поэтому многие из вас с полуслова поймут теорию, которая скрывается за абстракциями вроде «силы» и откровенного вранья вроде «релятивистской массы».

Во-первых, давайте определим, что такое направление, чтобы четко обозначить свое место. «Вниз» - это направление. Оно определяется как направление, в котором падают вещи, когда вы их отпускаете. «Вверх» - это направление, противоположное направлению «вниз». Возьмите в руки компас и определите дополнительные направления: север, юг, запад и восток. Все эти направления определяются серьезными дядями как «ортонормированный (или ортогональный) базис», но об этом сейчас лучше не думать. Давайте предположим, что эти шесть направлений являются абсолютными, поскольку они будут существовать там, где мы будем разбирать наш сложный вопрос.

А теперь давайте добавим еще два направления: в будущее и в прошлое. Вы не можете с легкостью двигаться в этих направлениях по собственному желанию, но представить их для вас должно быть достаточно просто. Будущее - это направление, где наступает завтра; прошлое - направление, где находится вчера.

Эти восемь основных направлений - вверх, вниз, север, юг, запад, восток, прошлое и будущее - описывают фундаментальную геометрию Вселенной. Каждую пару этих направлений мы можем назвать «измерением», поэтому мы живем в четырехмерной Вселенной. Другой термин для определения этого четырехмерного понимания будет «пространство-время», но мы постараемся избежать использования этого термина. Просто запомните, что в нашем контексте «пространство-время» будет равнозначно понятию «Вселенная».

Пожалуйте на сцену. Давайте посмотрим на актеров.

Сидя сейчас перед компьютером, вы находитесь в движении. Вы его не чувствуете. Вам кажется, что вы в состоянии покоя. Но это только потому, что все вокруг относительно вас тоже движется. Нет, не подумайте, что мы говорим о том, что Земля кружится вокруг Солнца или Солнце движется по галактике и тянет нас за собой. Это, конечно, так, но мы сейчас не об этом. Под движением мы имеем в виду движение в направлении «будущее».

Представьте, что вы находитесь в вагоне поезда с закрытыми окнами. Вы не можете видеть улицу и, допустим, рельсы настолько безупречны, что вы не чувствуете, едет поезд или нет. Поэтому, просто сидя внутри поезда, вы не можете утверждать, едете вы или нет на самом деле. Выгляните на улицу - и поймете, что пейзаж проносится мимо. Но окна закрыты.

Есть только один способ узнать, двигаетесь вы или нет. Просто сидеть и ждать. Если поезд будет стоять на станции, ничего не произойдет. Но если поезд движется, рано или поздно вы приедете на новую станцию.

В этой метафоре вагон представляет собой все, что мы можем увидеть в окружающем нас мире - дом, кота Ваську, звезды на небе и т.п. «Следующая станция - Завтра».

Если вы будете сидеть неподвижно, а кот Васька безмятежно спать свои положенные в сутки часы, вы не почувствуете движения. Но завтра обязательно придет.

Вот что значит двигаться в направлении будущего. Только время покажет, что правда: движение или стоянка.

Пока вам должно было довольно просто все это представлять. Возможно, сложно думать о времени как о направлении и уж тем более о себе - как о проходящем сквозь время объекте. Но вы поймете. Теперь включите воображение.

Представьте, что когда вы едете в своем автомобиле, случается что-то страшное: отказывают тормоза. По странному совпадению в тот же момент заклинивает газ и коробку передач. Вы не можете ни ускориться, ни остановиться. Единственное, что у вас есть - рулевое колесо. Вы можете изменить направление движения, но не его скорость.

Конечно, первое, что вы сделаете, это попытаетесь въехать в мягкий куст и как-нибудь аккуратно остановить автомобиль. Но давайте пока не будем пользоваться таким приемом. Просто сосредоточимся на особенностях вашего неисправного автомобиля: вы можете изменить направление, но не скорость.

Вот так мы движемся сквозь Вселенную. У вас есть руль, но нет педали. Сидя и читая эту статью, вы катитесь в светлое будущее на максимальной скорости. И когда вы встаете, чтобы сделать себе чайку, вы изменяете направление движения в пространстве-времени, но не его скорость. Если вы будете очень быстро двигаться по пространству, время будет течь немного медленнее.

Это легко представить, нарисовав пару осей на бумаге. Ось, которая будет идти вверх и вниз - это ось времени, вверх - значит в будущее. Горизонтальная ось представляет пространство. Мы можем нарисовать только одно измерение пространства, поскольку лист бумаги двухмерен, но давайте просто представим, что это понятие относится ко всем трем измерениям пространства.

Нарисуйте стрелку с начала оси координат, где они сходятся, и направьте ее вверх вдоль вертикальной оси. Неважно, насколько длинной она будет, просто имейте в виду, что у нее будет только одна длина. Эта стрелка, которая сейчас направлена в будущее, представляет собой величину, которую физики называют «четыре-скоростью». Это скорость вашего передвижения по пространству-времени. Прямо сейчас вы находитесь в неподвижном состоянии, поэтому стрелка направлена только в будущее.

Если вы хотите двигаться сквозь пространство - направо по оси координат - вам нужно изменить вашу четыре-скорость и включить горизонтальный компонент. Получается, вам нужно повернуть стрелку. Но как только вы это сделаете, вы заметите, что стрелка уже не так уверенно указывает наверх, в будущее, как до этого. Теперь вы движетесь сквозь пространство, но вам пришлось пожертвовать движением в будущем, поскольку стрелка четыре-скорости может только вращаться, но никогда не растягиваться или сжиматься.

Отсюда начинается знаменитый эффект «замедления времени», о котором говорят все, хоть немного посвященные в специальную теорию относительности. Если вы движетесь в пространстве, вы не движетесь во времени так быстро, как могли бы, если бы сидели на месте. Ваши часы будут отсчитывать время медленнее, нежели часы человека, который не движется.

А теперь мы подходим к разрешению вопроса, почему фраза «быстрее света» не имеет смысла в нашей вселенной. Смотрите, что происходит, если вы хотите двигаться по пространству как можно быстрее. Вы поворачиваете стрелку четыре-скорости до упора, пока она не будет указывать вдоль горизонтальной оси. Мы помним, что стрелка не может растягиваться. Она может только вращаться. Итак, вы увеличили скорость в пространстве насколько это возможно. Но стало невозможным двигаться еще быстрее. Стрелку некуда повернуть, иначе она станет «прямее прямого» или «горизонтальнее горизонтального». Вот к этому понятию и приравнивайте «быстрее света». Это просто невозможно, как накормить тремя рыбками и семью хлебами огромный народ.

Вот почему в нашей вселенной ничто не может двигаться быстрее света. Потому что фраза «быстрее света» в нашей вселенной эквивалентна фразе «прямее прямого» или «горизонтальнее горизонтального».

Да, у вас осталось несколько вопросов. Почему векторы четыре-скорости могут лишь вращаться, но не растягиваться? На этот вопрос есть ответ, но он связан с инвариантностью скорости света, и мы оставим его на потом. И если вы просто поверите в это, то будете чуть менее информированы по этому вопросу, чем самые блестящие физики, когда-либо существовавшие на нашей планете.

Скептики могут усомниться, почему мы используем упрощенную модель геометрии пространства, говоря об эвклидовых вращениях и кругах. В реальном мире геометрия пространства-времени подчиняется геометрии Минковского, а повороты являются гиперболическими. Но простой вариант объяснения имеет право на жизнь.

Как и простое объяснение тому, .

Cкорость распространения света равна 299 792 458 метров в секунду, но предельной величиной она давно уже не является. «Футурист» собрал 4 теории, где свет уже не Михаэль Шумахер.

Американский ученый японского происхождения, специалист в области теоретической физики Митио Каку уверен, что скорость света вполне может быть преодолена.

Большой взрыв


Самым известным примером, когда был преодолен световой барьер, Митио Каку называет Большой взрыв - сверхбыстрый «хлопок», ставший началом расширения Вселенной, до которого она находилась в сингулярном состоянии.

«Ни один материальный объект не может преодолеть световой барьер. Но пустое пространство, безусловно, может двигаться быстрее света. Ничто не может быть более пустым, чем вакуум, значит он может расширяться быстрее скорости света», -– уверен ученый.

Фонарик в ночном небе

Если светить фонарем в ночном небе, то в принципе луч, который идет из одной части Вселенной в другую, находящуюся на расстоянии многих световых лет, может двигаться быстрее скорости света. Проблема в том, что в этом случае не будет материального объекта, который действительно движется быстрее света. Представьте, что вы окружены гигантской сферой диаметром один световой год. Изображение луча света промчится по этой сфере за считанные секунды, несмотря на ее размеры. Но только изображение луча может двигаться по ночному небу быстрее света, а не информация или материальный объект.

Квантовая запутанность


Быстрее скорости света может быть не какой-то объект, а целое явление, а точнее взаимосвязь, которая называется квантовой запутанностью. Это квантовомеханическое явление, при котором квантовые состояния двух или нескольких объектов взаимозависимы. Чтобы получить пару квантовозапутанных фотонов, можно посветить на нелинейный кристалл лазером с определенными частотой и интенсивностью. В результате рассеивания лазерного луча, возникнут фотоны в двух разных конусах поляризации, связь между которыми и будет называться квантовой запутанностью. Итак, квантовая запутанность - это один способов взаимодействия субатомных частиц, и процесс этой связи может происходить быстрее света.

«Если два электрона свести вместе, они будут вибрировать в унисон, в соответствии с квантовой теорией. Но если затем разделить эти электроны множеством световых лет, они все равно будут поддерживать связь друг с другом. Если покачнуть один электрон, другой почувствует эту вибрацию, причем произойдет это быстрее скорости света. Альберт Эйнштейн думал, что это явление опровергнет квантовую теорию, потому что ничто не может двигаться быстрее света, но на самом деле он ошибался», -– говорит Митио Каку.

Кротовые норы

Тема преодоления скорости света обыгрывается во многих научно-фантастических фильмах. Сейчас даже у тех, кто далек от астрофизики, на слуху словосочетание «кротовая нора», благодаря фильму «Интерстеллар». Это особое искривление в системе пространство-время, туннель в пространстве, позволяющий преодолевать огромные расстояния за ничтожно малое время.

О таких искривлениях говорят не только сценаристы фильмов, но и ученые. Митио Каку считает, что кротовая нора (wormhole), или, как ее еще называют, червоточина - один из двух наиболее реальных способов передавать информацию быстрее, чем со скоростью света.

Второй способ, связанный также с изменениями материи - сжатие пространства впереди вас и расширение позади. В этом деформированном пространстве возникает волна, которая движется быстрее скорости света, если управляется темной материей.

Таким образом, единственный реальный шанс для человека научиться преодолевать световой барьер может скрываться в общей теории относительности и искривлении пространства и времени. Однако все упирается в ту самую темную материю: никто так и не знает, существует ли она точно, и стабильны ли кротовые норы.

В сентябре 2011 года физик Антонио Эредитато поверг мир в шок. Его заявление могло перевернуть наше понимание Вселенной. Если данные, собранные 160 учеными проекта OPERA, были правильными, наблюдалось невероятное. Частицы - в этом случае нейтрино - двигались быстрее света. Согласно теории относительности Эйнштейна, это невозможно. И последствия такого наблюдения были бы невероятными. Возможно, пришлось бы пересмотреть самые основы физики.

Хотя Эредитато говорил, что он и его команда были «крайне уверены» в своих результатах, они не говорили о том, что данные были совершенно точными. Напротив, они попросили других ученых помочь им разобраться в том, что происходит.

В конце концов, оказалось, что результаты OPERA были ошибочными. Из-за плохо подключенного кабеля возникла проблема синхронизации, и сигналы с GPS-спутников были неточными. Была неожиданная задержка в сигнале. Как следствие, измерения времени, которое потребовалось нейтрино на преодоление определенной дистанции, показали лишние 73 наносекунды: казалось, что нейтрино пролетели быстрее, чем свет.

Несмотря на месяцы тщательной проверки до начала эксперимента и перепроверку данных впоследствии, ученые серьезно ошиблись. Эредитато ушел в отставку, вопреки замечаниям многих о том, что подобные ошибки всегда происходили из-за чрезвычайной сложности устройства ускорителей частиц.

Почему предположение - одно только предположение - что нечто может двигаться быстрее света, вызвало такой шум? Насколько мы уверены, что ничто не может преодолеть этот барьер?


Давайте сначала разберем второй из этих вопросов. Скорость света в вакууме составляет 299 792,458 километра в секунду - для удобства, это число округляют до 300 000 километров в секунду. Это весьма быстро. Солнце находится в 150 миллионах километров от Земли, и свет от него доходит до Земли всего за восемь минут и двадцать секунд.

Может ли какое-нибудь из наших творений конкурировать в гонке со светом? Один из самых быстрых искусственных объектов среди когда-либо построенных, космический зонд «Новые горизонты», просвистел мимо Плутона и Харона в июле 2015 года. Он достиг скорости относительно Земли в 16 км/c. Намного меньше 300 000 км/с.

Тем не менее у нас были крошечные частицы, которые двигались весьма быстро. В начале 1960-х годов Уильям Бертоцци в Массачусетском технологическом институте экспериментировал с ускорением электронов до еще более высоких скоростей.

Поскольку электроны имеют отрицательный заряд, их можно разгонять - точнее, отталкивать - применяя тот же отрицательный заряд к материалу. Чем больше энергии прикладывается, тем быстрее разгоняются электроны.

Можно было бы подумать, что нужно просто увеличивать прилагаемую энергию, чтобы разогнаться до скорости в 300 000 км/с. Но оказывается, что электроны просто не могут двигаться так быстро. Эксперименты Бертоцци показали, что использование большей энергии не приводит к прямо пропорциональному увеличению скорости электронов.

Вместо этого нужно было прикладывать огромные количества дополнительной энергии, чтобы хоть немного изменить скорость движения электронов. Она приближалась к скорости света все ближе и ближе, но никогда ее не достигла.

Представьте себе движение к двери небольшими шажочками, каждый из которых преодолевает половину расстояния от вашей текущей позиции до двери. Строго говоря, вы никогда не доберетесь до двери, поскольку после каждого вашего шага у вас будет оставаться дистанция, которую нужно преодолеть. Примерно с такой проблемой Бертоцци столкнулся, разбираясь со своими электронами.

Но свет состоит из частиц под названием фотоны. Почему эти частицы могут двигаться на скорости света, а электроны - нет?

«По мере того как объекты движутся все быстрее и быстрее, они становятся все тяжелее - чем тяжелее они становятся, тем труднее им разогнаться, поэтому вы никогда на наберете скорость света», говорит Роджер Рассул, физик из Университета Мельбурна в Австралии. «У фотона нет массы. Если бы у него была масса, он не мог бы двигаться со скоростью света».

Фотоны особенные. У них не только отсутствует масса, что обеспечивает им полную свободу перемещений в космическом вакууме, им еще и разгоняться не нужно. Естественная энергия, которой они располагают, перемещается волнами, как и они, поэтому в момент их создания они уже обладают максимальной скоростью. В некотором смысле проще думать о свете как о энергии, а не как о потоке частиц, хотя, по правде говоря, свет является и тем и другим.

Тем не менее свет движется намного медленнее, чем мы могли бы ожидать. Хотя интернет-техники любят говорить о коммуникациях, которые работают «на скорости света» в оптоволокне, свет движется на 40% медленнее в стекле этого оптоволокна, чем в вакууме.

В реальности, фотоны движутся на скорости 300 000 км/с, но сталкиваются с определенной интерференцией, помехами, вызванными другими фотонами, которые испускаются атомами стекла, когда проходит главная световая волна. Понять это может быть нелегко, но мы хотя бы попытались.


Точно так же, в рамках специальных экспериментов с отдельными фотонами, удавалось замедлить их весьма внушительно. Но для большинства случаев будет справедливо число в 300 000. Мы не видели и не создавали ничего, что могло бы двигаться так же быстро, либо еще быстрее. Есть особые моменты, но прежде чем мы их коснемся, давайте затронем другой наш вопрос. Почему так важно, чтобы правило скорости света выполнялось строго?

Ответ связан с человеком по имени , как часто бывает в физике. Его специальная теория относительности исследует множество последствий его универсальных пределов скорости. Одним из важнейших элементов теории является идея того, что скорость света постоянна. Независимо от того, где вы и как быстро движетесь, свет всегда движется с одинаковой скоростью.

Но из этого вытекает несколько концептуальных проблем.

Представьте себе свет, который падает от фонарика на зеркало на потолке стационарного космического аппарата. Свет идет вверх, отражается от зеркала и падает на пол космического аппарата. Скажем, он преодолевает дистанцию в 10 метров.

Теперь представим, что этот космический аппарат начинает движение с колоссальной скоростью во многие тысячи километров в секунду. Когда вы включаете фонарик, свет ведет себя как прежде: светит вверх, попадает в зеркало и отражается в пол. Но чтобы это сделать, свету придется преодолеть диагональное расстояние, а не вертикальное. В конце концов, зеркало теперь быстро движется вместе с космическим аппаратом.

Соответственно, увеличивается дистанция, которую преодолевает свет. Скажем, на 5 метров. Выходит 15 метров в общем, а не 10.

И несмотря на это, хотя дистанция увеличилась, теории Эйнштейна утверждают, что свет по-прежнему будет двигаться с той же скоростью. Поскольку скорость — это расстояние, деленное на время, раз скорость осталась прежней, а расстояние увеличилось, время тоже должно увеличиться. Да, само время должно растянуться. И хотя это звучит странно, но это было подтверждено экспериментально.


Этот феномен называется замедлением времени. Время движется медленнее для людей, которые передвигаются в быстро движущемся транспорте, относительно тех, кто неподвижен.

К примеру, время идет на 0,007 секунды медленнее для астронавтов на Международной космической станции, которая движется со скоростью 7,66 км/с относительно Земли, если сравнивать с людьми на планете. Еще интереснее ситуация с частицами вроде вышеупомянутых электронов, которые могут двигаться близко к скорости света. В случае с этими частицами, степень замедления будет огромной.

Стивен Кольтхаммер, физик-экспериментатор из Оксфордского университета в Великобритании, указывает на пример с частицами под названием мюоны.

Мюоны нестабильны: они быстро распадаются на более простые частицы. Так быстро, что большинство мюонов, покидающих Солнце, должны распадаться к моменту достижения Земли. Но в реальности мюоны прибывают на Землю с Солнца в колоссальных объемах. Физики долгое время пытались понять почему.

«Ответом на эту загадку является то, что мюоны генерируются с такой энергией, что движутся на скорости близкой к световой, - говорит Кольтхаммер. - Их ощущение времени, так сказать, их внутренние часы идут медленно».

Мюоны «остаются в живых» дольше, чем ожидалось, относительно нас, благодаря настоящему, естественному искривлению времени. Когда объекты движутся быстро относительно других объектов, их длина также уменьшается, сжимается. Эти последствия, замедление времени и уменьшение длины, представляют собой примеры того, как изменяется пространство-время в зависимости от движения вещей - меня, тебя или космического аппарата - обладающих массой.


Что важно, как говорил Эйнштейн, на свет это не влияет, поскольку у него нет массы. Вот почему эти принципы идут рука об руку. Если бы предметы могли двигаться быстрее света, они бы подчинялись фундаментальным законам, которые описывают работу Вселенной. Это ключевые принципы. Теперь мы можем поговорить о нескольких исключениях и отступлениях.

С одной стороны, хотя мы не видели ничего, что двигалось бы быстрее света, это не означает, что этот предел скорости нельзя теоретически побить в весьма специфических условиях. К примеру, возьмем расширение самой Вселенной. Галактики во Вселенной удаляются друг от друга на скорости, значительно превышающей световую.

Другая интересная ситуация касается частиц, которые разделяют одни и те же свойства в одно и то же время, независимо от того, как далеко находятся друг от друга. Это так называемая «квантовая запутанность». Фотон будет вращаться вверх и вниз, случайно выбирая из двух возможных состояний, но выбор направления вращения будет точно отражаться на другом фотоне где-либо еще, если они запутаны.


Два ученых, каждый из которых изучает свой собственный фотон, получат один и тот же результат одновременно, быстрее, чем могла бы позволить скорость света.

Однако в обоих этих примерах важно отметить, что никакая информация не перемещается быстрее скорости света между двумя объектами. Мы можем вычислить расширение Вселенной, но не можем наблюдать объекты быстрее света в ней: они исчезли из поля зрения.

Что касается двух ученых с их фотонами, хотя они могли бы получить один результат одновременно, они не могли бы дать об этом знать друг другу быстрее, чем перемещается свет между ними.

«Это не создает нам никаких проблем, поскольку если вы способны посылать сигналы быстрее света, вы получаете причудливые парадоксы, в соответствии с которыми информация может каким-то образом вернуться назад во времени», говорит Кольтхаммер.

Есть и другой возможный способ сделать путешествия быстрее света технически возможными: разломы в пространстве-времени, которые позволят путешественнику избежать правил обычного путешествия.


Джеральд Кливер из Университета Бейлор в Техасе считает, что однажды мы сможем построить космический аппарат, путешествующий быстрее света. Который движется через червоточину. Червоточины - это петли в пространстве-времени, прекрасно вписывающиеся в теории Эйншейна. Они могли бы позволить астронавту перескочить из одного конца Вселенной в другой с помощью аномалии в пространстве-времени, некой формы космического короткого пути.

Объект, путешествующий через червоточину, не будет превышать скорость света, но теоретически может достичь пункта назначения быстрее, чем свет, который идет по «обычному» пути. Но червоточины могут быть вообще недоступными для космических путешествий. Может ли быть другой способ активно исказить пространство-время, чтобы двигаться быстрее 300 000 км/c относительно кого-нибудь еще?

Кливер также исследовал идею «двигателя Алькубьерре», в 1994 году. Он описывает ситуацию, в которой пространство-время сжимается перед космическим аппаратом, толкая его вперед, и расширяется позади него, также толкая его вперед. «Но потом, - говорит Кливер, - возникли проблемы: как это сделать и сколько понадобится энергии».

В 2008 году он и его аспирант Ричард Обоузи рассчитали, сколько понадобится энергии.

«Мы представили корабль 10 м х 10 м х 10 м - 1000 кубометров - и подсчитали, что количество энергии, необходимое для начала процесса, будет эквивалентно массе целого Юпитера».

После этого, энергия должна постоянно «подливаться», чтобы процесс не завершился. Никто не знает, станет ли это когда-нибудь возможно, либо на что будут похожи необходимые технологии. «Я не хочу, чтобы меня потом столетиями цитировали, будто я предсказывал что-то, чего никогда не будет, - говорит Кливер, - но пока я не вижу решений».

Итак, путешествия быстрее скорости света остаются фантастикой на текущий момент. Пока единственный способ - погрузиться в глубокий анабиоз. И все же не все так плохо. В большинстве случаев мы говорили о видимом свете. Но в реальности свет - это намного большее. От радиоволн и микроволн до видимого света, ультрафиолетового излучения, рентгеновских лучей и гамма-лучей, испускаемых атомами в процессе распада - все эти прекрасные лучи состоят из одного и того же: фотонов.

Разница в энергии, а значит - в длине волны. Все вместе, эти лучи составляют электромагнитный спектр. То, что радиоволны, к примеру, движутся со скоростью света, невероятно полезно для коммуникаций.


В своем исследовании Кольтхаммер создает схему, которая использует фотоны для передачи сигналов из одной части схемы в другую, так что вполне заслуживает права прокомментировать полезность невероятной скорости света.

«Сам факт того, что мы построили инфраструктуру Интернета, к примеру, а до него и радио, основанную на свете, имеет отношение к легкости, с которой мы можем его передавать», отмечает он. И добавляет, что свет выступает как коммуникационная сила Вселенной. Когда электроны в мобильном телефоне начинают дрожать, фотоны вылетают и приводят к тому, что электроны в другом мобильном телефоне тоже дрожат. Так рождается телефонный звонок. Дрожь электронов на Солнце также испускает фотоны - в огромных количествах - которые, конечно, образуют свет, дающий жизни на Земле тепло и, кхм, свет.

Свет — это универсальный язык Вселенной. Его скорость - 299 792,458 км/с - остается постоянной. Между тем, пространство и время податливы. Возможно, нам стоит задумываться не о том, как двигаться быстрее света, а как быстрее перемещаться по этому пространству и этому времени? Зреть в корень, так сказать?