Теоремы о замечательных точках треугольника. Исследовательская работа «Замечательные точки треугольника

Баранова Елена

В данной работе рассмотрены замечательные точки треугольника, их свойства и закономерности такие, как окружность девяти точек и прямая Эйлера. Приведена историческая справка открытия прямой Эйлера и окружности девяти точек. Предложена практическая направленность прменения моего проекта.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

« ЗАМЕЧАТЕЛЬНЫЕ ТОЧКИ ТРЕУГОЛЬНИКА». (Прикладные и фундаментальные вопросы математики) Баранова Елена 8 кл., МКОУ «СОШ № 20» Пос. Новоизобильный, Духанина Татьяна Васильевна, учитель математики МКОУ «СОШ №20» Посёлок Новоизобильный 2013. Муниципальное казённое общеобразовательное учреждение «Средняя общеобразовательная школа №20»

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств. Задачи: 1.Изучить необходимую литературу 2. Изучить классификацию замечательных точек треугольника 3.. Познакомиться со свойствами замечательных точек треугольника 4. Уметь строить замечательные точки треугольника. 5. Изучить область применения замечательных точек. Объект исследования - раздел математики - геометрия Предмет исследования - треугольник Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек. Гипотеза: связь треугольника и природы

Точка пересечения серединных перпендикуляров Она равноудалена от вершин треугольника и является центром описанной окружности. Окружности, описанные около треугольников, вершинами которых являются середины сторон треугольника и вершины треугольника пересекаются в одной точке, которая совпадает с точкой пересечения серединных перпендикуляров.

Точка пересечения биссектрис Точка пересечения биссектрис треугольника равноудалена от сторон треугольника. ОМ=ОА=ОВ

Точка пересечения высот Точка пересечения биссектрис треугольника, вершинами которого являются основания высот, совпадает с точкой пересечения высот треугольника.

Точка пересечения медиан Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Если точку пересечения медиан соединить с вершинами, то треугольник разобьётся на три треугольника, равных по площади. Важным свойством точки пересечения медиан является тот факт, что сумма векторов, началом которых является точка пересечения медиан, а концами – вершины треугольников, равна нулю М1 N C B А м2 м3 М1 N C B А м2 м3 М1 N C B А м2 м3 М1 N C B А м2 м3

Точка Торричелли Замечание: точка Торричелли существует, если все углы треугольника меньше 120.

Окружность девяти точек В1, А1, С1 – основания высот; А2, В2, С2 – середины соответствующих сторон; А3, В3, С3, - середины отрезков АН, ВН и СН.

Прямая Эйлера Точка пересечения медиан, точка пересечения высот, центр окружности девяти точек лежат на одной прямой, которую называют прямой Эйлера в честь ученого математика определившего эту закономерность.

Н емного из истории открытия замечательных точек В 1765 году Эйлер обнаружил, что середины сторон треугольника и основания его высот лежат на одной окружности. Самым удивительным свойством замечательных точек треугольника является то, с что некоторые из них связаны друг с другом определённым соотношением. Точка пересечения медиан М, точка пересечения высот Н, и центр описанной окружности О лежат на одной прямой, причём точка М делит отрезок ОН так, что справедливо соотношение ОМ: ОН = 1: 2. Эта теорема была доказана Леонардом Эйлером в 1765 году.

Связь геометрии с природой. В этом положении потенциальная энергия имеет наименьшее значение и сумма отрезков МА+МВ+МС будет наименьшей, а сумма векторов, лежащих на этих отрезках с началом в точке Торричелли, будет равна нулю.

Выводы Я узнала, что кроме известных мне замечательных точек пересечения высот, медиан, биссектрис и серединных перпендикуляров существуют еще замечательные точки и линии треугольника. Полученные знания по данной теме смогу использовать в своей учебной деятельности, самостоятельно применять теоремы к определенным задачам, применять изученные теоремы в реальной ситуации. Считаю, что применение замечательных точек и линий треугольника в изучении математики является эффективным. Знание их значительно ускоряет решение многих заданий. Предложенный материал можно использовать как на уроках математики, так и во внеклассных занятиях учащимися 5-9-х классов.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него:

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Точка пересечения медиан треугольника

Теорема 1

О пересечении медиан треуголника : Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Точка пересечения биссектрис треугольника

Теорема 2

О пересечении биссектрис треугольника : Биссектрисы треугольника пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $AM,\ BP,\ CK$ его биссектрисы. Пусть точка $O$ - точка пересечения биссектрис $AM\ и\ BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Рисунок 2. Биссектрисы треугольника

Теорема 3

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ,\ OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Теорема доказана.

Точка пересечения серединных перпендикуляров треугольника

Теорема 4

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n,\ m,\ p$ его серединные перпендикуляры. Пусть точка $O$ - точка пересечения серединных перпендикуляров $n\ и\ m$ (рис. 3).

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 5

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC,\ OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Теорема доказана.

Точка пересечения высот треугольника

Теорема 6

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ -- середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ -- середина стороны $C_2A_2$, а точка $C$ -- середина стороны $A_2B_2$. Из построения мы имеем, что ${CC}_1\bot A_2B_2,\ {BB}_1\bot A_2C_2,\ {AA}_1\bot C_2B_2$. Следовательно, ${AA}_1,\ {BB}_1,\ {CC}_1$ -- серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты ${AA}_1,\ {BB}_1,\ {CC}_1$ пересекаются в одной точке.

На данном уроке мы рассмотрим четыре замечательные точки треугольника. На двух из них остановимся подробно, вспомним доказательства важных теорем и решим задачу. Остальные две вспомним и охарактеризуем.

Тема: Повторение курса геометрии 8 класса

Урок: Четыре замечательные точки треугольника

Треугольник - это, прежде всего, три отрезка и три угла, поэтому свойства отрезков и углов являются основополагающими.

Задан отрезок АВ. У любого отрезка есть середина, и через нее можно провести перпендикуляр - обозначим его за р. Таким образом, р - серединный перпендикуляр.

Теорема (основное свойство серединного перпендикуляра)

Любая точка, лежащая на серединном перпендикуляре, равноудалена от концов отрезка.

Доказать, что

Доказательство:

Рассмотрим треугольники и (см. Рис. 1). Они прямоугольные и равные, т.к. имеют общий катет ОМ, а катеты АО и ОВ равны по условию, таким образом, имеем два прямоугольных треугольника, равных по двум катетам. Отсюда следует, что гипотенузы треугольников тоже равны, то есть , что и требовалось доказать.

Рис. 1

Справедлива обратная теорема.

Теорема

Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Задан отрезок АВ, серединный перпендикуляр к нему р, точка М, равноудаленная от концов отрезка (см. Рис. 2).

Доказать, что точка М лежит на серединном перпендикуляре к отрезку.

Рис. 2

Доказательство:

Рассмотрим треугольник . Он равнобедренный, так как по условию. Рассмотрим медиану треугольника: точка О - середина основания АВ, ОМ - медиана. Согласно свойству равнобедренного треугольника, медиана, проведенная к его основанию, является одновременно высотой и биссектрисой. Отсюда следует, что . Но прямая р также перпендикулярна АВ. Мы знаем, что в точку О можно провести единственный перпендикуляр к отрезку АВ, значит, прямые ОМ и р совпадают, отсюда следует, что точка М принадлежит прямой р, что и требовалось доказать.

Если необходимо описать окружность около одного отрезка, это можно сделать, и таких окружностей бесконечно много, но центр каждой из них будет лежать на серединном перпендикуляре к отрезку.

Говорят, что серединный перпендикуляр есть геометрическое место точек, равноудаленных от концов отрезка.

Треугольник состоит из трех отрезков. Проведем к двум из них серединные перпендикуляры и получим точку О их пересечения (см. Рис. 3).

Точка О принадлежит серединному перпендикуляру к стороне ВС треугольника, значит, она равноудалена от его вершин В и С, обозначим это расстояние за R: .

Кроме того, точка О находится на серединном перпендикуляре к отрезку АВ, т.е. , вместе с тем , отсюда .

Таким образом, точка О пересечения двух серединных

Рис. 3

перпендикуляров треугольника равноудалена от его вершин, а значит, она лежит и на третьем серединном перпендикуляре.

Мы повторили доказательство важной теоремы.

Три серединных перпендикуляра треугольника пересекаются в одной точке - центре описанной окружности.

Итак, мы рассмотрели первую замечательную точку треугольника - точку пересечения его серединных перпендикуляров.

Перейдем к свойству произвольного угла (см. Рис. 4).

Задан угол , его биссектриса AL, точка М лежит на биссектрисе.

Рис. 4

Если точка М лежит на биссектрисе угла, то она равноудалена от сторон угла, то есть расстояния от точки М до АС и до ВС сторон угла равны.

Доказательство:

Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, а углы и равны, так как AL - биссектриса угла . Таким образом, прямоугольные треугольники равны по гипотенузе и острому углу, отсюда следует, что , что и требовалось доказать. Таким образом, точка на биссектрисе угла равноудалена от сторон этого угла.

Справедлива обратная теорема.

Теорема

Если точка равноудалена от сторон неразвернутого угла, то она лежит на его биссектрисе (см. Рис. 5).

Задан неразвернутый угол , точка М, такая, что расстояние от нее до сторон угла одинаковое.

Доказать, что точка М лежит на биссектрисе угла.

Рис. 5

Доказательство:

Расстояние от точки до прямой есть длина перпендикуляра. Проведем из точки М перпендикуляры МК к стороне АВ и МР к стороне АС.

Рассмотрим треугольники и . Это прямоугольные треугольники, и они равны, т.к. имеют общую гипотенузу АМ, катеты МК и МР равны по условию. Таким образом, прямоугольные треугольники равны по гипотенузе и катету. Из равенства треугольников следует равенство соответствующих элементов, против равных катетов лежат равные углы, таким образом, , следовательно, точка М лежит на биссектрисе данного угла.

Если необходимо вписать в угол окружность, это можно сделать, и таких окружностей бесконечно много, но их центры лежат на биссектрисе данного угла.

Говорят, что биссектриса есть геометрическое место точек, равноудаленных от сторон угла.

Треугольник состоит из трех углов. Построим биссектрисы двух из них, получим точку О их пересечения (см. Рис. 6).

Точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АВ и ВС, обозначим расстояние за r: . Также точка О лежит на биссектрисе угла , значит, она равноудалена от его сторон АС и ВС: , , отсюда .

Несложно заметить, что точка пересечения биссектрис равноудалена от сторон третьего угла, а значит, она лежит на

Рис. 6

биссектрисе угла . Таким образом, все три биссектрисы треугольника пересекаются в одной точке.

Итак, мы вспомнили доказательство еще одной важной теоремы.

Биссектрисы углов треугольника пересекаются в одной точке - центре вписанной окружности.

Итак, мы рассмотрели вторую замечательную точку треугольника - точку пересечения биссектрис.

Мы рассмотрели биссектрису угла и отметили ее важные свойства: точки биссектрисы равноудалены от сторон угла, кроме того, отрезки касательных, проведенных к окружности из одной точки, равны.

Введем некоторые обозначения (см. Рис. 7).

Обозначим равные отрезки касательных через х, у и z. Сторона ВС, лежащая против вершины А, обозначается как а, аналогично АС как b, АВ как с.

Рис. 7

Задача 1: в треугольнике известны полупериметр и длина стороны а. Найти длину касательной, проведенной из вершины А - АК, обозначенную за х.

Очевидно, что треугольник задан не полностью, и таких треугольников много, но, оказывается, некоторые элементы у них общие.

Для задач, в которых речь идет о вписанной окружности, можно предложить следующую методику решения:

1. Провести биссектрисы и получить центр вписанной окружности.

2. Из центра О провести перпендикуляры к сторонам и получить точки касания.

3. Отметить равные касательные.

4. Выписать связь между сторонами треугольника и касательными.

Содержание

Введение………………………………………………………………………………………3

Глава1.

1.1 Треугольник………………………………………………………………………………..4

1.2. Медианы треугольника

1.4. Высоты в треугольнике

Заключение

Список использованной литературы

Буклет

Введение

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник - атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек.

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств.

Задачи:

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

Гипотеза проекта:

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

В четвертой книге "Начал" Евклид решает задачу: "Вписать круг в данный треугольник". Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В "Началах" не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово "ортос" означает "прямой", "правильный"). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы "замечательными" или "особенными" точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – "геометрии треугольника" или "новой геометрии треугольника", одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже "прямой Эйлера".

    1. Треугольник

Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки - вершины треугольника, отрезки - стороны треугольника.

В А, В, С - вершины

АВ, ВС, СА - стороны

А С

С каждым треугольником связаны четыре точки:

    Точка пересечения медиан;

    Точка пересечения биссектрис;

    Точка пересечения высот.

    Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― , соединяющий вершину с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин. И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом. Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой называется биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника - , опущенный из вершины на противоположную сторону или прямую, совпадающую с противоположной стороной. В зависимости от типа треугольника высота может содержаться внутри треугольника (для треугольника), совпадать с его стороной (являться треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Рисунок 3. Высоты в треугольниках

    Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

    у остроугольного треугольника – внутри;

    у прямоугольного – на гипотенузе;

    у тупоугольного – снаружи.

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку - это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Рисунок 5. Треугольник вписанный в окружность

Глава 2. Исследование замечательных точек треугольника.

Исследование высоты в треугольниках

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника.

AC - высота, проведенная из вершины С к стороне AB.

AB - высота, проведенная из вершины B к стороне AC.

AK - высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А - ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота - та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

AK - высота, проведенная к стороне BC.

BF - высота, проведенная к продолжению стороны АС.

CD - высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

H - ортоцентр треугольника ABC.

Исследование биссектрис в треугольнике

Биссектриса треугольника является частью биссектрисы угла треугольника (луча), которая находится внутри треугольника.

Все три биссектрисы треугольника пересекаются в одной точке.


Точка пересечения биссектрис в остроугольном, тупоугольном и прямоугольном треугольниках, является центром вписанной в треугольник окружности и находится внутри.

Исследование медиан в треугольнике

Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три.


Исследовав эти треугольники я понял, что в любом треугольнике медианы пересекаются в одной точке. Эту точку называют центром тяжести треугольника.

Исследование серединных перпендикуляров к стороне треугольника

Серединный перпендикуляр треугольника – это перпендикуляр, проведенный к середине стороны треугольника.

Три серединных перпендикуляра треугольника пересекаются в одной точке, являются центром описанной окружности.

Точка пересечения серединных перпендикуляров в остроугольном треугольнике лежит внутри треугольника; в тупоугольном – вне треугольника; в прямоугольном – на середине гипотенузы.

Заключение

В ходе проделанной работы мы приходим к следующим выводам:

    Цель достигнута: исследовали треугольник и нашли его замечательные точки.

    Поставленные задачи решены:

1). Изучили необходимую литературу;

2). Изучили классификацию замечательных точек треугольника;

3). Научились строить замечательные точки треугольника;

4). Обобщили изученный материал для оформления буклета.

Гипотеза, что умение находить замечательные точки треугольника, помогает в решении задач на построение подтвердилась.

В работе последовательно излагаются приемы построения замечательных точек треугольника, приведены исторические сведения о геометрических построениях.

Сведения из данной работы могут пригодиться на уроках геометрии в 7 классе. Буклет может стать справочником по геометрии по изложенной теме.

Список литературы

    Учебник . Л.С. Атанасян «Геометрия 7-9 классы Мнемозина,2015.

    Википедияhttps://ru.wikipedia.org/wiki/Геометрия#/media/File:Euclid%27s_postulates.png

    Портал Алые Паруса

    Ведущий образовательный портал России http://cendomzn.ucoz.ru/index/0-15157