За счет чего ферменты ускоряют химические реакции. Ферменты

ОБЩАЯ ХАРАКТЕРИСТИКА ФЕРМЕНТОВ

    Ферменты – биологические катализаторы.

    Химическая природа ферментов. Активный центр ферментов.

    Механизм ферментативного катализа.

I . Ферменты биологические катализаторы белковой природы, способные во много раз ускорять химические реакции, протекающие в организме, но сами не входящие в состав конечных продуктов реакции.

Вещества, на которое действует фермент, называют субстратами.

Все многообразие биохимических реакций, протекающие в микроорганизмах, растениях и животных катализируется соответствующими ферментами. Велика роль ферментов в технологии пищевых продуктов. В основе производства любого пищевого продукта лежат либо биохимические (ферментативные), либо физико-химические процессы, либо эти процессы взаимосвязаны.

В отличие от неорганических катализаторов ферменты имеют свои особенности:

    Скорость ферментативного катализа на несколько порядков выше (от 10 3 до 10 9), чем не биологического катализатора;

    действие каждого фермента высокоспецифично, т.е. каждый фермент действует только на свой субстрат или группу родственных субстратов;

    ферменты катализируют химические реакции в мягких условиях, т.е. при обычном давлении, высокой температуре (20-50С) и при значениях рН среды, в большинстве случаев близких к нейтральной.

С точки зрения локализации ферментов в клетке их подразделяют на внеклеточные и внутриклеточные.

Внеклеточные ферменты выделяются живой клеткой во внешнюю среду,внутриклеточные – находятся либо в клеточных органеллах, либо в комплексе с надмолекулярными структурами.

Особую группу ферментов составляют полиферментные комплексы, в состав которых входит ряд ферментов, катализирующих последовательные реакции превращения какого-либо субстрата. Эти комплексы локализованы во внутримолекулярных структурах таким образом, что каждый фермент располагается в непосредственной близости от фермента, катализирующего реакцию в цепи данной последовательности реакций. Благодаря такому расположению ферментов процесс диффузии субстрата и продуктов реакции сводится к минимуму.

II . Ферменты – высокомолекулярные белковые соединения.

Как и другие белки, ферменты имеют 4 уровня структуры, им присущи все физико-химические свойства белков, и лишь одна отличительная особенность – способность ускорять химические реакции. Ферменты могут быть простыми – однокомпонентными и сложными двухкомпонентными.

Однокомпонентные ферменты – построены из полипептидных цепей и при гидролизе распадаются только до аминокислот.

Двухкомпонентные ферменты – состоят из белковой части – апоформента и небелковой части – кофактора . Оба компонента в отдельности лишены ферментативной активности. Только соединившись вместе (холофермент ) они приобретают свойства, характерные для биокатализаторов. Роль кофактора может выполнять какой-либо ион (Zn 2+ , Mg 2+ , Fe 2+ , Cu 2+ , реже K + и Na +) или органическое соединение (витамины, нуклеотиды). Кофакторы органической природы называются коферментами.

Тип связи между кофактором и апоферментом может быть различным. В некоторых случаях они существуют отдельно и связываются только во время протекания реакции; в других случаях кофактор и апофермент связаны постоянно, иногда прочными, ковалентными связями.

Активный центр ферментов –это локальный участок молекулы фермента, который участвует в акте катализа. Воднокомпонентных ферментахактивный центр образуется в результате определенной ориентации аминокислотных остатков полипептидной цепи. Обычно в его формировании принимает участие небольшое количество аминокислот, в пределах 12-16. Функциональные группы этих аминокислот могут принадлежать звеньям полипептидной цепи, удаленным друг от друга. Их сближение связано с формированием третичной структуры ферменты.

В двухкомпонентных ферментах активный центр представляет собой комплекс кофактора и некоторых примыкающих к нему аминокислотных остатков.

В активном центре различают контактный (якорный ) участок, функция которого – связывать субстрат, икаталитический – где происходит превращение субстрата в продукты реакции после его связывания контактным участком. В формировании этих участков принимают участие следующие функциональные группы: СООН-группы дикарбоновых аминокислот или концевые группы полипептидной цепи; имидазольная группа гистидина; ОН-группа серина;NH 2 - группа лизин и концевые группы полипептидной цепи; фенольная группа тирозина и гидрофобные остатки алифатических аминокислот.

III . Скорость любой ферментативной реакции определяетсяэнергетическим барьером , который необходимо преодолеть реагирующим молекулам. По Аррениусу, химическая реакция с точки зрения энергетики процесса описывается уравнением

N = N 0 e -(E акт /RT) ,

где N– число активных молекул;N 0 - общее число реагирующих молекул; е – основание натурального логарифма;R– газовая постоянная;T– абсолютная температура; Е акт – энергия активации.

Энергия активации – дополнительное количество энергии, необходимое для того, чтобы все молекулы преодолели энергетический барьер реакции и вступили в неё. Эта энергия представляет собой разность общей энергии реагирующих молекул и энергиивозбужденного переходного состояния. Чем больше энергия активации в реагирующей системе, тем выше энергетический барьер и тем ниже скорость реакции.

Важнейшая функция фермента – снижение энергии активации катализируемого про­цес­са. На рис. 1 представлен график изменения энергии не­фер­ментативной (1) и ферментативной (2) реакций. Фермент снижает высоту энерге­ти­ческого барьера (Е акт  Е акт).

Механизм фермен­татив­ного катализа во многом остается пока еще не выясненным. Однако большую роль в создании ферментативной кинетики сыграли работы М. Михаэлиса и М. Ментен, в которых было развито представление о фермент-субстратном комплексе . Образование этого комплекса и ведет к снижению энергии активации реакции.

Процесс ферментативного катализа можно условно подразделить на три стадии:

    Стерическое связывание субстрата Sс активным центром фер­мента Е (образование фермент-субстратного комплекса ЕS).

    Преобразование первичного комплекса ЕSв активированный переходный комплекс ЕS ≠ .

    Отделение конечного продукта Р реакции от фермента.

Первая стадия непродолжительна по времени и зависит от концентрации субстрата и фермента в среде, от скорости диффузии субстрата к активному центру фермента. В образовании комплекса ЕSмогут уча­ствовать в различных сочетаниях как ковалентные, координационные, ионные связи, так и менее прочные формы связей - электростатическое притяжение полярных групп, ван-дер-ваальсовы силы сцепления между неполярными участками молекул, водородные связи. Характер этих связей обусловлен химическими особенностями и субстрата, и функциональных групп, входящих в активный центр фермента.

Вторая стадия является, собственно, актом катализа, т.е. актом разрыва или образования в субстрате новых связей; она наиболее медленная и лимитирует скорость протекания химической реакции. На этой стадии и происходит снижение энергии активации ферментативной реакции, за счет образования активного переходного комплекса ЕS ≠ .

На молекулярном уровне более четкое представление о механизме действия ферментов дает теория кислотно-основного катализа. Любая реакция, идущая с разрывом ковалентных связей, предполагает участие двух противоположных по характеру электронных компонен­тов. Электроны разрываемой связи должны оттягиваться к электро-фильному компоненту и уходить от нуклеофильного. Реагенты, кото­рые могли бы обусловить такую электронную перестройку - это кислота и основание. Однако в одном и том же растворе создать одновре­менно высокие концентрации обоих компонентов невозможно, посколь­ку они нейтрализуют друг друга. В белковой молекуле фермента бла­годарязакреплению на каталитической площадке электрофильных и нуклеофильных групп не происходит прямой реакции нейтрализации. Это, собственно, и определяет акт катализа. Находясь на определенном расстоянии друг от друга, электрофильные и нуклеофильные группы каталитического участка фермента не только связываются с реаги­рующими группами субстрата, но и оказывают сильное поляризующее действие на группы субстрата. К этому следует добавить возможность флуктуации зарядов в комплексе ЕS, которая создает высокую степень эффективности данной поляризации. Это и является причиной снижения величины энергии активации при ферментативном катализе.

В соответствии с теорией ковалентного катализа некоторые фер­менты взаимодействуют со своими субстратами, образуя нестабильные, ковалентно связанные фермент-субстратные комплексы. Из этих комп­лексов в ходе последующей реакции образуются продукты реакции, при­чем значительно быстрее, чем в случае некатализируемых реакций.

Таким образом, третья стадия, завершающаяся образованием продуктов реакции, обеспечивается процессами, протекающими на пре­дыдущих стадиях.

Ферменты (от лат. Fermentum - брожение ) , или энзимы (от греч. Эп - внутри, sume - закваска ) - белковые соединения, которые являются биологическими катализаторами. Наука о ферментах называется энзимология. Молекулы ферментов являются белками или рибонуклеиновой кислоты (РНК). РНК-ферменты называются рибозимами и считаются первоначальной формой ферментов, которые были заменены белковыми ферментами в процессе эволюции.

Структурно-функциональная организация. Молекулы ферментов имеют большие размеры, чем молекулы субстратов и сложную пространственную конфигурацию, в основном глобулярной структуры.

Благодаря большим размерам молекул ферментов возникает сильное электрическое поле, в котором: а) ферменты приобретают асимметричной формы, ослабляет связи и обусловливает изменение их структуры; б) становится возможным ориентация молекул субстрата. Функциональная организация ферментов связана с центр - это особая небольшой участок молекулы белка, которая может связывать субстрат и обеспечивать таким образом каталитическую активность фермента. Активный центр простых ферментов представляет собой сочетание определенных аминокислот цепи с образованием своеобразной «карманы», в которой происходят каталитические превращения субстрата. В сложных ферментов количество активных центров равно числу субъединиц, и ими являются кофакторы с прилегающими к нему белковыми функциональными группами. Кроме ативно центра, некоторые ферменты имеют аллостерический центр, регулирующий работу активного центра.

Свойства . Между ферментами и катализаторами неорганической природы существуют определенные общие и отличительные признаки. Общим является то, что они: а) могут катализировать только термодинамически возможные реакции и ускоряют только те реакции, которые могут происходить и без них, но с меньшей скоростью; б) не используются во время реакции и не входят в состав конечных продуктов; б) не смещают химического равновесия, а лишь ускоряют ее наступление. Для ферментов характерны и некоторые специфические свойства, которых нет у неорганические катализаторы.

Ферменты не разрушаются в реакциях, поэтому очень малая их количество вызывает превращение большого количества субстрата например, 1 молекула каталазы может расщепить за 1 мин более 5 млн молекул Н2O2). Зоны ускоряют скорость химических реакций при обычных условиях, но сами при этом не расходуются. Все это вместе обусловливает такое свойство ферментов, как высокая биологическая активность . Оптимальное действие большинства ферментов проявляется при температуре 37-40 ° С. С повышением температуры активность ферментов снижается и впоследствии совсем прекращается, а за + 80 ° С происходит их разрушение. При низких температурах (ниже 0 ° С) ферменты прекращают свое действие, но не разрушаются. Итак, для ферментов характерна термочувствительность.

Ферменты проявляют свою активность при определенной концентрации ионов Н, поэтому говорят о pH-зависимость. Оптимальная действие большинства ферментов наблюдается в среде, близкой к нейтральной.

Такое свойство, как специфичность, или селективность проявляется в том, что каждый фермент действует на определенный субстрат, катализируя только одну "свою" реакцию. Избирательность действия ферментов определяется белковым компонентом.

Ферменты являются катализаторами с регулируемой активностью, которая может существенно изменяться под влиянием определенных химических соединений, которые увеличивают или уменьшают скорость реакции, катализируемой. В качестве активаторов выступают катионы металлов, анионы

кислот, органические вещества, а ингибиторами - катионы тяжелых металлов и др. Это свойство назвали управляемость действия (алостеричнисть ). Ферменты образуются только тогда, когда возникает субстрат, который индуцирует его синтез (индуцибельнисть ), а "отключения" действия ферментов, как правило, осуществляется избытком продуктов ассимиляции (репресибельнисть ). Ферментативные реакции являются обратимыми, что обусловлено способности ферментов катализировать прямую и обратную реакцию. Так, например, липаза может при определенных условиях расщепить жир до глицерина и жирных кислот, а также катализировать его синтез из продуктов распада (возвратность действия ).

Механизм действия. Для понимания механизма действия ферментов на протекание химических реакций важны теория активного центра, гипотеза "ключ-замок" и гипотеза индуцированного соответствия. Согласно теории активного центра, в молекуле каждого фермента одна или более участков, в которых за счет тесного контакта между ферментом и субстратом происходит Биокатализ. Гипотеза "ключ-замок" (1890, Э. Фишер) объясняет специфичность ферментов соответствием формы фермента (замок) и субстрата (ключ). Фермент сочетается с субстратом с образованием временного фермент-субстратного комплекса. Гипотеза индуцированной соответствии (1958, Д. Кошланда). базируется на утверждении о том, что ферменты являются гибкими молекулами, благодаря чему в них в присутствии субстрата конфигурация активного центра претерпевает изменения, то есть фермент ориентирует свои функциональные группы так, чтобы обеспечить наибольшую каталитическую активность. Молекула субстрата, присоединяясь к ферменту, также меняет свою конфигурацию для увеличения реакционной способности.

Разнообразие . В современной энзимологии известно свыше 3000 ферментов. Ферменты, как правило, классифицируют по химическому составу и по типу реакций, на которые они влияют. Классификация ферментов по химическому составу включает простые и сложные ферменты. Простые ферменты (однокомпонентные ) - содержат только белковую часть. Большинство ферментов этой группы могут кристаллизоваться. Примером простых ферментов является рибонуклеаза, гидролазы (амилазы, липазы, протеазы), уреаза и др. Сложные ферменты (двухкомпонентные ) - состоят из апофермента и кофактора. Белковый компонент, который определяет специфичность сложных ферментов и синтезируется, как правило, организмом и является чувствительным к температуры - это апофермент. Небелковый компонент, определяющий активность сложных ферментов и, как правило, поступает в организм в виде предшественников или в готовом виде, и сохраняет стабильность при неблагоприятных условиях, является кофактором. Кофакторы могут быть как неорганическими молекулами (например, ионы металлов), так и органическими (например, флавин). Органические кофакторы, постоянно связаны с ферментом, называют простетическими группами. Кофакторы органической природы, способные отделяться от фермента, называют коферментами. сложных ферментов является оксидоредуктаз (например, каталаза), лигазы (например, ДНК-полимераза, тРНК-синтетазы), лиазы и др.

Ферментативные реакции делятся на анаболических (реакции синтеза) и катаболитични (реакции распада), а совокупность всех этих процессов в живой системе называют метаболизмом. В рамках этих групп процессов выделяют типы ферментативных реакций, согласно которым ферменты делят на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

1. Оксидоредуктазы катализируют окислительно-восстановительные реакции (перенос электронов и атомов Н от одних субстратов на другие).

2. Трансферазы ускоряют реакции трансферации (перенос химических групп от одних субстратов на другие).

3. Гидролазы являются ферментами реакций гидролиза (расщепления субстратов с участием воды).

4. Лиазы катализируют реакции негидролитичного распада (расщепление субстратов без участия воды с образованием двойной связи и без использования энергии АТФ).

5. Изомеразы влияют на скорость реакций изомеризации (внутримолекулярный перемещения различных групп).

6. Лигазы катализируют реакции синтеза (сочетание молекул с использованием энергии АТФ и образованием новых связей).

Обычно фермент называют по типу реакции, которую он катализирует, добавляя суффикс -аза к названию субстрата (например, лактаза - фермент, участвующий в превращении лактозы).

Значения. Ферменты обеспечивают химические превращения веществ вследствие снижения энергии активации, то есть в снижении уровня энергии, необходимой для предоставления реакционной способности молекуле (например, для разрыва связи между азотом и Карбоном в лабораторных условиях необходимо около 210 кДж, тогда как в биосистема на это расходуется только 42-50 кДж). Ферменты имеющиеся во всех живых клетках способствуют превращению одних веществ (субстратов) на другие (продукты). Энзимы выступают в роли катализаторов практически во всех биохимических реакциях, происходящих живых организмах - ими катализируется около 4000 химически отдельных биореакции Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляю или и регулируя обмен веществ организма. Ферменты широко используются хозяйстве.

Некоторые примеры использования ферментов в деятельности человека

отрасль

ферменты

Использование

пищевая промышленность

Пектиназа

Для освещения фруктовых соков

глюкозооксидаза

Для сохранения мяса, соков, пива как антисжиснювач

Для расщепления крахмала до глюкозы, которую сбраживают дрожжи в процессе выпечки хлеба

Пепсин, трипсин

Для производства «готовых» каш, продуктов детского питания

Для производства сыра

Легкая промышленность

Пептигидролизы

Для размягчения кож и удаления из них шерсти

фармацевтическая промышленность

Для удаления зубного налета в составе зубных паст

коллагеназы

Для очистки ран от ожогов, обморожений, варикозных язв в составе мазей и новых типов повязок

Химическая промышленность

бактериальные протеазы

Для стирки белья с помощью биопорошков с ферментными добавками

Сельское хозяйство

целлюлаза

Кормовые ферменты для увеличения питательной ценности кормов

бактериальные протеазы

Для получения кормовых белков

генная инженерия

Лигазы и рестриктазы

Для разрезания и сшивания молекул ДНК с целью видоизменения их наследственной информации

косметическая промышленность

Калагеназы

Для омоложения кожи в составе кремов и масок

Нуклеиновые кислоты - это соединения, которые связывают прошлое с будущим.

Ферменты, Фермент-субстратный комплекс и Энергия активации

Важнейшей функцией белков является каталитическая, ее выполняет определенный класс белков – ферменты. В организме выявлено более 2000 ферментов. Ферменты – это биологические катализаторы белковой природы, которые значительно ускоряют биохимические реакции. Так, ферментативная реакция происходит в 100-1000 раз быстрее, чем без ферментов. Многими свойствами они отличаются от катализаторов, использующихся в химии. Ферменты ускоряют реакции при обычных условиях, в отличие от химических катализаторов.

В организме человека и животных за несколько секунд происходит сложная последовательность реакций, для проведения которой с применением обычных химических катализаторов требуется продолжительное время (дни, недели или даже месяцы). В отличие от реакций без ферментов, в ферментативных не образуются побочные продукты (выход конечного продукта – почти 100 %). В процессе преобразований ферменты не разрушаются, поэтому небольшое их количество способно катализировать химические реакции большого количества веществ. Все ферменты – белки и имеют характерные для них свойства (чувствительность к изменениям pH среды, денатурация при высоких температурах и т. п.).

Ферменты по химической природе разделяют на однокомпонентные (простые) и двухкомпонентные (сложные) .

Однокомпонентные (простые)

Однокомпонентные ферменты состоят только из белков. К простым принадлежат преимущественно ферменты, которые осуществляют реакции гидролиза (пепсин, трипсин, амилаза, папаин и т. п.).

Двухкомпонентные (сложные)

В отличие от простых, сложные ферменты содержат небелковую часть – низкомолекулярный компонент. Белковая часть называется апоферментом (носителем фермента), небелковая – коферментом (активной или простетичной группой). Небелковая часть ферментов может быть представлена или органическими веществами (например, производными витаминов, НАД, НАДФ, уридиновыми, цитидиловыми нуклеотидами, флавинами), или неорганическими (например, атомами металлов – железа, магния, кобальта, меди, цинка, молибдена и т. п.).

Не все необходимые коферменты могут синтезироваться организмами и потому должны поступать с пищей. Отсутствие витаминов в пище человека и животных служит причиной потери или снижения активности тех ферментов, в состав которых они входят. В отличие от белковой части органические и неорганические коферменты очень стойкие к неблагоприятным условиям (высокой или низкой температурам, излучению и т.п.) и могут отделяться от апофермента.

Характеризуются ферменты высокой специфичностью: могут превращать лишь соответствующие субстраты и катализировать лишь определенные реакции одного типа. Определяет ее белковый компонент, но не вся его молекула, а лишь ее небольшой участок – активный центр . Структура его отвечает химическому строению веществ, которые вступают в реакцию. Для ферментов характерно пространственное соответствие между субстратом и активным центром. Они подходят друг другу, как ключ замку. Активных центров может быть несколько в одной молекуле фермента. Активный центр, то есть место соединения с другими молекулами, есть не только у ферментов, а и у некоторых других белков (гем в активных центрах миоглобина и гемоглобина). Протекают ферментативные реакции в виде последовательных этапов – от нескольких до десятков.

Активность сложных ферментов проявляется лишь тогда, когда белковая часть соединяется с небелковой. Также их активность проявляется лишь при определенных условиях: температуры, давления, pH среды и т. п. Ферменты разных организмов наиболее активны при температуре, к которой приспособлены эти существа.

Фермент-субстратный комплекс

Связи субстрата с ферментом образуют фермент-субстратный комплекс.

При этом он изменяет не только собственную конформацию, а и конформацию субстрата. Ферментативные реакции могут тормозиться собственными продуктами реакции – при накоплении продуктов скорость реакции снижается. Если продуктов реакции мало, то фермент активируется.

Вещества, проникающие в область активного центра и блокирующие каталитические группы ферментов, называются ингибиторами (от лат. inhibere – сдерживать, останавливаться). Активность ферментов снижают ионы тяжелых металлов (свинец, ртуть и т.п.).

Ферменты уменьшают энергию активации, то есть уровень энергии, необходимый для придания реакционной способности молекулам.

Энергия активации

Энергия активации – это энергия, которая расходуется на разрыв определенной связи для химического взаимодействия двух соединений. Ферменты имеют определенное расположение в клетке и организме в целом. В клетке ферменты содержатся в определенных ее частях. Многие из них связаны с мембранами клеток или отдельных органелл: митохондрий, пластид и т. п.

Биосинтез ферментов организмы способны регулировать. Это позволяет поддерживать относительно постоянный их состав при значительных изменениях условий окружающей среды и частично видоизменять ферменты в ответ на такие изменения. Действие разных биологически активных веществ–гормонов, лекарственных препаратов, стимуляторов роста растений, ядов и т. п. – заключается в том, что они могут стимулировать или подавлять тот или иной ферментативный процесс.

Некоторые ферменты принимают участие в активном транспорте веществ через мембраны.

Для названий большинства ферментов характерен суффикс -аз- . Его прибавляют к названию субстрата, с которым взаимодействует фермент. Например, гидролазы – катализируют реакции расщепления сложных соединений на мономеры за счет присоединения молекулы воды в месте разрыва химической связи молекулах белков, полисахаридов, жиров; оксидредуктазы – ускоряют окислительно-восстановительные реакции (перенесение электронов или протонов); изомеразы – способствуют внутренней молекулярной перестройке (изомеризации), преобразованию изомеров и т. п.

или энзимы (от лат. fermentum - закваска) - обычно белковые молекулы или молекулы РНК (рибозимы) или их комплексы, ускоряющие (катализирующие) химические реакции в живых системах. Реагенты в реакции, катализируемой ферментами, называются субстратами, а получающиеся вещества - продуктами. Ферменты специфичны к субстратам (АТФаза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу) .

Ферментативная активность может регулироваться активаторами и ингибиторами (активаторы - повышают, ингибиторы - понижают) . Белковые ферменты синтезируются на рибосомах, а РНК - в ядре.

Термины «фермент» и «энзим» давно используют как синонимы (первый в основном в русской и немецкой научной литературе, второй - в англо- и франкоязычной) . Наука о ферментах называется энзимологией , а не ферментологией (чтобы не смешивать корни слов латинского и греческого языков) .

По химической природе - белки. Все реакции с участием ферментов протекают, в основном, в нейтральной, слабощелочной или слабокислой среде. Для действия большинства ферментов теплокровных животных и человека наиболее благоприятной температурой является 37-40oС. Ферментативные процессы не могут протекать при температуре выше 60o С, так как ферменты, как и всякие белки подвержены тепловой денатурации (разрушению структуры). Ферменты становятся активными при взаимодействии с витаминами.

Функции ферментов

Присутствуют во всех живых клетках и способствуют превращению одних веществ(субстратов) в другие (продукты) .

Выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах - ими катализируется более 4000 разных биохимических реакций.

Играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускорят как прямую, к и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону.

Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность - константа связывания некоторых субстратов с белком может достигать 10?10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 °C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз.

Классификация ферментов

По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC - Enzyme Comission code) . Классификация была предложена Международным союзом биохимии и молекулярной биологии(International Union of Biochemistry and Molecular Biology) . Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название ЕС 3.4.23.1.

Первое число грубо описывает механизм реакции, катализируемой ферментом:

КФ 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа

КФ 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.

КФ 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза

КФ 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.

КФ 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.

КФ 6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза

Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию - присоединение по двойным связям.

Соглашения о наименовании ферментов

Обычно ферменты именуют по типу катализируемой реакции, добавляя суффикс -аза к названию субстрата (например, лактаза - фермент, участвующий в превращении актозы) .

Таким обрзом, у различных ферментов, выполняющих одну функцию, будет одинаковое название. Такие ферменты различают по другим свойствам, например, по оптимальному pH(щелочная фосфатаза) или локализации в клетке (мембранная АТФаза) .

Ферментация

Ферментация (fermentation) - процесс ферментативного расщепления углеводов бактериями и дрожжами в анаэробных условиях.

Процесс ферментации также называют процессом брожения (сбраживания) .

БОЛЕЗНИ, СВЯЗАННЫЕ С НАРУШЕНИЕМ ВЫРАБОТКИ ФЕРМЕНТОВ

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей - галактоземия (приводит к умственной отсталости) - развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозыв легко усваиваемую глюкозу. Причиной другого наследственного заболевания - фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланинав тирозин. Определение активности многих ферментов a крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Ферменты от CCI

ДигестЭйбл
DigestAble код 46160

Биологически активная добавка к пище «ДигестЭйбл» - продукт, представляющий собой сбалансированное сочетание пищеварительных ферментов растительного происхождения. «ДигестЭйбл» знаком многим потребителям по «Программе 2 Коло-Вада Плюс», как элемент 3-го этапа программы очищения организма, но этот комплекс можно приобрести как самостоятельный продукт, если есть необходимость восстановления здорового пищеварения.

Пищеварительная формула
Digestion Formula код 1601

Пищеварительная формула – сбалансированный комплекс ферментов и пробиотических культур, который окажет бесспорную помощь при дисбактериозе и других нарушениях в ЖКТ, нормализуя кишечную микрофлору, обеспечивая рост полезных микроорганизмов и улучшая ферментную активность.

Ферменты. Кинетика ферментативных реакций

Биохимические реакции протекают только при участии ферментов, т. е. катализаторов, являющихся по своему составу и строению белками. Как из курса неорганической, так и из курса органической химии известны вещества, проявляющие каталитическое действие. Такие вещества, называемые катализаторами, есть во всех классах веществ – простые вещества (как металлы, так и неметаллы), кислоты, основания, оксиды, соли. Особенно широко применяются катализаторы в органической химии, так как для органических веществ характерна относительно низкая реакционная способность. Переходя на новую ступень химии – биохимию, мы встречаемся и с новым классом катализаторов – ферментами. Бесконечное разнообразие структуры белковых молекул оказывается предпосылкой биосинтеза специальных белков, пригодных в качестве катализаторов для всех осуществляющихся в природе биохимических процессов.

Ферментативному катализу присущи характерные особенности всех каталитических процессов, но обнаруживаются и принципиально важные отличия. К общим закономерностям относятся следующие:

    Ферменты увеличивают скорость реакции, но не смещают химическое равновесие;

    Ферменты ускоряют те реакции, которые могут самопроизвольно протекать в данных условиях;

    Несамопроизвольная реакция, сопряженная с самопроизвольной, также протекает при участии ферментов

    Скорость ферментативной реакции зависит от температуры и концентраций реактантов (субстрата и фермента).

К специфическим особенностям ферментативных реакций относятся следующие:

    Ферменты отличаются более высокой, чем обычные катализаторы, избирательностью к субстратам. Часто фермент ускоряет только одну биохимическую реакцию или достаточно узкую группу родственных реакций;

    Ферменты действуют стереоспецифически, ускоряя синтез только одного из возможных пространственных изомеров.

    Ферменты проявляют активность в ограниченном интервале температуры – ниже температуры денатурации данного белка;

    Активность фермента зависит от рН среды; у каждого фермента есть оптимальное значение рН, при котором активность максимальна.

    Многие ферменты действуют только при активировании коферментами – низкомолекулярными молекулами и ионами.

    Ферменты могут находиться в растворенном состоянии или быть встроенными в клеточные мембраны.

    Активность фермента может зависеть от концентрации продукта реакции.

Ферменты присутствуют в клетках в крайне малых концентрациях. Определение их в тканевых экстрактах или жидкостях – сложная задача. Поэтому разработаны особые подходы к определению каталитической активности ферментов. Измеряют скорость реакции, идущей под действием имеющегося фермента. Результат выражают в единицах активности фермента. Затем сравнивают относительные количества фермента в разных экстрактах. Единицы активности выражают в мкмоль (10 –6), нмоль (10 –9) или пмоль (10 –12) израсходованного субстрата или образовавшегося продукта в единицу времени (минуту). Международные единицы активности обозначаются U, nU и pU.

К ферментативному катализу приложимы основные положения теории скоростей химических реакций. Для протекания реакции необходимо сближение (столкновение) молекул фермента (встречаются обозначения F, Е, Enz) и субстрата (S) достаточное для образования связей. Для того, чтобы столкновение оказалось продуктивным (активным), молекулы должны иметь энергию, достаточную для преодоления энергетического барьера. Как известно, этот барьер называется энергией активации. На отдельных стадиях ферментативной реакции фермент выступает как обычный реактант, реагируя в молярном отношении 1:1. Ферментативные процессы часто представляют специальными схемами. Например, реакция переноса группы

A–B + D A–D + B

при участии фермента изображается следующим образом:

A–B Enz A–D

В качестве еще одного примера написания схемы ферментативной реакции возьмем реакцию изомеризации

S  изо -S

С участием фермента реакция записывается так:

S Enz изо -S

Стрелки создают картину циклического процесса, в который вовлекаются молекулы субстрата S и выходят молекулы продукта, часто обозначаемого как P.

Фермент представляет собой сложную молекулу, состоящую из сотен аминокислотных остатков и тысяч атомов. В связывании с субстратом может участвовать только небольшая группа атомов в такой молекуле. Эта группа называется активным центром. Э. Фишер предложил модель взаимодействия Enz–S как соответствие ключа и замка. Только при наличии такого соответствия может осуществиться превращение субстрата. Становится понятной избирательность действия фермента. Эта модель не потеряла своего значения, но позднее была предложена модель индуцированного соответствия (Кошланд), в которой учитывается гибкость молекулы фермента. При сближении молекул фермента и субстрата происходят конформационные изменения фермента, придающие окончательную конфигурацию реакционному центру. Молекулы, аналогичные субстрату, тоже могут вызывать конформационные изменения фермента, но при этом появляются различия в конформациях, при которых не возникает работающий активный центр.

Влияние температуры

В ограниченном интервале температур до начала денатурации белка скорость ферментативной реакции увеличивается, подчиняясь обычному закону, выражаемому уравнением Аррениуса. Для многих ферментативных реакций характерен температурный коэффициент скорости Q 10 , близкий к двум. Это соответствует энергии активации Е а = 55 кДж/моль при 37.

При приближении к температуре денатурации белка, прирост скорости замедляется, затем достигается максимальная скорость, и далее начинается резкое падение скорости, так как исчезают молекулы фермента, способные к катализу. Зависимость скорости каталитической реакции от температуры представлена на рисунке 1.

Зависимость от рН

При изменении рН смещаются равновесия переноса протонов, и соответственно заряды на молекулах фермента, а также нередко на молекулах субстрата. При низких значениях рН фермент протонируется и приобретает положительный заряд. При высоких – депротонируется, и приобретает отрицательный заряд. Это влияет на скорость ферментативных реакций. Если активность проявляет только одна из форм молекулы фермента с определенным значением заряда, то концентрация ее проходит через максимум при некотором значении рН М, и активность будет проявляться в пределах рН М 1. Получается зависимость активности от рН, представленная на рис. 2.

Для каждого фермента существует оптимальное значение рН, про котором проявляется наибольшая активность. При больших отклонениях рН от оптимального значения может происходить денатурация фермента.

Зависимость от концентраций

В математической форме зависимость скорости от концентрации представляется в виде кинетического уравнения. Скорость ферментативной реакции зависит как от концентрации субстрата, так и от концентрации фермента при прочих равных условиях (Т, рН). Необходимо учитывать, что фермент высокомолекулярное вещество, и его концентрация во много раз меньше, чем концентрация субстрата. Пусть в растворе содержатся субстрат с M r = 100 и фермент c M r = 100000. Массовые концентрации обоих реактантов 1 мг/л. Их молярные концентрации будут:

с(S) = 110 –5 моль/л, с(E) = 110 –8 моль/л

На 1000 молекул субстрата приходится одна молекула фермента. Реальное соотношение может быть значительно больше. Этим определяется форма кинетических уравнений в ферментативной кинетике.

Типичной особенностью кинетики ферментативных реакций оказалось, что скорость пропорциональна концентрации субстрата при его малой концентрации, и становится независимой от концентрации при большой концентрации. Эти результаты эксперимента графически изображаются кривой линией на рис. 3.

Для объяснения этой зависимости была предложена схема реакции в две стадии. В начале по обратимой реакции образуется фермент-субстратный комплекс S E, в котором происходит преобразование молекулы субстрата. На второй стадии связь изменившейся молекулы субстрата с ферментом разрывается, и появляется свободная молекула продукта P. Каждое превращение характеризуется своей константой скорости.

k 1 k 2

S + E S .... E  E + P

Для процесса с таким механизмом Л. Михаэлисом и Ментен было выведено уравнение зависимости скорости от концентрации S, получившее название уравнения Михаэлиса-Ментен.

Напишем кинетические уравнения для образования конечного продукта и фермент-субстратного комплекса:

v =
= k 2 c (SE) (1)

= k 1 c (S)c (E) k 1 c (SE) k 2 c (SE) (2)

Общая (начальная) концентрация фермента всегда много меньше концентрации субстрата, что отмечено выше. В ходе реакции концентрация свободного фермента c (E) уменьшается вследствие образования комплекса

c (E) = c o (E) c (SE) (3)

В стационарном состоянии концентрация комплекса остается постоянной:

= 0

Из этого условия получаем

k 1 c (S)c (E) k 1 c (SE) k 2 c (SE) = 0 (4)

Подставляем выражение (3) в (4)

k 1 c(S)[c o (E) c (SE)] k 1 c (SE) k 2 c (SE) = 0 (5)

В уравнении (5) раскрываем квадратные скобки и преобразуем его для нахождения концентрации фермент-субстратного комплекса SE:

Делением числителя и знаменателя на k 1 , получаем

(6)

Выражение, состоящее из констант, в знаменателе уравнения называют константой Михаэлиса K M :

(7)

Подставляем полученное выраженеие в ур. 1:

(8)

Полученное ур. 8 – одна из форм записи уравнения Михаэлиса-Ментен. Проанализируем это уравнение. Во многих ферментативных реакциях константа второй стадии k 2 значительно меньше констант образования k 1 и распада k –1 фермент-субстратного комплекса. В таких случаях константа Михаэлиса приблизительно равна константе равновесия распада комплекса на исходные молекулы:

При большой концентрации субстрата, когда c (S)K М , константой K М можно пренебречь, и тогда c (S) в ур. 8 сокращается; при этом скорость принимает максимальное значение:

v макс = k 2 c o (E) (9)

Максимальная скорость зависит от концентрации фермента и не зависит от концентрации субстрата. Это означает, что реакция идет по нулевому порядку относительно субстрата.

При малой концентрации субстрата, когда c (S) K М , реакция идет по первому порядку относительно субстрата:

v =

Таким образом, при увеличении концентрации субстрата порядок реакции изменяется от первого (область I на рис. 4) до нулевого (область III).

1/2v max

Уравнение Михаэлиса-Ментен можно записать с использованием максималоной скорости:

(10)

Эта форма уравнения удобна для представления результатов эксперимента, когда не известна концентрация фермента.

Если скорость реакции равна половине максимальной скорости, то из ур. 10 следует, что константа Михаэлиса равна соответствующей концентрации субстрата (рис. 4):

, откуда K M = c "(S)

Для более точного определения константы Михаэлиса графическим методом было предложено преобразование ур. 10 через обратные значения переменных. Меняем местами числитель и знаменатель в ур. 10:

или

Графическое представление уравнения Михаэлиса-Ментен в обратных координатах 1/v – 1/c (S) называют графиком Лайнуивера-Бёрка (рис. 5). Это график прямой линии, которая отсекает на оси 1/v отрезок, равный обратному значению максимальной скорости. Продолжение прямой линии в отрицательную область до пересечения с горизонтальной осью дает отрезок, абсолютное значение которого равно 1/K M . Таким образом, из графика определяются обратные значения параметров 1/v max и 1/K M , а затем и сами параметры.

Есть ферменты, действие которых не строго подчиняется ур. Михаэлиса-Ментен. При высокой концентрации субстрата максимальная скорость достигается, но при низкой концентрации график зависимости v – S принимает так называемый сигмоидный вид. Это означает, что сначала скорость увеличивается с ускорением (выгнутость кривой направлена вниз, см. рис. 6), а затем после точки перегиба скорость увеличивается с замедлением и приближается к максимальной скорости. Это объясняется кооперативным влиянием субстрата при наличии в ферменте нескольких центров связывания. Связывание одной молекулы S способствует связывания второй молекулы на другом центре.