3 мерный куб. Программа для рисования четырёхмерного куба

Тессеракт - четырёхмерный гиперкуб - куб в четырёхмерном пространстве.
Согласно Оксфордскому словарю, слово tesseract было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853-1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру тетракубом (греч. τετρα - четыре) - четырёхмерным кубом.
Обычный тессеракт в евклидовом четырёхмерном пространстве определяется как выпуклая оболочка точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:
[-1, 1]^4 = {(x_1,x_2,x_3,x_4) : -1 = Тессеракт ограничен восемью гиперплоскостями x_i= +- 1, i=1,2,3,4 , пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.
Популярное описание
Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.
В одномерном «пространстве» - на линии - выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат CDBA. Повторив эту операцию с плоскостью, получим трёхмерный куб CDBAGHFE. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб CDBAGHFEKLJIOPNM.
Одномерный отрезок АВ служит стороной двумерного квадрата CDBA, квадрат - стороной куба CDBAGHFE, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и ещё 8 рёбер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его рёбер.
Как сторонами квадрата являются 4 одномерных отрезка, а сторонами (гранями) куба являются 6 двухмерных квадратов, так и для «четырёхмерного куба» (тессеракта) сторонами являются 8 трёхмерных кубов. Пространства противоположных пар кубов тессеракта (то есть трёхмерные пространства, которым эти кубы принадлежат) параллельны. На рисунке это кубы: CDBAGHFE и KLJIOPNM, CDBAKLJI и GHFEOPNM, EFBAMNJI и GHDCOPLK, CKIAGOME и DLJBHPNF.
Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.
Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в направлении четвёртой оси. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.
Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.
Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один - грань, ей противоположную. А трёхмерная развёртка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».
Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Бакаляр Мария

Изучаются способы введения понятия четырёхмерного куба (тессеракта), его строение и некоторые свойства Решается вопрос о том, какие трёхмерные объекты получаются при пересечении четырёхмерного куба гиперплоскостями, параллельными его трёхмерным граням, а также гиперплоскостями, перпендикулярными его главной диагонали. Рассмотрен применяемый для исследования аппарат многомерной аналитической геометрии.

Скачать:

Предварительный просмотр:

Введение……………………………………………………………………….2

Основная часть………………………………………………………………..4

Выводы………….. …………………………………………………………..12

Список литературы…………………………………………………………..13

Введение

Четырёхмерное пространство издавна привлекало внимание, как профессиональных математиков, так и людей, далёких от занятий этой наукой. Интерес к четвёртому измерению может быть обусловлен предположением о том, что наш трёхмерный мир «погружен» в четырёхмерное пространство подобно тому, как плоскость «погружена» в трёхмерное пространство, прямая «погружена» в плоскость, а точка – в прямую. Помимо этого, четырёхмерное пространство играет важную роль в современной теории относительности (так называемое пространство-время или пространство Минковского), а также может рассматриваться как частный случай мерного евклидова пространства (при ).

Четырёхмерный куб (тессеракт) является объектом четырёхмерного пространства, имеющим максимально возможную размерность (подобно тому, как обычный куб является объектом трёхмерного пространства). Заметим, что он представляет и непосредственный интерес, а именно может фигурировать в оптимизационных задачах линейного программирования (как область, в которой отыскивается минимум или максимум линейной функции четырёх переменных), а также применяется в цифровой микроэлектронике (при программировании работы дисплея электронных часов). Кроме этого, сам процесс изучения четырёхмерного куба способствует развитию пространственного мышления и воображения.

Следовательно, изучение строения и специфических свойств четырёхмерного куба является достаточно актуальным. Стоит отметить, что в плане строения четырёхмерный куб изучен достаточно хорошо. Гораздо больший интерес представляет характер его сечений различными гиперплоскостями. Таким образом, основной целью данной работы является изучение строения тессеракта, а также выяснение вопроса о том, какие трёхмерные объекты будут получаться, если четырёхмерный куб рассекать гиперплоскостями, параллельными какой-то одной из его трёхмерных граней, или же гиперплоскостями, перпендикулярными его главной диагонали. Гиперплоскостью в четырёхмерном пространстве будем называть трёхмерное подпространство. Можно сказать, что прямая на плоскости – одномерная гиперплоскость, плоскость в трёхмерном пространстве – двумерная гиперплоскость.

Поставленная цель определила задачи исследования:

1) Изучить основные факты многомерной аналитической геометрии;

2) Изучить особенности построения кубов размерностей от 0 до 3;

3) Изучить строение четырёхмерного куба;

4) Аналитически и геометрически описать четырёхмерный куб;

5) Изготовить модели развёрток и центральных проекций трёхмерного и четырёхмерного кубов.

6) Пользуясь аппаратом многомерной аналитической геометрии, описать трёхмерные объекты, получающиеся при пересечении четырёхмерного куба гиперплоскостями, параллельными какой-то одной из его трёхмерных граней, или же гиперплоскостями, перпендикулярными его главной диагонали.

Полученная таким образом информация позволит лучше разобраться в строении тессеракта, а также выявить глубокую аналогию в строении и свойствах кубов различных размерностей.

Основная часть

Сначала опишем математический аппарат, которым мы будем пользоваться в ходе данного исследования.

1) Координаты вектора: если , то

2) Уравнение гиперплоскости с нормальным вектором имеет вид Здесь

3) Плоскости и параллельны тогда и только тогда, когда

4) Расстояние между двумя точками определяется следующим образом: если , то

5) Условие ортогональности векторов:

Прежде всего, выясним, каким образом можно описать четырёхмерный куб. Сделать это можно двумя способами – геометрическим и аналитическим.

Если говорить о геометрическом способе задания, то здесь целесообразно проследить процесс построения кубов, начиная с нулевой размерности. Куб нулевой размерности – это точка (заметим, кстати, что точка может также играть роль шара нулевой размерности). Далее введём первое измерение (ось абсцисс) и на соответствующей оси отметим две точки (два нульмерных куба), находящиеся на расстоянии 1 друг от друга. Получится отрезок - одномерный куб. Сразу же отметим характерную особенность: Границей (концами) одномерного куба (отрезка) являются два нульмерных куба (две точки). Далее введём второе измерение (ось ординат) и на плоскости построим два одномерных куба (два отрезка), концы которых находятся на расстоянии 1 друг от друга (фактически, один из отрезков является ортогональной проекцией другого). Соединяя соответствующие концы отрезков, получим квадрат – двумерный куб. Опять-таки отметим, что границей двумерного куба (квадрата) являются четыре одномерных куба (четыре отрезка). Наконец, введём третье измерение (ось аппликат) и построим в пространстве два квадрата таким образом, чтобы один из них являлся ортогональной проекцией другого (при этом соответствующие вершины квадратов находятся друг от друга на расстоянии 1). Соединим соответствующие вершины отрезками – получим трёхмерный куб. Видим, что границей трёхмерного куба являются шесть двумерных кубов (шесть квадратов). Описанные построения позволяют выявить следующую закономерность: на каждом шаге мерный куб «движется, оставляя след» в е измерение на расстояние 1, при этом, направление движения перпендикулярно кубу. Именно формальное продолжение этого процесса и позволяет прийти к понятию четырёхмерного куба. А именно, заставим трёхмерный куб продвинуться в направлении четвёртого измерения (перпендикулярно кубу) на расстояние 1. Действуя аналогично предыдущему, то есть, соединяя соответствующие вершины кубов, мы и получим четырёхмерный куб. необходимо отметить, что геометрически такое построение в нашем пространстве невозможно (ибо оно трёхмерно), однако здесь мы не сталкиваемся ни с какими противоречиями с логической точки зрения. Теперь перейдём к аналитическому описанию четырёхмерного куба. Оно также получается формально, с помощью аналогии. Итак, аналитическое задание нульмерного единичного куба имеет вид:

Аналитическое задание одномерного единичного куба имеет вид:

Аналитическое задание двумерного единичного куба имеет вид:

Аналитическое задание трёхмерного единичного куба имеет вид:

Теперь уже очень легко дать аналитическое представление четырёхмерного куба, а именно:

Как видим, и при геометрическом, и при аналитическом способах задания четырёхмерного куба использовался метод аналогий.

Теперь, используя аппарат аналитической геометрии, выясним, какое имеет строение четырёхмерный куб. Сначала выясним, какие элементы в него входят. Здесь опять можно воспользоваться аналогией (для выдвижения гипотезы). Границей одномерного куба являются точки (нульмерные кубы), двумерного куба – отрезки (одномерные кубы), трёхмерного куба – квадраты (двумерные грани). Можно предположить, что границей тессеракта являются трёхмерные кубы. Для того чтобы это доказать, уточним, что понимается под вершинами, рёбрами и гранями. Вершинами куба назовём его угловые точки. То есть, координатами вершин могут являться нули или единицы. Таким образом, обнаруживается связь между размерностью куба и числом его вершин. Применим комбинаторное правило произведения – так как вершина мерного куба имеет ровно координат, каждая из которых равна нулю или единице (независимо от всех остальных), то всего имеется вершин. Таким образом, у любой вершины все координаты фиксированы и могут равняться или . Если же зафиксировать все координаты (положив каждую из них равной или , независимо от остальных), кроме одной, то получим прямые, содержащие рёбра куба. Аналогично предыдущему, можно сосчитать, что их ровно штук. А если теперь зафиксировать все координаты (положив каждую из них равной или , независимо от остальных), кроме каких-нибудь двух, получим плоскости, содержащие двумерные грани куба. Используя правило комбинаторики, найдём, что их ровно штук. Далее аналогично – зафиксировав все координаты (положив каждую из них равной или , независимо от остальных), кроме каких-нибудь трёх, получим гиперплоскости, содержащие трёхмерные грани куба. Пользуясь тем же правилом, вычислим их количество – ровно и т.д. Для нашего исследования этого будет достаточно. Применим полученные результаты к строению четырёхмерного куба, а именно, во всех выведенных формулах положим . Стало быть, четырёхмерный куб имеет: 16 вершин, 32 ребра, 24 двумерные грани, и 8 трёхмерных граней. Для наглядности зададим аналитически все его элементы.

Вершины четырёхмерного куба:

Рёбра четырёхмерного куба ():

Двумерные грани четырёхмерного куба (аналогичные ограничения):

Трёхмерные грани четырёхмерного куба (аналогичные ограничения):

Теперь, когда строение четырёхмерного куба и способы его задания описаны с достаточной полнотой, приступим к реализации главной цели – выяснению характера различных сечений куба. Начнём с элементарного случая, когда сечения куба параллельны одной из его трёхмерных граней. Например, рассмотрим его сечения гиперплоскостями, параллельными грани Из аналитической геометрии известно, что любое такое сечение будет задаваться уравнением Зададим соответствующие сечения аналитически:

Как видим, получено аналитическое задание трёхмерного единичного куба, лежащего в гиперплоскости

Для установления аналогии запишем сечение трёхмерного куба плоскостью Получим:

Это квадрат, лежащий в плоскости . Аналогия очевидна.

Сечения четырёхмерного куба гиперплоскостями дают совершенно аналогичные результаты. Это будут также единичные трёхмерные кубы, лежащие в гиперплоскостях соответственно.

Сейчас рассмотрим сечения четырёхмерного куба гиперплоскостями, перпендикулярными его главной диагонали. Сначала решим эту задачу для трёхмерного куба. Используя вышеописанный способ задания единичного трёхмерного куба, заключает, что в качестве главной диагонали можно взять, например, отрезок с концами и . Значит, вектор главной диагонали будет иметь координаты . Следовательно, уравнение любой плоскости, перпендикулярной главной диагонали, будет иметь вид:

Определим границы изменения параметра . Так как , то, почленно складывая эти неравенства, получим:

Или .

Если , то (в силу ограничений). Аналогично - если , то . Значит, при и при секущая плоскость и куб имеют ровно одну общую точку ( и соответственно). Теперь заметим следующее. Если (опять-таки в силу ограничений переменных). Соответствующие плоскости пересекают сразу три грани, ибо, в противном случае, секущая плоскость была бы параллельна одной из них, что не имеет места по условию. Если , то плоскость пересекает все грани куба. Если же , то плоскость пересекает грани . Приведём соответствующие выкладки.

Пусть Тогда плоскость пересекает грань по прямой , причём . Грань , причём . Грань плоскость пересекает по прямой , причём

Пусть Тогда плоскость пересекает грань:

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

На этот раз получается шесть отрезков, имеющих последовательно общие концы:

Пусть Тогда плоскость пересекает грань по прямой , причём . Грань плоскость пересекает по прямой , причём . Грань плоскость пересекает по прямой , причём . То есть, получаются три отрезка, имеющих попарно общие концы: Таким образом, при указанных значениях параметра плоскость будет пересекать куб по правильному треугольнику с вершинами

Итак, здесь приведено исчерпывающее описание плоских фигур, получающихся при пересечении куба плоскостью, перпендикулярной его главной диагонали. Основная идея состояла в следующем. Необходимо понять, какие грани пересекает плоскость, по каким множествам она их пересекает, как эти множества связаны между собой. Например, если выяснялось, что плоскость пересекает ровно три грани по отрезкам, которые имеют попарно общие концы, то сечением являлся равносторонний треугольник (что доказывается непосредственным подсчётом длин отрезков), вершинами которого и служат эти концы отрезков.

Пользуясь этим же аппаратом и той же идеей исследования сечений, совершенно аналогично можно вывести следующие факты:

1) Вектор одной из главных диагоналей четырёхмерного единичного куба имеет координаты

2) Любая гиперплоскость, перпендикулярная главной диагонали четырёхмерного куба, может быть записана в виде .

3) В уравнении секущей гиперплоскости параметр может изменяться от 0 до 4;

4) При и секущая гиперплоскость и четырёхмерный куб имеют одну общую точку (и соответственно);

5) При в сечении будет получаться правильный тетраэдр;

6) При в сечении будет получаться октаэдр;

7) При в сечении будет получаться правильный тетраэдр.

Соответственно, здесь гиперплоскость пересекает тессеракт по плоскости, на которой в силу ограничений переменных выделяется треугольная область (аналогия – плоскость пересекала куб по прямой, на которой в силу ограничений переменных выделялся отрезок). В случае 5) гиперплоскость пересекает ровно четыре трёхмерные грани тессеракта, то есть, получаются четыре треугольника, имеющих попарно общие стороны, иначе говоря, образующие тетраэдр (как это можно подсчитать - правильный). В случае 6) гиперплоскость пересекает ровно восемь трёхмерных граней тессеракта, то есть, получаются восемь треугольников, имеющих последовательно общие стороны, иначе говоря, образующие октаэдр. Случай 7) полностью аналогичен случаю 5).

Проиллюстрируем сказанное конкретным примером. А именно, исследуем сечение четырёхмерного куба гиперплоскостью В силу ограничений переменных, данная гиперплоскость пересекает следующие трёхмерные грани: Грань пересекается по плоскости В силу ограничений переменных имеем: Получим треугольную область с вершинами Далее, получим треугольник При пересечении гиперплоскости с гранью получим треугольник При пересечении гиперплоскости с гранью получим треугольник Таким образом, вершины тетраэдра имеют следующие координаты . Как легко подсчитать, этот тетраэдр действительно является правильным.

Выводы

Итак, в процессе данного исследования были изучены основные факты многомерной аналитической геометрии, изучены особенности построения кубов размерностей от 0 до 3, изучено строение четырёхмерного куба, аналитически и геометрически описан четырёхмерный куб, изготовлены модели развёрток и центральных проекций трёхмерного и четырёхмерного кубов, аналитически описаны трёхмерные объекты, получающиеся при пересечении четырёхмерного куба гиперплоскостями, параллельными какой-то одной из его трёхмерных граней, или же гиперплоскостями, перпендикулярными его главной диагонали.

Проведённое исследование позволило выявить глубокую аналогию в строении и свойствах кубов различных размерностей. Использованную методику проведения аналогии можно применить при исследовании, например, мерной сферы или мерного симплекса. А именно, мерную сферу можно определить как множество точек мерного пространства, равноудалённых от заданной точки, которая называется центром сферы. Далее, мерный симплекс можно определить как часть мерного пространства, ограниченную минимальным числом мерных гиперплоскостей. Например, одномерный симплекс – отрезок (часть одномерного пространства, ограниченная двумя точками), двумерный симплекс – треугольник (часть двумерного пространства, ограниченная тремя прямыми), трёхмерный симплекс – тетраэдр (часть трёхмерного пространства, ограниченная четырьмя плоскостями). Наконец, мерный симплекс определим как часть мерного пространства, ограниченную гиперплоскостью размерности .

Отметим, что, несмотря на многочисленные применения тессеракта в некоторых областях науки, данное исследование всё же является в значительной степени математическим изысканием.

Список литературы

1) Бугров Я.С., Никольский С.М. Высшая математика, т.1 –М.: Дрофа, 2005 – 284 с.

2) Квант. Четырёхмерный куб / Дужин С., Рубцов В., №6, 1986.

3) Квант. Как начертить мерный куб / Демидович Н.Б., №8, 1974.

Учения о многомерных пространствах начали появляться в середине XIX века в работах Г. Грассмана, А. Кэли, Б. Римана, В. Клиффорда, Л. Шлефли и других математиков. В начале XX века с появлением теории относительности А. Эйнштейна и идей Г. Минковского в физике стали использовать четырехмерную пространственно-временную систему координат.

Потом идею четырехмерного пространства у ученых позаимствовали фантасты. В своих произведениях они поведали миру об удивительных чудесах четвертого измерения. Герои их произведений, используя свойства четырехмерного пространства, могли съесть содержимое яйца, не повредив скорлупы, выпить напиток, не вскрывая пробку бутылки. Похитители извлекали сокровища из сейфа через четвертое измерение. Звенья цепи легко можно рассоединить, а узел на веревке развязать, не прикасаясь к ее концам. Хирурги выполняли операции над внутренними органами, не разрезая ткани тела пациента. Мистики поместили души усопших в четвертое измерение. Для обычного человека идея четырехмерного пространства осталась непонятной и таинственной, а многие вообще считают четырехмерное пространство плодом воображения ученых и фантастов, не имеющего никакого отношения к реальности.

Проблема восприятия

Традиционно считается, что воспринимать и представлять четырехмерные фигуры человек не может, так как он трехмерное существо. Субъект воспринимает трехмерные фигуры с помощью сетчатки глаза, которая двумерна. Для восприятия четырехмерных фигур необходима трехмерная сетчатка, но у человека такой возможности нет.

Чтобы составить наглядное представление о четырехмерных фигурах, будем использовать аналогии из пространств низшей размерности для экстраполяции на фигуры высшей размерности, пользоваться методом моделирования, применять методы системного анализа для поиска закономерностей между элементами четырехмерных фигур. Предложенные модели должны адекватно описывать свойства четырехмерных фигур, не противоречить друг другу и давать достаточное представление о четырехмерной фигуре и, в первую очередь, о ее геометрической форме. Так как в литературе нет систематического и наглядного описания четырехмерных фигур, а имеются только их названия с указанием некоторых свойств, мы предлагаем начать изучение четырехмерных фигур с самой простой – четырехмерного куба, который называется гиперкубом.

Определение гиперкуба

Гиперкубом называется правильный политоп, ячейкой которого является куб.

Политоп – это четырехмерная фигура, граница которой состоит из многогранников. Аналогом ячейки политопа является грань многогранника. Гиперкуб является аналогом трехмерного куба.

Мы будем иметь представление о гиперкубе, если познаем его свойства. Субъект воспринимает некоторый объект, представляя его в виде некоторой модели. Воспользуемся данным методом, и представление о гиперкубе изложим в виде различных моделей.

Аналитическая модель

Будем рассматривать одномерное пространство (прямую линию) как упорядоченное множество точек M (x ), где x – координата произвольной точки прямой. Тогда единичный отрезок задается указанием двух точек: A (0) и B (1).

Плоскость (двумерное пространство) можно рассматривать как упорядоченное множество точек M (x ; y ). Единичный квадрат будет полностью определен его четырьмя вершинами: A (0; 0), B (1; 0), C (1; 1), D (0; 1). Координаты вершин квадрата получены добавлением к координатам отрезка нуля, а потом единицы.

Трехмерное пространство – упорядоченное множество точек M (x ; y ; z ). Для задания трехмерного куба необходимо восемь точек:

A (0; 0; 0), B (1; 0; 0), C (1; 1; 0), D (0; 1; 0),

E (0; 0; 1), F (1; 0; 1), G (1; 1; 1), H (0; 1; 1).

Координаты куба получены из координат квадрата добавлением нуля, а потом единицы.

Четырехмерное пространство есть упорядоченное множество точек M (x ; y ; z ; t ). Для задания гиперкуба нужно определить координаты шестнадцати его вершин:

A (0; 0; 0; 0), B (1; 0; 0; 0), C (1; 1; 0; 0), D (0; 1; 0; 0),

E (0; 0; 1; 0), F (1; 0; 1; 0), G (1; 1; 1; 0), H (0; 1; 1; 0),

K (0; 0; 0; 1), L (1; 0; 0; 1), M (1; 1; 0; 1), N (0; 1; 0; 1),

O (0; 0; 1; 1), P (1; 0; 1; 1), R (1; 1; 1; 1), S (0; 1; 1; 1).

Координаты гиперкуба получены из координат трехмерного куба добавлением четвертой координаты, равной нулю, а потом единице.

Используя формулы аналитической геометрии для четырехмерного евклидового пространства, можно получить свойства гиперкуба.
В качестве примера рассмотрим вычисление длины главной диагонали гиперкуба. Пусть требуется найти расстояние между точками A (0, 0, 0, 0) и R (1, 1, 1, 1). Для этого воспользуемся формулой расстояния в четырехмерном евклидовом пространстве.

В двумерном пространстве (на плоскости) расстояние между точками A (x 1 , y 1) и B (x 2 , y 2) вычисляется по формуле

Эта формула следует из теоремы Пифагора.

Соответствующая формула расстояния между точками A (x 1 , y 1 , z 1) и B (x 2 , y 2 , z 2) в трехмерном пространстве имеет вид

И в одномерном пространстве (на прямой) между точками A(x 1) и B(x 2) можно записать соответствующую формулу расстояния:

Аналогично расстояние между точками A (x 1 , y 1 , z 1 , t 1) и B (x 2 , y 2 , z 2 , t 2) в четырехмерном пространстве будет вычисляться по формуле:

Для предложенного примера находим

Таким образом, аналитически гиперкуб существует, и его свойства можно описать не хуже, чем свойства трехмерного куба.

Динамическая модель

Аналитическая модель гиперкуба очень абстрактна, поэтому рассмотрим другую модель – динамическую.

Точка (нульмерная фигура), двигаясь в одном направлении, порождает отрезок (одномерную фигуру). Отрезок, двигаясь в направлении перпендикулярно самому себе, создает квадрат (двумерную фигуру). Квадрат, двигаясь в направлении перпендикулярно плоскости квадрата, создает куб (трехмерную фигуру).

Куб, двигаясь перпендикулярно трехмерному пространству, в котором он находился первоначально, порождает гиперкуб (четырехмерную фигуру).

Граница гиперкуба трехмерна, конечна и замкнута. Она состоит из трехмерного куба в начальном положении, трехмерного куба в конечном положении и шести кубов, образованных при движении квадратов исходного куба в направлении четвертого измерения. Вся граница гиперкуба состоит из 8 трехмерных кубов (ячеек).

При движении в первоначальном положении куб имел 8 вершин и в конечном положении также 8 вершин. Следовательно, гиперкуб имеет в общей сложности 16 вершин.

Из каждой вершины исходят по четыре взаимно перпендикулярных ребра. Всего ребер у гиперкуба – 32. В первоначальном положении у него было 12 ребер, в конечном положении также 12 ребер, и 8 ребер образовали вершины куба при движении в четвертом измерении.

Таким образом, граница гиперкуба состоит из 8 кубов, которые состоят из 24 квадратов. А именно, 6 квадратов в исходном положении, 6 – в конечном, и 12 квадратов, образованных при движении 12 ребер в направлении четвертого измерения.

Геометрическая модель

Динамическая модель гиперкуба может показаться недостаточно наглядной. Поэтому рассмотрим геометрическую модель гиперкуба. Как мы получаем геометрическую модель трехмерного куба? Мы делаем его развертку, а из развертки «склеиваем» модель куба. Развертка трехмерного куба состоит из квадрата, к сторонам которого приложено по квадрату плюс еще один квадрат. Примыкающие квадраты поворачиваем вокруг сторон квадрата, а соседние стороны квадратов соединяем друг с другом. А оставшиеся четыре стороны замыкаем последним квадратом (рис. 1).

Аналогично рассмотрим развертку гиперкуба. Его разверткой будет являться трехмерная фигура, состоящая из исходного трехмерного куба, шести кубов, примыкающих к каждой грани исходного куба и еще одного куба. Всего восемь трехмерных кубов (рис. 2). Чтобы из данной развертки получить четырехмерный куб (гиперкуб), нужно повернуть на 90 градусов каждый из прилегающих кубов. Эти прилегающие кубы будут расположены в другом трехмерном пространстве. Соседние грани (квадраты) кубов соединить друг с другом. Вложить восьмой куб гранями в оставшееся незаполненное пространство. Получим четырехмерную фигуру – гиперкуб, граница которого состоит из восьми трехмерных кубов.

Изображение гиперкуба

Выше было показано, как из трехмерной развертки «склеить» модель гиперкуба. Изображения мы получаем с помощью проекции. Центральная проекция трехмерного куба (его изображение на плоскости) выглядит следующим образом (рис. 3). Внутри квадрата находится другой квадрат. Соответствующие вершины квадрата соединены отрезками. Прилегающие квадраты изображены в виде трапеций, хотя в трехмерном пространстве это квадраты. Внутренний и внешний квадраты разных размеров, но в реальном трехмерном пространстве это равные квадраты.

Аналогично центральная проекция четырехмерного куба на трехмерное пространство будет выглядеть так: внутри одного куба находится другой куб. Соответствующие вершины кубов соединены отрезками. Внутренний и внешний кубы имеют разные размеры в трехмерном пространстве, но в четырехмерном пространстве это равные кубы (рис. 4).

Шесть усеченных пирамид – это изображения равных шести ячеек (кубов) четырехмерного куба.

Эту трехмерную проекцию можно нарисовать на плоскости и убедиться в истинности свойств гиперкуба, полученных с помощью динамической модели.

Гиперкуб имеет 16 вершин, 32 ребра, 24 грани (квадрата), 8 ячеек (кубов). Из каждой вершины исходят по четыре взаимно-перпендикулярных ребра. Границей гиперкуба является трехмерная замкнутая выпуклая фигура, объем которой (боковой объем гиперкуба) равняется восьми единичным трехмерных кубам. Внутри себя эта фигура содержит единичный гиперкуб, гиперобъем которого равняется гиперобъему единичного гиперкуба.

Заключение

В данной работе ставилась цель дать первоначальное знакомство с четырехмерным пространством. Сделано это было на примере самой простой фигуры – гиперкуба.

Мир четырехмерного пространства удивителен! В нем, наряду с похожими фигурами в трехмерном пространстве, существуют и фигуры, аналогов которых нет в трехмерном пространстве.

Многие явления материального мира, макромира и мегамира, несмотря на грандиозные успехи в физике, химии и астрономии, так и остались необъяснимыми.

Нет единой теории, объясняющей все силы природы. Нет удовлетворительной модели Вселенной, объясняющей ее строение и исключающей парадоксы.

Познав свойства четырехмерного пространства и позаимствовав некоторые идеи из четырехмерной геометрии, можно будет не только построить более строгие теории и модели материального мира, но и создать инструменты и системы, функционирующие по законам четырехмерного мира, тогда возможности человека окажутся еще более впечатляющими.

Вселенная четырех измерений, или четырех координат, так же неудовлетворительна, как трех. Можно сказать, что мы не обладаем всеми данными, необходимыми для построения вселенной, поскольку ни три координаты старой физики, ни четыре координаты новой не достаточны для описания, всего многообразия явлений во вселенной.

Рассмотрим по порядку «кубы» различных размерностей.

Одномерным кубом на прямой является отрезок. Двумерным - квадрат. Граница квадрата состоит из четырех точек - вершин и четырех отрезков - ребер. Таким образом, квадрат имеет на границе элементы двух типов: точки и отрезки. Граница трехмерного куба содержит элементы трех типов: вершины - их 8, ребра (отрезки) -их 12 и грани (квадраты) -их 6. Одномерный отрезок АВ служит гранью двумерного квадрата ABCD, квадрат - стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба.

В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и еще 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и еще четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Размерность куба

Размерность границы

2 квадрат

4 тессеракт

Координаты в четырехмерном пространстве.

Точка прямой определяется как число, точка плоскости как пара чисел, точка трехмерного пространства как тройка чисел. Поэтому совершенно естественно построить геометрию четырехмерного пространства, определив точку этого воображаемого пространства как четверку чисел.

Двумерной гранью четырехмерного куба называется множество точек, для которых две какие-нибудь координаты могут принимать всевозможные значения от 0 до 1, а две другие постоянны (равны либо 0, либо 1).

Трехмерной гранью четырехмерного куба называется множество точек, у которых три координаты принимают все возможные значения от 0 до 1, а одна постоянна (равна либо 0, либо 1).

Развертки кубов различных размерностей.

Берем отрезок, со всех сторон поместим по отрезку, и еще один прикрепим к любому, в данном случае к правому отрезку.

Получили развертку квадрата.

Берем квадрат, со всех сторон поместим по квадрату, еще один прикрепим к любому, в данном случае к нижнему квадрату.

Это развертка трехмерного куба.

Четырехмерный куб

Берем куб, со всех сторон поместим по кубу, еще один прикрепим к любому, в данном нижнему кубу.

Развертка четырехмерного куба

Представим себе, что четырёхмерный куб сделан из проволоки и в вершине (1;1;1;1) сидит муравей, тогда из одной вершины в другую муравью придется ползти по ребрам.

Вопрос: по скольким ребрам ему придется ползти, чтобы попасть в вершину (0;0;0;0)?

По 4 ребрам, то есть вершину (0;0;0;0) - вершина 4 порядка, пройдя по 1 ребру он может попасть в вершину, имеющую одну из координат 0, это вершина 1 порядка, пройдя по 2 ребрам он может попасть в вершины где 2 нуля, это вершины 2 порядка, таких вершин 6, пройдя по 3 ребрам, он попадет в вершины у которых 3 координаты нуль, это вершины третьего порядка.

Существуют и другие кубы в многомерном пространстве. Кроме тессеракта можно построить кубы с большим числом измерений. Моделью пятимерного куба является пентеракт.Пентеракт имеет 32 вершины,80 рёбер, 80 граней, 40 кубов и 10 тессерактов.

Художники, режиссеры, скульпторы, ученые по-разному представляют многомерный куб. Приведем некоторые примеры:

Многие писатели-фантасты описывают в своих произведениях тессеракт. Например, Роберт Энсон Хайнлайн (1907–1988) упоминал гиперкубы в, по крайней мере, трех из его научно-популярных рассказов. В «Дом четырех измерений» он описал дом, построенный как развертка тессеракта.

Сюжет фильма «Куб-2» сосредотачивается на восьми незнакомцах, пойманных в ловушку в гиперкубе.

« Распятие» Сальвадора Дали 1954(1951) год. Сюрреализм Дали искал точек соприкосновения нашей реальности и потустороннего, в частности, 4–мерного мира. Поэтому, с одной стороны, поразительно, а, с другой, ничего удивительного в том, что геометрическая фигура из кубиков, образующая христианский крест, является изображением 3–мерной развертки 4–мерного куба или тессеракта .

21 октября на математическом факультете Университета штата Пенсильвания состоялось открытие необычной скульптуры под названием «Октакуб». Она представляет собой изображение четырехмерного геометрического объекта в трехмерном пространстве. По мнению автора скульптуры, профессора Адриана Окнеану, столь красивой фигуры такого рода в мире не существовало, ни виртуально, ни физически, хотя трехмерные проекции четырехмерных фигур изготавливались и раньше.

Вообще математики легко оперируют с четырех-, пяти– и еще более многомерными объектами, однако изобразить их в трехмерном пространстве невозможно. «Октакуб», как и все подобные фигуры не является действительно четырехмерным. Его можно сравнить с картой - проекцией трехмерной поверхности земного шара на плоский лист бумаги.

Трехмерная проекция четырехмерной фигуры была получена Окнеану методом радиальной стереографии при помощи компьютера. При этом была сохранена симметрия исходной четырехмерной фигуры. Скульптура имеет 24 вершины и 96 граней. В четырехмерным пространстве грани фигуры прямые, но в проекции они искривлены. Углы же между гранями у трхмерной проекции и исходной фигуры одинаковы.

«Октакуб» был изготовлен из нержавеющей стали в инженерных мастерских Университета штата Пенсильвания. Установлена скульптура в отремонтированном корпусе имени Макаллистера математического факультета.

Многомерное пространство интересовало многих ученых, таких как Рене Декарт, Герман Минковский. В наши дни идет преумножение знаний по данной теме. Это помогает математикам, исследователям и изобретателям современности в достижении их целей и развитию науки. Шаг в многомерное пространство - это шаг в новую более развитую эру человечества.

τέσσαρες ἀκτίνες - четыре луча) - 4-мерный Гиперкуб - аналог в 4-мерном пространстве.

Изображение является проекцией () четырехмерного куба на трехмерное пространство.

Обобщение куба на случаи с числом измерений, большим, чем 3, называется гиперкубом или (en:measure polytopes). Формально гиперкуб определяется как четырёх равных отрезков.

Данная статья в основном описывает 4-мерный гиперкуб , называемый тессеракт .

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из нашего трёхмерного .

В одномерном «пространстве» - на линии - выделим АВ длиной L. На двумерной на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат ABCD. Повторив эту операцию с плоскостью, получим трехмерный куб ABCDHEFG. А сдвинув куб в четвёртом измерении (перпендикулярно первым трем!) на расстояние L, мы получим гиперкуб.

Одномерный отрезок АВ служит гранью двумерного квадрата ABCD, квадрат - стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и еще 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и еще четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб . Воспользуемся для этого уже знакомым методом аналогий.

Возьмем проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в четвёртом измерении. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Ее часть, оставшаяся в «нашем» пространстве, нарисована сплошными линиями, а то, что ушло в гиперпространство, пунктирными. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав восемь граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс еще один - грань, ей противоположную. А трёхмерная развертка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в 4-мерное пространство, представленных в нижеследующей таблице.