Большой адронный коллайдер. Ускоритель протонов: история создания, этапы развития, новые технологии, запуск коллайдера, открытия и прогнозы на будущее

Большой адронный коллайдер, работающий в Швейцарии – самый известный ускоритель в мире. Этому немало способствовала шумиха, поднятая мировой общественностью и журналистами вокруг опасности этого научного проекта. Многие полагают, что это единственный коллайдер в мире, но это далеко не так. Кроме закрытого в США теватрона, на данный момент в мире существует пять работающих коллайдеров.

В Америке, в Брукхейвенской лаборатории работает ускоритель РКТИ (релятивистский коллайдер тяжелых ионов), начавший работу в 2000 году. Для его ввода в строй потребовалось вложение 2 миллиардов $. Кроме чисто теоретических экспериментов, физики, работающие на РКТИ (RHIC), разрабатываю вполне практические проекты. Среди них:

  • устройство для диагностирования и лечения рака (используются направленные ускоренные протоны);
  • использование лучей тяжелых ионов для создания фильтров на молекулярном уровне;
  • разработка все более эффективных устройств для аккумулирования энергии, что открывает новые перспективы в использовании солнечной энергии.

Подобный этому, ускоритель тяжелых ионов, строится в России в Дубне. На этом коллайдере NICA российские физики намерены исследовать кварк-глюонную плазму.

Сейчас российские ученые проводят исследования в ИЯФ, где расположены сразу два коллайдера – ВЭПП-4М и ВЭПП-2000. Их бюджет составляет 0,19 млрд. $ - для первого и 0,1 – для второго. Первые испытания на ВЭПП-4М начались еще в 1994 году. Здесь разработана методика измерения массы наблюдаемых элементарных частиц с самой высокой точностью во всем мире. Кроме того, ИЯФ единственный в мире институт, зарабатывающий на фундаментальные исследования в области физики собственными силами. Ученые этого института разрабатывают и продают оборудование для ускорителей другим государствам, желающим иметь свои экспериментальные установки, но не имеющих таких наработок.

В 1999 году был запущен коллайдер Дафне в лаборатории Фраскатти (Италия), стоимость его была примерно 1/5 млрд. дол., а максимальная мощность – 0, 51 ТэВ. Это был один из первых ускорителей высоких энергий, с помощью только одного эксперимента на нем было получено более ста тысяч гиперионов (частиц атома). За это Дафне окрестили фабрикой частиц или ф-фабрикой.

За два года до запуска БАК, в 2006 году Китай запустил собственный коллайдер ВЕРС II, с мощностью 2,5 ТэВ. Стоимость этого строительства была рекордно низкой и составила 0,08 млрд. дол. Но для бюджета этой развивающейся страны такая сума была немалой; правительство Китая выделило эти средства, понимая, что без развития фундаментальных отраслей науки невозможно развитие современной промышленности. Тем более актуально вложение средств в эту область экспериментальной физики в свете истощения природных ресурсов и увеличивающейся потребности в энергоносителях.

Ваш комментарий

Существует два типа ускорительных установок: ускорители с неподвижной мишенью и ускорители со встречными пучками (или коллайдеры). В ускорителях первого типа частицы после ускорения выводят из ускорительной камеры и направляют на неподвижную мишень, например, металлическую пластину. В этом случае далеко не вся кинетическая энергия ускоренной частицы может быть “вложена” в изучаемый процесс, например, во внутреннее возбуждение атомного ядра или частицы-мишени или в рождение новой частицы, так как значительная, а часто и подавляющая часть этой энергии не может быть “изъята” у частицы, поскольку идёт на “обеспечение” выполнения закона сохранения импульса - большой импульс частицы до столкновения должен сохраниться в виде большого импульса (а значит, и кинетической энергии) продуктов реакции.
Конкретные оценки (см. эквивалентная энергия) позволяют увидеть огромную разницу между кинетическими энергиями, например, протонов в ускорителе с неподвижной мишенью и со встречными пучками, которые необходимы для рождения частиц большой массы.

Огромное энергетическое преимущество ускорителей на встречных пучках сделало их совершенно необходимым атрибутом ведущих современных центров исследования физики элементарных частиц. Есть две основные схемы реализации коллайдеров (рис. 1). Если встречные пучки состоят из частиц, имеющих равные массы и противоположные по знаку заряды (т.е. античастицы, например, электрон-позитрон или протон-антипротон), то для обоих пучков используется одно кольцо магнитов (рис. 1б ). В некоторых точках этого кольца имеются участки взаимодействия ускоренных встречных пучков. Если же встречные частицы имеют одинаковые заряды или разные массы (например, протон-протон или электрон-антипротон), то необходимы два кольца магнитов и в некоторых местах создаются области столкновения (пересечения) пучков (рис. 1а ).
Во встречных пучках, двигающихся навстречу друг другу, накапливается максимально возможное число частиц (до 10 15 в пучке). Однако накапливаемые плотности частиц малы и при каждом обороте реальные столкновения испытывают немногие частицы. Взаимодействие пучков почти не нарушает динамику их движения в ускорительном кольце и пучки многие часы и даже сутки могут циркулировать в ускорителе без пополнения.
Важной характеристикой коллайдеров является светимость , обозначаемая буквой L (от англ. Luminosity ).

Встречные пучки состоят из отдельных сгустков частиц, называемых банчами (от англ. bunch ), двигающихся с определенным интервалом (частотой) друг за другом. Рассмотрим два цилиндрических банча одинакового сечения, летящих навстречу друг другу и затем сталкивающихся (рис. 2). Будем считать, что банчи равномерно заполнены частицами и при столкновении полностью перекрываются. В левом банче n 1 частиц, а в правом n 2 . Вначале положим, что на орбите коллайдера банчи сталкиваются один раз в единицу времени. Число взаимодействий N 1 в единицу времени между частицами этих двух банчей (т. е. число актов реакций в единицу времени) можно вычислить по формуле (2) из раздела "Сечение реакции ", приняв левый банч за частицы-снаряды, а правый - за мишень:

N = jnSl = (n 1 /S)n 2 , (1)

где - эффективное сечение взаимодействия. Здесь учтено, что плотность потока падающих на правый банч частиц левого банча j = n 1 /S, а полное число частиц в правом банче (принятом в качестве мишени) n 2 = nSl, где n - концентрация частиц в правом банче. Если банчи сталкиваются f раз в единицу времени (т. е. с частотой f), то число актов реакции N будет даваться выражением

N = f(n 1 n 2 /S) = L, (2)
L = f(n 1 n 2 /S) (3)

и есть светимость коллайдера.

Пример. В коллайдере TEVATRON сталкиваются протоны и антипротоны с энергиями 1 ТэВ. Чему равно число актов их взаимодействия в 1 сек, если сечение полного взаимодействия протона и антипротона при этих энергиях = 75 мб, а светимость коллайдера L = 5 . 10 31 см -2 сек -1 .

Используем (2):

N = L = 5 . 10 31 см -2 сек -1. 75 . 10 -27 см -2 = 3.75 . 10 6 сек -1 .

Перечень основных коллайдеров дан в таблице.

Ускорители на встречных пучках (коллайдеры)

Ускоритель
(Центр, Страна)
Годы работы Энергии, ГэВ
Электрон-позитронные коллайдеры
AdA
Фраскати, Италия
1961-1964 0.25
ВЭПП II
ИЯФ, СССР
1965–1974 0.7
ACO
LAL , Орсе, Франция
1965–1975 0.55
SPEAR
SLAC, США
1972-1990(?) 0.7
ВЭПП-2М
ИЯФ, СССР
1974–2000 0.7
DORIS
DESY , ФРГ
1974-1993 5
PETRA
DESY , ФРГ
1978–1986 20
CESR
Cornell University, США
1979–2002 6
PEP
SLAC, США
1980-1990(?)
SLC
SLAC, США
1988-1998(?) 45
LEP
CERN
1989-2000 104
BEPC
Китай
1089-2004 2.2
ВЭПП-4М
ИЯФ, СССР
1994- 6
PEP-II
SLAC, США
1998–2008 9(е − ), 3.1(е +)
KEKB
KEK , Япония
1999–2009 8(е − ), 3.5(е +)
DAΦNE
Фраскати, Италия
1999- 0.7
CESR-c
Cornell University, США
2002–2008 6
ВЭПП-2000
ИЯФ, Россия
2006- 1
BEPC II 2008- 3.7
Протон-антипротонные коллайдеры и коллайдеры на тяжелых ионах

TEVATRON
Fermilab, США

1992-2011 900-980

Еще несколько лет назад предрекали, что, как только в действие будет пущен адронный коллайдер, наступит конец света. Этот огромный ускоритель протонов и ионов, построенный в швейцарском ЦЕРНе, по праву признается самым большим экспериментальным сооружением в мире. Он был построен десятками тысяч ученых из многих стран мира. Его поистине можно назвать международным институтом. Однако все начиналось на совершенно ином уровне, первым делом для того, чтобы можно было в ускорителе определить скорость движения протона. Именно об истории создания и этапах развития подобных ускорителей и будет рассказано ниже.

История становления

После того как было обнаружено наличие альфа-частиц и непосредственно начали изучаться атомные ядра, люди начали пытаться проводить над ними эксперименты. Поначалу ни о каких ускорителях протонов здесь речь даже и не шла, поскольку уровень технологий был относительно невысок. Истинная эра создания ускорительной техники началась только в 30-е годы прошлого века, когда ученые начали целенаправленно разрабатывать схемы ускорения частиц. Двое ученых из Великобритании первыми в 1932 году сконструировали особый генератор постоянного напряжения, позволивший остальным начать эпоху ядерной физики, которую стало возможным применять на практике.

Появление циклотрона

Циклотрон, а именно так назывался первый ускоритель протонов, в качестве задумки появился у ученого Эрнеста Лоуренса еще в 1929 году, однако сконструировать его он смог только в 1931 году. Удивительно, но первый образец был достаточно маленьким, всего около десятка сантиметров в диаметре, а потому мог разгонять протоны всего немного. Вся концепция его ускорителя заключалась в использовании не электрического, а магнитного поля. Ускоритель протонов в подобном состоянии был направлен не на непосредственный разгон положительно заряженных частиц, а на искривление их траектории до того состояния, чтобы они летали по окружности в замкнутом состоянии.

Именно это и позволило создать циклотрон, состоящий из двух полых половинчатых дисков, внутри которых и вращались протоны. Все остальные циклотроны строились на данной теории, однако для того, чтобы получить намного большую мощность, они становились все более громоздкими. К 40-м годам стандартный размер такого ускорителя протонов стал равняться зданиям.

Именно за изобретение циклотрона в 1939 году Лоуренсу была присуждена Нобелевская премия по физике.

Синхрофазотроны

Однако по мере того, как ученые пытались сделать ускоритель протонов более мощным, начались проблемы. Часто они были чисто техническими, поскольку требования к образуемой среде были невероятно высоки, однако частично они были и в том, что частицы попросту не ускорялись, как требовалось от них. Новый прорыв в 1944 году сделал Владимир Векслер, который придумал принцип автофазировки. Что удивительно, то же сделал годом позже и американский ученый Эдвин Макмиллан. Они предлагали настроить электрическое поле так, чтобы оно влияло на сами частицы, при необходимости подгоняя их или, наоборот, замедляя. Это позволило сохранить движение частиц в виде одного сгустка, а не расплывчатой массы. Такие ускорители получили название синхрофазотрон.

Коллайдер

Для того чтобы ускоритель разгонял протоны до кинетической энергии, стали требоваться еще более мощные сооружения. Так на свет и появились коллайдеры, которые работали с помощью применения двух пучков частиц, которые раскручивались бы в противоположные стороны. А поскольку располагали их навстречу друг другу, то происходило бы сталкивание частиц. Впервые на свет идея появилась еще в 1943 году у физика Рольфа Видероэ, однако развить ее смогли только в 60-х годах, когда появились новые технологии, которые могли бы осуществить данный процесс. Это позволило увеличить число новых частиц, которые бы появлялись в результате сталкивания.

Все наработки за последующие годы непосредственно привели к постройке огромного сооружения - Большого адронного коллайдера в 2008 году, который по своей структуре представляет кольцо длиной в 27 километров. Считается, что именно проведенные в нем эксперименты помогут понять то, как был образован наш мир, и его глубинное устройство.

Запуск Большого адронного коллайдера

Первая попытка отправить в эксплуатацию этот коллайдер была предпринята в сентябре 2008 года. 10 сентября считается днем его официального запуска. Однако после серии успешных испытаний случилась авария - уже через 9 дней он вышел из строя, а потому его были вынуждены закрыть на ремонт.

Новые испытания начались только в 2009 году, однако вплоть до 2014 года сооружение работало на крайне пониженной энергии, чтобы не допустить новых поломок. Именно в это время и был открыт бозон Хиггса, который вызвал всплеск в научной среде.

На данный момент практически все исследования проводятся в области тяжелых ионов и легких ядер, после чего БАК вновь будет закрыт на модернизацию вплоть до 2021 года. Считается, что работать он сможет приблизительно до 2034 года, после чего для дальнейших исследований потребуется создать новые ускорители.

Сегодняшняя картина

На данный момент конструкционный предел ускорителей достиг своего пика, поэтому единственным вариантом становится создание линейного ускорителя протонов наподобие тех, что сейчас используют в медицине, но гораздо более мощных. ЦЕРН пытался воссоздать миниатюрную версию устройства, однако заметного продвижения в этой области так и не появилось. Данную модель линейного коллайдера планируют непосредственно подключить к БАК, чтобы спровоцировать плотность и интенсивность протонов, которые далее будут направлены непосредственно в сам коллайдер.

Заключение

С появлением ядерной физики началась эпоха развития ускорителей частиц. Они пережили многочисленные этапы, каждый из которых принес многочисленные открытия. Сейчас невозможно найти человека, который никогда бы в жизни не слышал о Большом адронном коллайдере. Его упоминают в книгах, фильмах - предрекая то, что он поможет раскрыть все тайны мира или попросту закончит его. Доподлинно неизвестно, к чему приведут все эксперименты ЦЕРНа, однако с использованием ускорителей ученые смогли ответить на многие вопросы.

БАК − это крупнейший в мире и самый мощный ускоритель частиц. Ускорители были изобретены в 30-х годах 20 века, для получения частиц высоких энергий, чтобы исследовать структуру атомного ядра. В электрических и магнитных полях ускоренные частицы достигают огромных энергий.
 В круговом ускорителе пучок частиц проходит многократно круговые петли, в линейном ускорителе пучок частиц движется от одного конца до другого.

В БАКе, для достижения более высоких энергий пучков частиц, используется ряд объеденных последовательно ускорителей.
Первый ускоритель в цепи, ускоряет протоны до энергии 50 МэВ . Для того чтобы атомы водорода потеряли свои электроны и остались только протоны их пропускают через электрическое поле. К тому времени, когда протоны достигают другого конца ускорителя они приобретают энергию 50 МэВ и прибавил 5 % по массе.


 Разогнанные протоны поступают в протонный синхротрон , который состоит из четырех наложенных синхротронных колец. Получив пучки протонов с энергией 50 МэВ , синхротрон ускоряет их до 1,4 ГэВ .


 Ускоренные пучки протонов поступают в следующий протонный синхротрон (PS), который является важнейшим компонентом в ЦЕРНЕ. Окружность ускорителя 628 метров , электромагниты находятся при обычной комнатной температуре. Ускоритель работает на частоте до 25 ГэВ . Кроме протонов, ускоритель ускоряет альфа-частицы (ядра гелия), ядра кислорода и серы, другие ядра, электроны.


 Далее протоны направляются в Super Proton Synchrotron (SPS) - Супер-Протонный Синхротрон , где они ускоряются до 450 ГэВ .


 СПС имеет семикилометровую окружность и разгоняет поставленные пучки до энергий 450 ГэВ . Он имеет 1317 электромагнитов при обычной комнатной температуре. Ускоритель умеет работать с различными видами частиц: ядрами серы и кислорода, электронами, позитронами, протонами и антипротонами.
 Пучки протонов, с энергиями 450 ГэВ поступают в Большой адронный коллайдер. БАК − это крупнейший в мире и самый мощный ускоритель частиц. Он начал свою работу 10 сентября 2008 года, и остается последним дополнением к ускорительному комплексу в ЦЕРН. БАК состоит из 27 -километрового кольца ускоряющих структур − сверхпроводящих магнитов.
 Внутри ускорителя два высокоэнергетических пучка частиц движущихся со скоростями близкими к скорости света. Пучки движутся в противоположных направлениях в отдельных трубах в которых поддерживается состояние сверхвысокого вакуума.
 В ускорителе имеется три отдельных вакуумных системы:

  1. Чтобы избежать столкновения с молекулами газа пучков частиц внутри ускорителя находится вакуум как и в межпланетном пространстве.
  2. Чтобы уменьшить количество тепла, которое просачивается из окружающей среды комнатной температуры в криогенную зону в которой поддерживается температура в 1,9 K (-271.3°C).
  3. Чтобы уменьшать потери тепла криогенно охлаждаемых магнитов.

Электромагниты находятся при температуре -271,3 °С и построены из катушек со специальным электрическим кабелем, который работает в сверхпроводящем состоянии, эффективно проводит электричество без сопротивления или потери энергии. По этой причине, ускоритель подключен к системе жидкого гелия, который охлаждает магниты.
 В БАК находятся тысячи магнитов, разных сортов и размеров. Они включают в себя 1232 дипольных магнита 15 метровой длины, по изгибу балки, и 392 квадрупольных магнита, каждый по 5-7 метров в длину, где фокусируются лучи. Незадолго до столкновения, другой тип магнитов используется, чтобы прижать частички ближе друг к другу, для увеличения вероятности столкновения. В коллайдере решается похожая по сложности задача, как если бы взять две швейные иглы, расположенных на расстоянии 10 км , выстрелить навстречу друг друга с высокой вероятностью попадания. Пучки частиц настолько малы, что столкнуть их точно является сложнейшей задачей.


 Пучки в 1-й трубе циркулируют по часовой стрелке, пока пучки в другой трубе циркулируют против часовой стрелки. Время заполнения каждого кольца 4 минуты и 20 секунд , и 20 минут для того, чтобы достичь максимальной энергии 4 ТэВ . Пучки могут циркулировать в течение многих часов внутри труб при нормальных условиях эксплуатации. Два пучка приводятся в столкновение внутри четырех детекторов − Алиса, Атлас, CMS и LHCb − где полная энергия при столкновении равна 8 ТэВ .
Алис а представляет собой детектор − 26 м в длину, 16 м в высоту, и шириной 16 м . Применяется для изучения кварк-глюонной плазмы. Детектор находится в огромной пещере 56 м под землей недалеко от поселка сен-Жени-Пуйи, Франция.


Атлас это один из двух детекторов общего назначения, на Большом Адронном Коллайдере. 46 м в длину, 25 м в высоту и 25 м в ширину, 7000 -тонный детектор ATLAS является наибольшим детектором частиц из когда-либо построенных. Он находится в пещере, в 100 м под землей возле главного центра ЦЕРНА, недалеко от деревни Meyrin в Швейцарии.


Компактный Мюонный Соленоид (CMS)-это универсальный детектор в БАКе. Он предназначен для решения широкого спектра физических задач, в том числе поиск Бозон Хиггса, поиск частицы, из которых может состоять темная материя. Хотя он решает похожие задачи с ATLAS, но использует другое техническое решение при проектировании детектора, другой магнит. Огромный соленоид магнит имеет форму цилиндрической катушки из сверхпроводящего кабеля, который генерирует поле 4 Тл , что около 100000 раз больше магнитного поля Земли.
 Необычная особенность детектора CMS является то, что он был построен из 15 секций на уровне земли, прежде чем был опущен в подземную пещеру возле Cessy во Франции и разбираются. Полный детектор 21 м в длину, 15 м в ширину и 15 м в высоту.


 В Большом адронном коллайдере проводятся исследование различий между материей и антиматерией, изучаются частицы называемые "beauty quark", или "b-кварк".
 Обилие различных типов кварков создаются в БАК прежде чем они быстро распадаются в другие формы. Чтобы поймать b-кварки, в БАКе разработана сложная подвижная система трековых детекторов возле траекторий пучков.
5600 -тонный детектор БАК состоит из переднего спектрометра и планарных детекторов. Это 21 м в длину, 10 м в высоту и 13 м в ширину, детектор находится в 100 метрах под землей возле села Ферней-Вольтер, Франция.


 По материалам