Чему равен вращающийся момент. Вращательный момент

Которая равна произведению силы на ее плечо.

Момент силы вычисляют при помощи формулы:

где F - сила, l — плечо силы.

Плечо силы - это самое короткое расстояние от линии действия силы до оси вращения тела. На рисунке ниже изображено твердое тело, которое может вращаться вокруг оси. Ось вращения этого тела является перпендикулярной к плоскости рисунка и проходит через точку, которая обозначена как буква О. Пле-чом силы F t здесь оказывается расстояние l , от оси вращения до линии действия силы. Определяют его таким образом. Первым шагом проводят линию действия силы, далее из т. О, через которую проходит ось вращения тела, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра оказывается плечом данной силы.

Момент силы характеризует вращающее действие силы . Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу необходимо приложить, чтобы получить желаемый результат, то есть один и тот же момент силы (см. рис. выше). Именно поэтому открыть дверь, толкая ее возле петель, намного сложнее, чем берясь за ручку, а гайку отвернуть намного легче длинным, чем коротким гаечным ключом.

За единицу момента силы в СИ принимается момент силы в 1 Н , плечо которой равно 1м — ньютон-метр (Н · м).

Правило моментов.

Твердое тело, которое может вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М 1 вращающей его по часовой стрелке, равняется моменту силы М 2 , которая вращает его против часовой стрелки:

Правило моментов есть следствие одной из теорем механики , которая была сформулирована французским ученым П. Вариньоном в 1687 г.

Пара сил.

Если на тело действуют 2 равные и противоположно направленные силы, которые не лежат на одной прямой, то такое тело не находится в равновесии, так как результирующий момент этих сил относительно любой оси не равняется нулю, так как обе силы имеют моменты, направленные в одну сторону. Две такие силы, одновременно действующие на тело, называют парой сил . Если тело закреплено на оси, то под действием пары сил оно будет вращаться. Если пара сил приложена «свободному телу, то оно будет вращаться вокруг оси. проходящей через центр тяжести тела, рисунке б .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние l между силами, которое называется плечом пары , независимо от того, на какие отрезки l , и разделяет положение оси плечо пары:

Момент нескольких сил, равнодействующая которых равна нулю, будет одинаковым относи-тельно всех осей, параллельных друг другу, поэтому действие всех этих сил на тело можно заме нить действием одной пары сил с тем же моментом.

Итак, для равновесия тела, закрепленного на оси, существен не сам модуль силы, а произведение модуля силы на расстояние от оси до линии, вдоль которой действует сила (рис. 115; предполагается, что сила лежит в плоскости, перпендикулярной к оси вращения). Это произведение называется моментом силы относительно оси или просто моментом силы. Расстояние называется плечом силы. Обозначив момент силы буквой , получим

Условимся считать момент силы положительным, если эта сила, действуя в отдельности, вращала бы тело по часовой стрелке, и отрицательным в противном случае (при этом нужно заранее условиться, с какой стороны мы будем смотреть на тело). Например, силам и на рис. 116 нужно приписать положительный момент, а силе - отрицательный.

Рис. 115. Момент силы равен произведению ее модуля на плечо

Рис. 116. Моменты сил и положительны, момент силы отрицателен

Рис. 117. Момент силы равен произведению модуля составляющей силы на модуль радиус-вектора

Моменту силы можно дать еще и другое определение. Проведем из точки , лежащей на оси в той же плоскости, что и сила, в точку приложения силы направленный отрезок (рис. 117). Этот отрезок называется радиус-вектором точки приложения силы. Модуль вектора равен расстоянию от оси до точки приложения силы. Теперь построим составляющую силы , перпендикулярную к радиус-вектору . Обозначим эту составляющую через . Из рисунка видно, что , a . Перемножив оба выражения, получим, что .

Таким образом, момент силы можно представить в виде

где - модуль составляющей силы , перпендикулярной к радиус-вектору точки приложения силы, - модуль радиус-вектора. Отметим, что произведение численно равно площади параллелограмма, построенного на векторах и (рис. 117). На рис. 118 показаны силы, моменты которых относительно оси одинаковы. Из рис. 119 видно, что перенесение точки приложения силы вдоль ее направления не меняет ее момента. Если направление силы проходит через ось вращения, то плечо силы равно нулю; следовательно, равен нулю и момент силы. Мы видели, что в этом случае сила не вызывает вращения тела: сила, момент которой относительно данной оси равен нулю, не вызывает вращения вокруг этой оси.

Рис. 118. Силы и имеют одинаковые моменты относительно оси

Рис. 119. Равные силы с одинаковым плечом имеют равные моменты относительно оси

Пользуясь понятием момента силы, мы можем по-новому сформулировать условия равновесия тела, закрепленного на оси и находящегося под действием двух сил. В условии равновесия, выражаемом формулой (76.1), и есть не что иное, как плечи соответствующих сил. Следовательно, это условие состоит в равенстве абсолютных значений моментов обеих сил. Кроме того, чтобы не возникало вращение, направления моментов должны быть противоположными, т. е. моменты должны отличаться знаком. Таким образом, для равновесия тела, закрепленного на оси, алгебраическая сумма моментов действующих на него сил должна быть равна нулю.

Так как момент силы определяется произведением модуля силы на плечо, то единицу момента силы мы получим, взяв равную единице силу, плечо которой также равно единице. Следовательно, в СИ единицей момента силы является момент силы, равной одному ньютону и действующей на плече один метр. Она называется ньютон-метром (Н·м).

Если на тело, закрепленное на оси, действует много сил, то, как показывает опыт, условие равновесия остается тем же, что и для случая двух сил: для равновесия тела, закрепленного на оси, алгебраическая сумма моментов всех сил, действующих на тело, должна быть равна нулю. Результирующим моментом нескольких моментов, действующих на тело (составляющих моментов), называют алгебраическую сумму составляющих моментов. Под действием результирующего момента тело будет вращаться вокруг оси так же, как оно вращалось бы при одновременном действии всех составляющих моментов. В частности, если результирующий момент равен нулю, то тело, закрепленное на оси, либо покоится, либо вращается равномерно.

Вращение является типичным видом механического движения, которое часто встречается в природе и технике. Любое вращение возникает в результате воздействия некоторой внешней силы на рассматриваемую систему. Эта сила создает так называемый Что он собой представляет, от чего зависит, рассматривается в статье.

Процесс вращения

Прежде чем рассматривать концепцию вращающего момента, дадим характеристику систем, к которым может быть применена эта концепция. Система вращения предполагает наличие в ней оси, вокруг которой осуществляется круговое движение или поворот. Расстояние от этой оси до материальных точек системы называется радиусом вращения.

С точки зрения кинематики, процесс характеризуется тремя угловыми величинами:

  • углом поворота θ (измеряется в радианах);
  • угловой скоростью ω (измеряется в радианах в секунду);
  • ускорением угловым α (измеряется в радианах в секунду квадратную).

Эти величины связаны друг с другом следующими равенствами:

Примерами вращения в природе являются движения планет по своим орбитам и вокруг своих осей, движения смерчей. В быту и технике рассматриваемое движение характерно для моторов двигателей, гаечных ключей, строительных кранов, открывания дверей и так далее.

Определение момента силы

Теперь перейдем к непосредственной теме статьи. Согласно физическому определению, представляет собой векторное произведение вектора приложения силы относительно оси вращения на вектор самой силы. Соответствующее математическое выражение можно записать так:

Здесь вектор r¯ направлен от оси вращения к точке приложения силы F¯.

В этой формуле вращающего момента M¯ сила F¯ может быть направлена как угодно относительно направления оси. Тем не менее параллельная оси компонента силы не будет создавать вращения, если ось жестко закреплена. В большинстве задач по физике приходится рассматривать силы F¯, которые лежат в плоскостях перпендикулярных оси вращения. В этих случаях абсолютное значение вращающего момента можно определить по следующей формуле:

|M¯| = |r¯|*|F¯|*sin(β).

Где β является углом между векторами r¯ и F¯.

Что такое рычаг силы?

Рычаг силы играет важную роль при определении величины момента силы. Чтобы понять, о чем идет речь, рассмотрим следующий рисунок.

Здесь показан некоторый стержень длиною L, который закреплен в точке вращения одним из своих концов. На другой конец действует сила F, направленная под острым углом φ. Согласно определению момента силы, можно записать:

M = F*L*sin(180 o -φ).

Угол (180 o -φ) появился потому, что вектор L¯ направлен от закрепленного конца к свободному. Учитывая периодичность тригонометрической функции синуса, можно переписать это равенство в таком виде:

Теперь обратим внимание на прямоугольный треугольник, построенный на сторонах L, d и F. По определению функции синуса, произведение гипотенузы L на синус угла φ дает значение катета d. Тогда приходим к равенству:

Линейная величина d называется рычагом силы. Он равен расстоянию от вектора силы F¯ до оси вращения. Как видно из формулы, понятием рычага силы удобно пользоваться при вычислении момента M. Полученная формула говорит о том, что вращающий момент максимальный для некоторой силы F будет возникать только тогда, когда длина радиус-вектора r¯ (L¯ на рисунке выше) будет равна рычагу силы, то есть r¯ и F¯ будут взаимно перпендикулярны.

Направление действия величины M¯

Выше было показано, что вращающий момент - это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.

Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:

  • Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
  • Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.

Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.

При решении практических задач разное направление вращающего момента (вверх - вниз, влево - вправо) учитывается с помощью знаков "+" или "-". Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.

Физический смысл величины M¯

В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:

  • Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата.
  • Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку.
  • Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом - выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым.

Единицы измерения момента силы

Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же - это вектор.

Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:

Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).

Динамика вращения

В начале статьи мы записали кинематические характеристики, которые используются для описания движения вращения. В динамике вращения главным уравнением, которое использует эти характеристики, является следующее:

Действие момента M на систему, имеющую момент инерции I, приводит к появлению углового ускорения α.

Данную формулу применяют, для определения угловых частот вращения в технике. Например, зная вращающий момент асинхронного двигателя, который зависит от частоты тока в катушке статора и от величины изменяющегося магнитного поля, а также зная инерционные свойства вращающегося ротора, можно определить, до какой скорости вращения ω раскручивается ротор двигателя за известное время t.

Пример решения задачи

Невесомый рычаг, длина которого составляет 2 метра, посередине имеет опору. Какой вес следует положить на один конец рычага, чтобы он находился в состоянии равновесия, если с другой стороны опоры на расстоянии 0,5 метра от нее лежит груз массой 10 кг?

Очевидно, что наступит, если моменты сил, создаваемые грузами, будут равны по модулю. Сила, создающая момент в данной задаче, представляет собой вес тела. Рычаги силы равны расстояниям от грузов до опоры. Запишем соответствующее равенство:

m 1 *g*d 1 = m 2 *g*d 2 =>

P 2 = m 2 *g = m 1 *g*d 1 /d 2 .

Вес P 2 получим, если подставим из условия задачи значения m 1 = 10 кг, d 1 = 0,5 м, d 2 = 1 м. Записанное равенство дает ответ: P 2 = 49,05 ньютона.

§ 92. Вращающий момент асинхронного двигателя

Вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля статора с токами в проводниках обмотки ротора. Поэтому вращающий момент зависит как от магнитного потока статора Φ, так и от силы тока в обмотке ротора I 2 . Однако в создании вращающего момента участвует только активная мощность, потребляемая машиной из сети. Вследствие этого вращающий момент зависит не от силы тока в обмотке ротора I 2 , а только от его активной составляющей, т. е. I 2 cos φ 2 , где φ 2 - фазный угол между э. д. с. и током в обмотке ротора.
Таким образом, вращающий момент асинхронного двигателя определяется следующим выражением:

M = C ΦI φ 2 cos φ 2 , (122)

где С - конструктивная постоянная машины, зависящая от числа ее полюсов и фаз, числа витков обмотки статора, конструктивного выполнения обмотки и принятой системы единиц.
При условии постоянства приложенного напряжения и изменении нагрузки двигателя магнитный поток остается также почти постоянным.
Таким образом, в выражении вращающего момента величины С и Φ постоянны и вращающий момент пропорционален только активной составляющей тока в обмотке ротора, т. е.

M ~ I 2 cos φ 2 . (123)

Изменение нагрузки или тормозного момента на валу двигателя, как уже известно, изменяет и скорость вращения ротора, и скольжение.
Изменение скольжения вызывает изменение как силы тока в роторе I 2 , так и ее активной составляющей I 2 cos φ 2 .
Можно силу тока в роторе определить отношением э. д. с. к полному сопротивлению, т. е. на основании закона Ома

где Z 2 , r 2 и x 2 - полное, активное и реактивное сопротивления фазы обмотки ротора,
E 2 - э. д. с. фазы обмотки вращающегося ротора.
Изменение скольжения изменяет частоту тока ротора. При неподвижном роторе (n 2 = 0 и S = 1) вращающееся поле с одинаковой скоростью пересекает проводники обмотки статора и ротора и частота тока в роторе равна частоте тока сети (f 2 = f 1). При уменьшении скольжения обмотка ротора пересекается магнитным полем с меньшей частотой, вследствие чего частота тока в роторе уменьшается. Когда ротор вращается синхронно с полем (n 2 = n 1 и S = 0), проводники обмотки ротора не пересекаются магнитным полем, так что частота тока в роторе равна нулю (f 2 = 0). Таким образом, частота тока в обмотке ротора пропорциональна скольжению, т. е.

f 2 = S f 1 .

Активное сопротивление обмотки ротора почти не зависит от частоты, тогда как э. д. с. и реактивное сопротивление пропорциональны частоте, т. е. изменяются с изменением скольжения и могут быть определены следующими выражениями:

E 2 = S E и X 2 = S X ,

где Е и X - э. д. с. и индуктивное сопротивление фазы обмотки для неподвижного ротора соответственно.
Таким образом, имеем:


и вращающий момент

Следовательно, при небольших скольжениях (примерно до 20%), когда реактивное сопротивление Х 2 = S X мало по сравнению с активным r 2 , увеличение скольжения вызывает увеличение вращающего момента, так как при этом возрастает активная составляющая тока в роторе (I 2 cos φ 2). При больших скольжениях (S X больше, чем r 2) увеличение скольжения будет вызывать уменьшение вращающего момента.
Таким образом, при увеличении скольжения (его больших значениях) хотя и повышается сила тока в роторе I 2 , но ее активная составляющая I 2 cos φ 2 и, следовательно, вращающий момент уменьшаются вследствие значительного возрастания реактивного сопротивления обмотки ротора.
На рис. 115 показана зависимость вращающего момента от скольжения. При некотором скольжении S m (примерно 12 - 20%) двигатель развивает максимальный момент, который определяет перегрузочную способность двигателя и обычно в 2 - 3 раза превышает номинальный момент.

Устойчивая работа двигателя возможна только на восходящей ветви кривой зависимости момента от скольжения, т. е. при изменении скольжения в пределах от 0 до S m . Работа двигателя на нисходящей ветви указанной кривой, т. е. при скольжении S > S m , невозможна, так как здесь не обеспечивается устойчивое равновесие моментов.
Если предположить, что вращающий момент был равен тормозному (M вр = M торм) в точках A и Б , то при случайном нарушении равновесия моментов в одном случае оно восстанавливается, а в другом не восстанавливается.
Допустим, что вращающий момент двигателя почему-либо уменьшился (например, при понижении напряжения сети), тогда скольжение начнет увеличиваться. Если равновесие моментов было в точке А , то увеличение скольжения вызовет возрастание вращающего момента двигателя и он станет вновь равным тормозному моменту, т. е. равновесие моментов восстановится при возросшем скольжении. Если же равновесие моментов было в точке Б , то увеличение скольжения вызовет уменьшение вращающего момента, который будет оставаться всегда меньше тормозного, т. е. равновесие моментов не восстановится и скорость вращения ротора будет непрерывно уменьшаться до полной остановки двигателя.
Таким образом, в точке А машина будет работать устойчиво, а в точке Б устойчивая работа невозможна.
Если приложить к валу двигателя тормозной момент, больший максимального, то равновесие моментов не восстановится и ротор двигателя остановится.
Вращающий момент двигателя пропорционален квадрату приложенного напряжения, так как пропорциональны напряжению как магнитный поток, так и сила тока в роторе. Поэтому изменение напряжения в сети вызывает изменение вращающего момента.

> Вращательный момент

Изучите вращательный момент в физике. Узнайте, что такое момент вращательного движения, силы и инерции, роль вектора, угловой скорости и углового движения.

Вращательный момент – сила, заставляющая объекты поворачиваться или вращаться вокруг своей оси.

Задача обучения

  • Описать воздействие вращательного момента на объект.

Основные пункты

  • Вращательный момент находят при помощи умножения активной силы на дистанцию к оси вращения (рычаг момента).
  • Вращательный момент смещается, потому что сила отображает движение.
  • Единица – Ньютон на метр.

Термины

  • Вектор – определенное количество, характеризующееся величиной и направлением (между двумя точками).
  • Угловая скорость – векторная величина, характеризующая объект в движении по кругу.
  • Угловое движение – смещение тела вокруг статичной точки или оси (вроде планет и маятника). Равняется углу, проходящему в точке или оси по линии, отображенной на теле.

Вращательный момент – тенденция силы поворачивать или вращать смещающийся объект. Ее можно измерить при помощи момента сила. Вращательный момент в угловом движении соответствует силе смещения. В результате получаем угловое ускорение или угловое торможение частички. Можно измерить при помощи уравнения:

Процесс вращения – особенный случай для углового движения. Момент вращательного движения вычисляется относительно оси, поэтому вектор r ограничивается перпендикулярным размещением относительно оси вращения. То есть, плоскость движения перпендикулярна оси вращения.

Вращательный момент – поперечная производная силы рычага момента. Он активируется каждый раз, когда объект пребывает во вращении. Также момент можно выразить через угловое ускорение объекта.

Вычислить направление вращательного момента намного легче, чем угловую скорость. Почему? Просто сам вращательный момент приравнивается к векторному произведению двух векторов, а угловая скорость – один из двух объектов векторного движения. Если мы знаем направление двух действующих объектов, то легко находим и направление вращательного момента.

Он зависит от силы, дистанции и оси вращения, поэтому единицей выступает ньютон на метр.