Что означает равенство треугольников. Как установить и доказать, что треугольники равны

Билет 2

Вопрос 1

Признаки равенства треугольников (доказательство всех)

1-ый признак равенства треугольников: по двум сторонам и углу между ними (Теорема 3.1. Признак равенства треугольников по двум сторонам и углу между ними - Если две стороны и угло между ними одного треугольнгрка равны соотвественно двум сторонам и углу между ними другого треугольника, то такие треугольники равны )

Доказательство:

Пусть у треугольников АВС и А 1 В 1 С 1 угол А равен углу А 1 , АВ равно А 1 В 1, АС равно А 1 С 1 , докажем, что треугольники равны.

Так как А 1 В 1 равно А 1 В 2 , то вершина В 2 совпадет с В 1. Так как угол В 1 А 1 С 1 равен углу В 2 А 1 С 2, то луч А 1 С 2 совпадет с А 1 С 1 . Так как А 1 С 1 равен А 1 С 2 , то С 2 совпадет с С 1. Значит треугольник А 1 В 1 С 1 совпадает стреугольниом А 1 В 2 С 2 , значит равен треугльнику АВС.

Теорема доказана.

2-ой признак равенства треугольников: по стороне и прилежим к ней углам (Теорема 3.2. - Признак равенства треугольников по стороне и прилежащим к ней углам - Если сторона и прилежащие у ней углы одного треугольника равны соотвественно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А 1 В 1 С 1 – два треугольника, у которых АВ равно А 1 В 1, угол А равен углу А 1 , и угол В равен углу В 1 . Докажем, что они равны.

Пусть А 1 В 2 С 2 – треугольник, равный АВС, с вершины В 2 на луче А 1 В 1 и вершины С 2 в той же полуплоскости относительно прямой А 1 В 1 , где лежит вершина С 1 .

Так как А 1 В 2 равно А 1 В 1 , то вершина В 2 совпадет с В 1. Так как угол В 1 А 1 С 2 равен углу В 1 А 1 С 1, и угол А1В1С2 равен углу А1В1С1, то луч А 1 С 2 совпадет с А 1 С 1 , а В 1 С 2 совпадет с В 1 С 1 . Отсюда следует, что вершина С 2 совпадет с С 1. Значит треугольник А 1 В 1 С 1 совпадает стреугольниом А 1 В 2 С 2 , значит равен треугльнику АВС.

Теорема доказана.

3-ий признак равенства треугольников: по трем сторонам (Теорема 3.6. - Признак равенства треугольников по трем сторонам - Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны)

Доказательство:

Пусть АВС и А 1 В 1 С 1 – два треугольника, у которых АВ равно А 1 В 1, АС равно А 1 С 1 , и ВС равно В 1 С 1 . Докажем, что они равны.

Допустим, треугольники не равны. Тогда у них угол А не равен углу А 1 , угол В не равен углу В 1, и угол С не равен углу С 1 . Иначе они были бы равны, по перовому признаку.

Пусть А 1 В 1 С 2 – треугольник, равный треугольнику АВС, у которого Свершина С 2 лежит в одной полуплоскости с вершиной С 1 относительно прямой А 1 В 1 .

Пусть D – середина отрезка С 1 С 2 . Треугольники А 1 С 1 С 2 и В 1 С 1 С 2 – равнобедренные с общим основанием С 1 С 2 . Поэтому их медианы А 1 D и В 1 D – являются высотами, значит прямые А 1 D и В 1 D – перпендикулярны прямой С 1 С 2. Прямые А 1 D и В 1 D не совпадают, так как точки А 1, В 1 , D не лежат на одной прямой, но через точку D прямой С 1 С 2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.

Международная научно-практическая конференция «Первые шаги в науку»

«Новые» признаки равенства треугольников

Математика

9б класс МБОУ «Брянский городской
лицей №2 имени »

Руководитель: учитель математики

Брянск 2013

1. Введение

2. Создание каталога базовых задач на построение с помощью циркуля и линейки

3. Сопоставление изученных признаков равенства треугольников и задач на построение треугольников. Отыскание нового метода доказательства признаков равенства треугольников

4. Доказательство новых признаков равенства треугольников

5. Обобщение полученных результатов

6. Применение новых признаков равенства треугольников при решении задач

7. Заключение

I. Введение

«Если две стороны и угол между ними одного треугольника…..». Заученные, как таблица умножения, признаки равенства треугольников. Сотни раз мы цитировали и применяли их при решении задач. Казалось бы, что может быть проще? Мы знаем об этом все!

Однако до сих пор остались вопросы, ответы на которые не дают нам покоя. Метод наложения, используемый для доказательства первого признака равенства, показался нам несколько искусственным. Не потому ли мы никогда не использовали его в решении задач? Почему так мало признаков равенства треугольников? В 8 классе строили треугольники по все тем же двум сторонам и углу между ними. Случайность? Но в математике нет случайных совпадений.

Возможно, обнаружив связь между решением задач на построение треугольников и признаками равенства, мы получим новый метод доказательства ПРТ. «Вооружившись» им мы сможем доказать другие признаки равенства треугольников. Мы уверены, что их гораздо больше, чем 3!

Чтобы убедиться в том, что ответы на эти вопросы волнуют не только нас, мы провели социологический опрос среди учащихся и учителей лицея (см. приложение 3).

Наши предположения подтвердились. Большинство учеников знают только 3 признака равенства треугольников. Метод наложения не пользуется большой популярностью. Задачи на построение также не кажутся интересной темой в геометрии. А этап исследования многие вообще считают лишним.

Таким образом, целью нашего исследования стало отыскание более понятного нам метода доказательства признаков равенства треугольников и новых признаков равенства треугольников.

Крайне важно было дополнить перечень простейших задач на построение, изученных в седьмом классе, другими элементарными построениями, которые мы проходили в курсе восьмого и девятого класса. Всего получилось 12 базовых построений (см. приложение 1). В ходе дальнейшего исследования мы будем неоднократно обращаться к этому перечню.

Нужно отметить, что все задачи мы решали по алгоритму: дано-построить-анализ-построение-доказать-доказательство-исследование. Для простых задач и задач, решение которых известно, этап анализа мы опускали.

Больше всего внимание уделялось последнему этапу – исследованию, именно он дал нам возможность отыскать новый метод доказательства.

Чертежи было решено выполнять в программе Paint, поэтому возникла необходимость заранее научиться работать в ней.

II. Создание каталога базовых задач на построение с помощью циркуля и линейки

Большая часть нашей работы заключается в решении задач на построение треугольников, поэтому на первом этапе работы мы составили список простейших построений. Это позволило сделать решение задач более коротким и красивым.

Все задачи мы решали по плану: дано – построить – построение – доказать – доказательство - исследование. Особое значение уделялось этапу исследования.

Базовые задачи на построение решались в различных разделах геометрии 7 и 8 класса. Мы их собрали в единый каталог.

1) Построение отрезка, равного данному;

2) Построение угла, равного данному;

3) Построение биссектрисы угла;

4) Построение середины отрезка;

5) Построение перпендикуляра через точку лежащую/не лежащую на данной прямой;

6) Построение прямой, параллельной данной;

7) Построение третьего угла, по двум известным;

8) Построение касательной к окружности, через точку не лежащую на данной окружности;

9) Деление отрезка в заданном отношении;

10) Деление отрезка в заданном отношении отрезков;

11) Деление отрезка на n равных отрезков.

Подробное решение этих задач представлено в приложении 1.

III. Сопоставление изученных признаков равенства треугольников и задач на построение треугольников. Отыскание нового метода доказательства признаков равенства треугольников.

Для поиска нового метода доказательства ПРТ мы сопоставили условие первого ПРТ с условием одной из задач на построение. Они оказались одинаковыми и мы предположили, что это не случайно и решение задачи на построение приведет нас к нахождению нового метода доказательства.

Построение треугольника по двум сторонам и углу между ними

https://pandia.ru/text/78/103/images/image003_23.jpg" width="667" height="82 id=">

Вывод: В силу единственности построения, все треугольники, у которых две стороны и угол между ними соответственно равны заданным элементам, равны.

Построение треугольника по стороне и двум прилежащим к ней углам

https://pandia.ru/text/78/103/images/image007_16.jpg" width="629" height="497">

ПРТ, доказанный в решении этой задачи, звучит так: «Если две стороны и медиана, проведенная к третьей, одного треугольника соответственно равны двум сторонам и медиане, проведенной к третьей, другого треугольника, то эти треугольники равны.»

Но не все задачи решались так просто. Например, задача на построение по двум сторонам и углу, прилежащему к одной из сторон, нового признака равенства не дала. Однако стоило нам немного изменить условие, и был получен еще один ПРТ. Решение этой задачи было особенно важно для нас, потому что ее условие мы придумывали сами.

https://pandia.ru/text/78/103/images/image010_3.png" width="630" height="340 id=">

После решения этой задачи, мы обратились к интернет - ресурсам и узнали, что это утверждение иногда называют 4 признаком равенства треугольников. Его доказательство приведено профессором МГУ, на сайте «Математика в школе», создателем которого является факультет педагогического образования МГУ имени. Это доказательство принципиально отличается от предложенного нами . Полное доказательство вы найдете http://www. school. *****///.

V. Обобщение полученных результатов

Итак, мы нашли новый метод доказательства ПРТ. Если по трем элементам треугольник построен единственный, то соответственное равенство этих элементов у двух треугольников означает, что треугольники равны.

Этот метод позволил создать новые признаки равенства треугольников:

4 ПРТ. По двум сторонам и углу, противолежащему к большей из них.

5 ПРТ. По стороне, противолежащему углу и высоте, проведенной из вершины данного угла.

6 ПРТ. По двум углам и высоте, проведенной из вершины третьего.

7 ПРТ. По двум углам и периметру (два варианта решения).

8 ПРТ. По двум сторонам и медиане, проведенной к третьей.

9 ПРТ. По трем медианам.

10 ПРТ. По двум углам и стороне, прилежащей к одному из них.

Подробное доказательство каждого из них представлено в приложении 3.

VI. Применение новых признаков равенства треугольников при решении задач

Возможно, кого-то мы еще не до конца убедили в важности нашего исследования. Конечно, любое исследование важно само по себе, ведь это изучение проблемы, поиск ответов на вопросы… Но наша работа имеет более определенное практическое значение, нежели просто интерес. Ведь множество задач по геометрии требует знания признаков равенства треугольников, а чем больше признаков, тем разнообразнее решения.

В учебнике «Геометрия 7-9» Атанасяна приведена задача повышенной сложности № 000*

Приведем ее решение двумя способами.

1 способ. «Удвоение медианы»

Доказательство:

MD=AM, DÎпрямой АМ

M1D1=A1M1, D1Îпрямой А1M1

2) AM=MD и BM=MC => ABCD-параллелограмм (по признаку)

3) A1M1=M1D1 и B1M1=M1C1 => A1B1C1D1-параллелограмм (по признаку)

4) DАВС=DА1В1С1, т. к.: АВ=А1В1(по условию)

AD=2AM=2A1M1=A1D1

B1D1=A1C1=A1C1=B1D1 (по свойству сторон параллелограмма)

5) Из равенства DАВD и DА1В1D1 следует равенство углов ÐАВD=ÐА1В1D1 => ÐВАС=180°-ÐАВD=180°-ÐА1В1D1 =ÐВ1А1С1

6) Рассмотрим DАВС и DА1В1С1:

АВ=А1В1; АС=А1С1, по условию; ÐА=ÐА1, по доказанному =>DА1В1С1=DА1В1С1 по двум сторонам и углу между ними.

2 способ. С применением 7ПРТ

Доказательство:

По условию АВ=А1В1; АС=А1С1; АМ=А1М1. Следовательно, DАВС=DА1В1С1 по двум сторонам и медиане, проведенной к третьей (7ПРТ).

Очевидно, что 2 способ намного короче.

VII. Заключение

Подведем итоги: мы нашли метод доказательства ПРТ, отличный от метода наложения, доказали «новые» признаки равенства треугольников и решили задачи с применение этих признаков.

Также мы убедились, что в самой простой, на первый взгляд, теме может скрываться множество тайн. А задачи на построение треугольников, казавшиеся нам скучными и ненужными, стали намного интереснее, и в их актуальности больше нет никаких сомнений.

Мы нашли «инструмент», с помощью которого легко искать новые признаки равенства треугольников. Теперь, в случае необходимости, мы можем проверить, является ли набор из трех элементов признаком равенства треугольников или нет. И, несомненно, огромное удовольствие доставлял сам процесс поиска сначала нового метода доказательства ПРТ, а впоследствии открытия новых признаков равенства треугольников. Попутно мы освоили программу Paint.

Мы не можем утверждать, что были первыми, кто занимается этой проблемой. И, скорее всего, данный метод доказательства ПРТ был известен до нас. Возможно, мы что-то упустили и в «нашем» методе не все гладко. Поэтому, мы хотим представить нашу работу широкому кругу читателей. Их мнение для нас очень важно. Для этого исследование мы разместили на сайте «Виртуальный музей Лицея №2»(http://www. *****/) и завязали переписку с профессором. Мы упросили его дать отзыв о нашей работе .

Учащиеся и педагоги могут воспользоваться результатами нашего исследования при подготовке к урокам и экзаменам. Например, использовать расширенный список базовых задач на построение, открыть для себя новый метод доказательства ПРТ, самостоятельно доказывать признаки равенства треугольников, а также воспользоваться уже доказанными нами признаками. Очень важно, что появилась возможность сократить время на решение задач по геометрии на контрольных и экзаменах.

Список литературы

1. и др. Геометрия: Учебник для 7-9 классов общеобразовательных учреждений. 8-е изд.-М.: Просвещение, АО «Московсий учебник», 2010.

2. «Это должен знать каждый матшкольник». 5-е издание, стереотип.-М.:МЦНМО, 2008-56.

3. «Четвертый признак равенства треугольников», «Математика в школе» http://www. school. *****///.

4. Сайт «Виртуальный музей Лицея №2»(http://www. *****/)

Приложение 1

Простейшие задачи на построение

Базовые построения с помощью циркуля и линейки

Исследование:

построение единственное в силу единственности каждого построения.

Примечание: PQ -серединный перпендикуляр к отрезку АВ

Приложение 2

Задачи на построение треугольников

4. Построить треугольник по двум углам и стороне прилежащей к одному из данных углов.

5. Построить треугольник по стороне, противолежащему углу и высоте, проведенной из данного угла

(решим задачу методом геометрических мест точек)

6. Построить треугольник по двум углам и высоте, проведенной из третьего.

(решим задачу методом подобия)

7. Построение треугольника по двум сторонам и углу, прилежащему к одной из этих сторон

Признаки равенства треугольников

Равными называют треугольники, у которых соответствующие стороны равны.

Теорема (первый признак равенства треугольников).
Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.

Теорема (второй признак равенства треугольников).
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Теорема (третий признак равенства треугольников).
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Признаки подобия треугольников

Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны: , , где - коэффициент подобия.

I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.

II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

>>Геометрия: Третий признак равенства треугольников. Полные уроки

ТЕМА УРОКА: Третий признак равенства треугольников.

Цели урока:

  • Образовательные – повторение, обобщение и проверка знаний по теме: “Признаки равенства треугольников”; выработка основных навыков.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока:

  • Формировать навыки в построении треугольников с помощью масштабной линейки, транспортира и чертежного треугольника.
  • Проверить умение учащихся решать задачи.

План урока:

  1. Из истории математики.
  2. Признаки равенства треугольников.
  3. Актуализация опорных знаний.
  4. Прямоугольные треугольники.

Из истории математики.
Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса.

Термин гипотенуза происходит от греческого hypoteinsa, означающего тянущаяся под чем либо, стягивающая. Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок.

Термин катет происходит от греческого слова «катетос », которое означало отвес, перпендикуляр. В средние века словом катет означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет начинает применяться в современном смысле и широко распространяется, начиная с XVIII века.

Евклид употребляет выражения:

«стороны, заключающие прямой угол», - для катетов;

«сторона, стягивающая прямой угол», - для гипотенузы.

Для начала нам необходимо освежить в памяти предыдущие признаки равенства треугольников. И так начнем с первого.

1-ый признак равенства треугольников.

Предмети > Математика > Математика 7 класс

Геометрия как отдельный предмет начинается у школьников в 7 классе. До этого времени они касаются геометрических задач достаточно лёгкой формы и в основном того, что можно рассмотреть на наглядных примерах: площади комнаты, земельного участка, длины и высоты стен в помещениях, плоских предметов и прочее. В нача ле изучения непосредственно геометрии появляются первые сложности, такие, например, как понятие прямой, так как потрогать руками эту прямую нет возможности. Что касается треугольников -это самый простой вид многоугольников, содержащий всего три угла и три стороны.

Вконтакте

Одноклассники

Тема треугольников одна из основных важных и больших тем школьной программы в геометрии 7−9 классов. Усвоив её хорошо, возможно решать очень сложные задачи. При этом можно изначально рассматривать совершенно другую геометрическую фигуру, а затем разделить её для удобства на подходящие треугольные части.

Для работы над доказательством равенства ∆ ABC и ∆A1B1C1 нужно хорошо усвоить признаки равенства фигур и уметь ими пользоваться. Перед изучением признаков необходимо научиться определять равенство сторон и углов простейших многоугольников.

Чтобы доказать, что углы треугольников равны, помогут следующие варианты:

  1. ∠ α = ∠ β исходя из построения фигур.
  2. Дано в условии задания.
  3. При двух параллельных прямых и наличии секущей могут образоваться как внутренние накрест лежащие, так и соответственные ∠ α = ∠ β.
  4. Прибавляя (вычитая) к (из) ∠ α = ∠ β равные углы.
  5. Всегда сходны вертикальные ∠ α и ∠ β
  6. Общий ∠ α, одновременно принадлежащий ∆ MNK и ∆ MNH .
  7. Биссектриса делит ∠ α на два равнозначных.
  8. Смежный с 90° - угол, равный исходному.
  9. Смежные равным углам равны.
  10. Высота образует два смежных 90° .
  11. В равнобедренном ∆ MNK при основании ∠ α = ∠ β.
  12. В равных ∆ MNK и ∆ SDH соответствующие ∠ α = ∠ β.
  13. Доказанное ранее равенство ∆ MNK и ∆ SDH .

Это интересно: Как найти периметр треугольника.

3 признака равенства треугольников

Доказательство равенства ∆ ABC и ∆A1B1C1 очень удобно производить, опираясь на основные признаки тождественности этих простейших многоугольников. Существует три таких признака. Они являются очень важными при решении многих геометрических задач. Стоит рассмотреть каждый.

Перечисленные выше признаки являются теоремами и доказываются методом наложения одной фигуры на другую, соединения вершин соответственных углов и начала лучей. Доказательства равенства треугольников в 7 классе описаны в очень доступной форме, но сложны в изучении школьниками на практике, так как содержат большое количество элементов, обозначенных заглавными латинскими буквами. Это не совсем привычно для многих учеников на момент начала изучения предмета. Подростки путаются в названиях сторон, лучей, углов.

Чуть позже появляется ещё одна важная тема «Подобие треугольников». Само определение «подобие» в геометрии означает схожесть формы при различии размеров. Для примера можно взять два квадрата, первый со стороной 4 см, а второй 10 см. Эти виды четырёхугольников будут похожи и, одновременно, иметь отличие, поскольку второй будет больше, причём каждая сторона увеличена в одинаковое количество раз.

В рассмотрении темы подобия также приводятся 3 признака:

  • Первый — о двух соответственно равных углах двух рассматриваемых треугольных фигур.
  • Второй — об угле и образующих его сторонах ∆ MNK , которые равны соответственным элементам ∆ SDH .
  • Третий — указывает на пропорциональность всех соответственных сторон двух нужных фигур.

Как же доказать, что треугольники подобны? Достаточно воспользоваться одним из выше перечисленных признаков и грамотно описать весь процесс доказательства задания. Тема подобия ∆ MNK и ∆ SDH проще воспринимается школьниками исходя из того, что к моменту её изучения ученики уже свободно пользуются обозначениями элементов в геометрических построениях, не путаются в огромном количестве названий и умеют читать чертежи.

Завершая прохождение обширной темы треугольных геометрических фигур, учащиеся уже в совершенстве должны знать, как доказать равенство ∆ MNK = ∆ SDH по двум сторонам, установить равны два треугольника или нет. Учитывая, что многоугольник, имеющий ровно три угла - это одна из важнейших геометрических фигур, к усвоению материала следует подойти серьёзно, уделяя особое внимание даже мелким фактам теории.