Кто установил движение солнечной системы относительно звезд. Движение звезд и солнечной системы

СОЛНЕЧНАЯ СИСТЕМА НЕ ПЛОСКИЙ «ДИСК»

Земля не вращается вокруг Солнца, как нас учили в школе.
Для того чтобы разобраться - что здесь к чему, необходимо посмотреть на Землю с Солнца или Луны.
А если Вы получите информацию: Солнце вращается вокруг Земли!?
У Вас произойдет внутренняя эмоциональная драма. Вы откажетесь это воспринимать.
Если Вы захотите знать точное положение вещей Вам, все – таки необходимо оказаться на Солнце. В настоящий момент это нереально.
Даже космические аппараты не помогут Вам разобраться - что вращается вокруг чего. Нет в Нашей Вселенной точки – какой – либо основы, по которой можно было бы судить о движении чего-то.
Исходя из этого, мы приходим к пониманию: Почему планеты Солнечной системы на самом деле не вращаются вокруг Солнца, как учили в школе.
Скорее мы приходим к пониманию того, что планеты увлекаются Солнцем и движутся по спирали во Вселенной.
Предлагается объяснение: как, кроме вращения вокруг своей оси и вращения, как будто вокруг Солнца, Земля следует за движущимся Солнцем по галактике Млечный Путь, - по непрерывной спирали, а не плоской эллиптической плоскости.
Мы переходим от представления Солнечной системы - от плоскостной модели к объемной картине.
Вы можете верить или не верить, но нет эмпирических доказательств того, что Земля действительно вращается вокруг Солнца!
Многих из нас уверяли в том, как Солнечная система работает при просмотре её физической модели, в которой Солнце по центру.
Движение планет происходит вокруг Солнца по простой круговой орбите без надлежащего учета движения Солнца по Нашей Галактике – Млечный Путь (приблизительно 450 000 миль в час).
Солнце и галактика Млечный Путь движутся в пространстве космоса.
Земля движется по спирали на невообразимое расстояние в пространстве, в течение года.
Как «быстро» Земля движется, зависит от точки отсчета, которую Вы используете.
Используете что-то "стационарное" или "фон", хотя все объекты во Вселенной находятся в движении.
Земля вращается вокруг собственной оси - 0-1040 миль / час (зависит от широты где находится наблюдатель).Земля вращается вокруг Солнца в прибл. 66 629 миль / час
Солнце вращается вокруг галактического центра - прибл. 447 000 миль / час
Учитывая скорость движения Солнца, мы узнаём, что Земля путешествует по Нашей Галактике - 3918402000 миль за год! (Поскольку она, в дополнение, вращается и вокруг Солнца).
Общую скорость Земли - движение в пространстве трудно даже приблизительно вычислить. Невозможно установить всю совокупность перемещений.
Перемещение космического микроволнового фона (реликтового) излучения, относительно движения Земли прибл. 1342000 миль / час
Или 11763972000 миль в 1 год! (лишь 0,2% скорости света!).
Старая модель Солнечной системы показывает стационарную картину Бытия того, - «откуда было начало».
По прошествии года это «время» - есть прошлое.
Вы на самом деле, более 11 миллиардов миль от того «места», где Вы были год назад!
Необходимо понять, что движение Земли в нашей Солнечной системе выглядит иначе.
Истинное движение Земли вокруг Солнца происходит по спирали. Кроме вращения вокруг своей оси и вокруг Солнца, Земля следует «за движением» Солнца по галактике Млечный Путь.

Такое знание приносит понимание большей реальности Солнечной системы - с более логичным восприятием.
Наши учёные постоянно «подбрасывают» пытливому человечеству «новые» свидетельства о том, какова была Солнечная система прежде.
Любопытна череда фактов, по которым «МИЛЛИАРД ЛЕТ НАЗАД» - Луна, якобы, находилась от Земли на расстоянии 30 тыс. километров.
При этом Земля вращалась вокруг собственной оси в шесть раз быстрее, т. е. в Земных сутках было лишь «четыре часа».
Наш привычный «ГОД» (год на Земле «сегодня») состоит из 365 «суток», при количестве «часов» в «сутках» – равному двадцати четырем. Таким образом, получаем: 24 х 365 = 8760 «часов».
Для ускоренного в шесть раз вращения Земли вокруг собственной оси получим:
8760: 4 = 2190 «суток».
А каково количество «суток», необходимых для совершения Землей одного оборота вокруг Солнца. Не факт, что – 799350.
«Год» Земли, определенный одним оборотом её вокруг Солнца, при «суточном её вращении в четыре часа» остается не исследованным.
По какому праву, ученые оперируют «фактами», что вышеупомянутое событие имело место - «МИЛЛИАРД ЛЕТ НАЗАД».
По какому праву, ученые распространяют своё «человеческое время на всю Вселенную, и утверждают, что вышеупомянутое событие имело место - «МИЛЛИАРД ЛЕТ НАЗАД». КАКИХ ЛЕТ?
Что имеем мы «сегодня»:
«Земля вращается вокруг собственной оси - 0-1040 миль / "час". Земля вращается вокруг Солнца в прибл. 66 629 миль / "час". Солнце вращается вокруг галактического центра - прибл. 447 000 миль / "час".
Учитывая скорость движения Солнца, мы узнаём, что Земля путешествует по Нашей Галактике - 3918402000 миль за "наш человеческий год"! (Поскольку она, в дополнение, вращается и вокруг Солнца)».
Общую скорость Земли - движение в пространстве трудно даже приблизительно вычислить. Невозможно установить всю совокупность перемещений.
Приведенные параметры Солнечной системы показывают «сиюминутную» картину Бытия - то, что наблюдаем мы «сегодня».
По прошествии каждого «года» это «время» - есть «прошлое».
Никакие ухищрения не помогут Вам разобраться - что вращается вокруг чего. Нет в Нашей Вселенной точки – какой – либо основы, по которой можно было бы судить о характере движения и длительности существования космических объектов,… тем более в масштабах нашего «человеческого времени».
В космосе все движется и невозможно не только понять, что движется, но и что движется вокруг чего.
Попытки к осознанию таких представлений о Нашем Мире, без "человеческого времени",
пополняют наше энергоинформационное наполнение, - дают понимание, в сознании человека, о динамике энергоинформационного наполнения, планеты Земля(о прибавке её к другими объектам - к энергоинформационному наполнению Нашей Вселенной).
Углубляется наше понимание, в осознании того, что мы являемся в, какой то мере, свидетелями реального преображения Нашего Мира.

Вы сидите, стоите или лежите, читая эту статью, и не ощущаете, что Земля вращается вокруг своей оси с бешеной скоростью - примерно 1 700 км/ч на экваторе. Однако скорость вращения не кажется такой уж быстрой, если перевести ее в км/с. Получится 0,5 км/с - едва заметная вспышка на радаре, в сравнении с другими окружающими нас скоростями.

Так же, как и другие планеты Солнечной системы, Земля вращается вокруг Солнца. И чтобы удерживаться на своей орбите, она двигается со скоростью 30 км/с. Венера и Меркурий, находящиеся ближе к Солнцу, двигаются быстрее, Марс, орбита которого проходит за орбитой Земли, движется намного медленнее нее.

Но даже Солнце не стоит на одном месте. Наша галактика Млечный Путь - огромная, массивная и тоже подвижная! Все звезды, планеты, газовые облака, частицы пыли, черные дыры, темная материя - все это движется относительно общего центра масс.

По предположениям ученых, Солнце находится на расстоянии 25 000 световых лет от центра нашей галактики и двигается по эллиптической орбите, совершая полный оборот каждые 220–250 млн лет. Получается, что скорость Солнца - около 200–220 км/с, что в сотни раз выше скорости движения Земли вокруг оси и в десятки раз выше скорости ее движения вокруг Солнца. Вот так выглядит движение нашей Солнечной системы.

Стационарна ли галактика? Снова нет. Гигантские космические объекты обладают большой массой, а следовательно, создают сильные гравитационные поля. Дайте Вселенной немного времени (а оно у нас было - примерно 13,8 миллиардов лет), и все начнет двигаться в направлении наибольшего притяжения. Вот почему Вселенная не однородна, а представляет собой галактики и группы галактик.

Что это означает для нас?

Это означает, что Млечный Путь тянут к себе другие галактики и группы галактик, расположенные поблизости. Это означает, что доминируют в этом процессе массивные объекты. И это означает, что не только наша галактика, но и все окружающие испытывают влияние этих «тягачей». Мы все ближе подходим к пониманию того, что происходит с нами в космическом пространстве, но нам все еще не хватает фактов, например:

  • каковы были начальные условия, при которых зародилась Вселенная;
  • как различные массы в галактике двигаются и изменяются со временем;
  • как образовывался Млечный Путь и окружающие галактики и скопления;
  • и как это происходит сейчас.

Однако есть трюк, который поможет нам разобраться.

Вселенную наполняет реликтовое излучение с температурой 2,725 К, которое сохранилось со времен Большого Взрыва. Кое-где есть крошечные отклонения - около 100 мкК, но общий температурный фон постоянен.

Это происходит потому, что Вселенная образовалась в результате Большого Взрыва 13,8 миллиардов лет назад и до сих пор расширяется и охлаждается.

Через 380 000 лет после Большого Взрыва Вселенная охладилась до такой температуры, что стало возможным образование атомов водорода. До этого фотоны постоянно взаимодействовали с остальными частицами плазмы: сталкивались с ними и обменивались энергией. По мере остывания Вселенной заряженных частиц стало меньше, а пространства между ними - больше. Фотоны смогли свободно перемещаться в пространстве. Реликтовое излучение - это фотоны, которые были излучены плазмой в сторону будущего расположения Земли, но избежали рассеяния, так как рекомбинация уже началась. Они достигают Землю сквозь пространство Вселенной, которая продолжает расширяться.

Вы сами можете «увидеть» это излучение. Помехи, которые возникают на пустом канале телевизора, если вы используете простую антенну, похожую на заячьи уши, на 1% вызваны реликтовым излучением.

И все-таки температура реликтового фона не одинакова во всех направлениях. По результатам исследований миссии Planck, температура несколько различается в противоположных полушариях небесной сферы: она немного выше на участках неба южнее эклиптики - около 2,728 K, и ниже в другой половине - около 2,722 K.


Карта микроволнового фона, сделанная при помощи телескопа Planck.

Эта разница почти в 100 раз больше остальных наблюдаемых колебаний температуры реликтового фона, и это вводит в заблуждение. Почему так происходит? Ответ очевиден - эта разница происходит не из-за флуктуаций реликтового излучения, она появляется, потому что есть движение!

Когда вы приближаетесь к источнику света или он приближается к вам, спектральные линии в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда отдаляетесь от него или он от вас - спектральные линии смещаются в сторону длинных волн (красное смещение).

Реликтовое излучение не может быть более или менее энергичным, значит, мы движемся сквозь пространство. Эффект Доплера помогает определить, что наша Солнечная система движется относительно реликтового излучения со скоростью 368 ± 2 км/с, а местная группа галактик, включающая Млечный Путь, галактику Андромеды и галактику Треугольника, движется со скоростью 627 ± 22 км/с относительно реликтового излучения. Это так называемые пекулярные скорости галактик, которые составляют несколько сотен км/с. Помимо них существуют еще космологические скорости, обусловленные расширением Вселенной и рассчитываемые по закону Хаббла.

Благодаря остаточному излучению от Большого Взрыва мы можем наблюдать, что во Вселенной постоянно все движется и изменяется. И наша галактика - лишь часть этого процесса.

8:36 12/02/2018

1 👁 1 335

Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение .

Ролик, вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости . Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

Проверяем ученых

Астрономия говорит, что угол между и Галактики составляет 63°.

Но сама по себе цифра скучна, да и сейчас, когда на обочине науки устраивают шабаш адепты плоской , хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики – это , но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть – это . Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). “Туловище” Лебедя примерно совпадает с галактической плоскостью.

Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика – это сечение небесной сферой плоскости орбиты барицентра (центра массы) Земля- . По эклиптике в среднем движется , но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать , и .

В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

Гифка

Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.

Но этот факт, увы, “на пальцах” не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

Разбегающиеся звезды

Как вообще можно определить, куда движется Солнечная система относительно близких ? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

Перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.

Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной – произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его данным хвост есть.

Позитив напоследок

Завершая разговор, стоит отметить очень позитивную историю. Создавший в 2012 году исходное видео DJSadhu первоначально продвигал что-то ненаучное. Но, благодаря вирусному распространению клипа, он пообщался с настоящими астрономами (астрофизик Rhys Tailor очень позитивно отзывается о диалоге) и, спустя три года, сделал новый, гораздо более соответствующий реальности ролик без антинаучных построений.

Главная > Документ

Движение звезд и солнечной системы

Георгий А. Хохлов

Россия, Санкт-Петербург

Март 14, 2009

Ещё итальянский философ Дж. Бруно (1548-1600), отож-дествляя физическую природу Солнца и звёзд, утверждал, что все они движутся в беспре-дельном пространстве. Вслед-ствие этого движения видимые положения звезд на небе посте-пенно изменяются. Однако из-за колоссального удаления звезд эти изменения настолько малы, что даже у наиболее близких звезд могут быть обна-ружены невооруженным глазом лишь через тысячи и десятки тысяч лет. Но, как известно, такими возможностями ни один человек не обладает. Поэтому единственный способ обнару-жения смещения звезд на не-бе - это сравнение их видимых положений, разделенных боль-шими интервалами времени. Впервые такое сравнение положений ярких звезд провел в 1718 г. английский астроном Э. Галлей по двум звездным каталогам (спискам звёзд). Первый каталог был составлен еще во второй половине II в. до н. э. выдающимся древнегреческим астрономом Гиппархом Родосским (этот каталог содержится в знаме-нитом «Большом сочинении» александрийского астронома К- Птолемея, созданном им около 140 г. н. э. и более известном в латинском пере-воде под названием «Альма-гест») . Второй каталог был составлен в 1676-1710 гг. директором Гринвичской обсер-ватории Дж. Флемстидом (1646-1719). Галлей установил, что почти за 2000 лет, разделяющих оба каталога, звезды Сириус (а Большого Пса) и Процион (а Малого Пса) сместились примерно на 0,7°, а Арктур (а Волопаса) более чем на 1°. Такие большие смещения, пре-вышающие видимый диаметр Луны (0,5°), не оставляли сомнения в пространственном движении звезд. В настоящее время соб-ственные движения звезд изу-чаются по фотографиям звезд-ного неба, полученным с ин-тервалом времени в несколько десятков лет, начало и конец которого именуются эпохами наблюдений. Полученные не-гативы совмещают, т.е. накладывают друг на друга, и тогда на них сразу выявляются сместившиеся звезды. Эти сме-щения измеряют с точностью до 1 мкм и по масштабу негатива переводят в угловые секунды. Хотя наблюдения проводят с Земли, но в конечном итоге всегда вычисляют простран-ственную скорость звёзд отно-сительно Солнца. Пусть в не-который день года t1 (первая эпоха наблюдений) звезда N 1 видна на небе в точке n 1 . Она находится от Солнца на расстоянии r и движется от-носительно него в пространстве со скоростью V (см. рисунок). Проекция пространственной скорости V на луч зрения r представляет собой лучевую скорость V r звезды, а перпен-дикулярная к ней проекция Vt называется тангенциальной скоростью. Через несколько де-сятков лет, ко второй эпохе наблюдений t 2 , звезда пере-местится в пространстве в точку N 2 и будет видна на небе в точке n 2 , т. е. за разность эпох (t 2 -t 1 ) звезда сместится по небу на дугу n 1 n 2 , видимую с Земли под малым углом σ, который из-меряется на совмещённых не-гативах. Из-за колоссального удаления звёзд точно такое же смещение σ будет и относи-тельно Солнца. Видимое смещение звезды на небе за 1 год

Называется собственным дви-жением звезды и выражается в угловых секундах в год ("/год). (В программах-планетариях, астрономических календа-рях и справочниках указыва-ются только угловые секунды дуги, а единица знаменателя подразу-мевается, о чём нужно твёрдо помнить.) За разность эпох наблю-дений (t 2 -t 1 ) звезда в направ-лении тангенциальной скорости пройдёт в пространстве путь

s = V t (t 2 -t 1 ) = r tgσ. (2)

Из-за малости угла σ , выра-жаемого в угловых секундах,

Тогда с учётом формулы (1)

Но расстояния r до звёзд выражают в парсеках (пк), a µ- в угловых секундах в год ("/год). Нам необходимо знать V t , в километрах в секунду (км/с). Помня, что 1 пк = = 206265 а. е. =206 265 1,49610 8 км, а 1 год содер-жит 3,15610 7 с, найдём

Vt = 2062651,49610 7 км r

Vt = 4.74 µ r км/с (3)

Причём в этой формуле r выражено в парсеках. Но расстояния r до звёзд вычисляются по их измеренным годичным параллаксам π (Годичный параллакс - угол, под которым виден средний радиус Земной орбиты из центра масс звезды, если направление на звезду перпендикулярно радиусу земной орбиты), по простой формуле
Поэтому тангенциальная скорость звезды в километрах в секунду равна

Где µ и π - выражены в секундах дуги. Лучевая скорость звёзд оп-ределяется по смещению ли-ний в их спектрах. Найденная по спектрограммам лучевая скорость звёзд являет-ся скоростью относительно Земли и включает в себя её орбитальную скорость, направ-ление которой из-за движения вокруг Солнца непрерывно ме-няется (за полгода - на 180°). Из-за этого на протяже-нии года лучевая скорость звёзд испытывает периодичес-кие изменения в определённых пределах (это тоже служит одним из доказательств об-ращения Земли вокруг Солн-ца). Поэтому в найденные по спектрограммам лучевые ско-рости вносят поправки, учиты-вающие значение и направле-ние скорости Земли в дни фотографирования спектров, и по ним вычисляют лучевую скорость звезды V r относитель-но Солнца. Тогда простран-ственная скорость звезды, называемая ещё гелиоцентри-ческой скоростью

(5),

Направление которой опреде-ляется углом θ относительно направления на Солнце, так что

(6)

При удалении звезды от Солнца её лучевая скорость V r > 0, а при приближении V r < 0. Новой эпохой в определении собственного движения звёзд стал полёт спутника Hipparcos (HI gh P recision PAR arallax CO llecting S atellite), который за 37 месяцев работы провёл миллионы измерений звёзд. В результате работы получилось два звёздных каталога. Каталог HIPPARCOS содержит измеренные с ошибкой порядка одной тысячной угловой секунды координаты, собственные движения и параллаксы для 118 218 звёзд. Такая точность для звёзд достигнута в астрометрии впервые. Во второй каталог - TYCHO приводятся несколько менее точные сведения для 1 058 332 звёзд. К настоящему времени соб-ственные движения определены более чем у 1 млн. звёзд, причём более 20 000 измерений выполнено астрономами Пул-ковской и Ташкентской об-серваторий. Лучевые скорости известны примерно у 40 000 звёзд. Собственные движения по-давляющего большинства звёзд исчисляются десятыми и соты-ми долями угловой секунды и лишь у очень близких звёзд превосходят 1". Так, самое высокое значение собственного движения имеет «летящая» Звезда Барнарда - 10.358″. Вторую и третью строчку в рейтинге самых быстро перемещающихся звёзд на небесной сфере занимают Звезда Каптейна (8.670″/год) и Лакайль 9352 (6.896″/год). В виде примера найдём расстояние, параллакс, собственное движение, компоненты скорости и блеск Сириуса в эпоху его наибольшего сближения с Солнцем. Необходимые для этого сведения возьмём из «Атласа звёздного неба 2000.0»: в нашу эпоху у Сириуса блеск -1,46 m , годичный параллакс 0,379", собствен-ное движение 1,34" и лучевая скорость V r = -8 км/с. Прежде всего найдём тангенциальную скорость Сириуса

Его пространственную скорость

И его направление через

Откуда θ = -64,5º, что говорит о сближении Сириуса с Солнцем (поло-жительный знак угла означал бы удаление). Тогда абсолютные значения cos θ = 0,431 и sin θ =sin 64,5°=0,902. Теперь построим чертёж (см. рисунок), показывающий направление простран-ственного движения звезды (S), и на это направление опустим из изображения Солнца перпендикуляр, который укажет положение звезды (S 1) и ее расстояние (r 1) от Солнца в эпоху наибольшего сближения. К этой эпохе звезда пройдёт в пространстве путь и т. к. её нынешнее расстояние то этот путь она пройдёт за Через этот длинный промежуток времени Сириус пройдёт мимо Солнца на расстоянии его годичный параллакс будет
лучевая скорость Vr, =0 (направление пространственной скорости V перпенди-кулярно лучу зрения r 1), тангенциальная скорость V t ,= V =18.6 км/с и собствен-ное движение
Поскольку блеск обратно пропорционален квадрату расстояния, то блеск Сириуса возрастёт в и, согласно формуле Погсона будет равен . Такие задачи на сближение с Солнцем или на удаление от него можно решать для всех звёзд с известными исходными данными, которые можно взять из звёздных каталогов или из справочных пособий. Исследуя движения близких звёзд относительно солнца, мы можем найти звёзды, которые могли испытать в прошлом или, возможно, испытают в будущем сближение с Солнечной системой в пределах внешнего облака Оорта, то есть с минимальным расстоянием r min от Солнца менее 206265 астрономических единиц (1 парсека). Данные о таких звёздах представлены в таблице ниже. В таблице приведены номер звезды по каталогу Глизе и Ярайса, название звезды, её спектральный тип, масса, минимальное расстояние между Солнцем и звездой, момент времени сближения по отношению к современной эпохе. Заметим, что из семи приведённых звёзд шесть испытают сближение с Солнечной системой в будущем и лишь одна звезда - в прошлом (около 500000 лет тому назад). Интересно, что четыре сближения произойдут в течение ближайших 50000 лет. Эти сближения могут вызвать обильные кометные ливни из внешней части облака Оорта в пределы планетной системы, что, в свою очередь, увеличивает вероятность столкновения с кометным ядром. Таким образом, кометные ливни могут приводить к экологическим катастрофам и массовым вымираниям организмов.

Звёзды, сближающиеся с Солнцем

Название

Спектральный

t min , годы

Изучив собственные движе-ния звёзд какого-либо созвез-дия, можно представить себе его вид в далёком прошлом и будущем. В частности, изменение вида созвездия Большой Медведицы показано на рисун-ке слева: а – 100 тыс. лет назад, б – наши дни, в – через 100 тыс. лет. Изучение собственных дви-жений звёзд помогло обнару-жить движение Солнечной системы в пространстве. Впер-вые эту задачу решил В. Гершель в 1783 г., использовав собственные движения всего лишь 7 звёзд, а несколько позже-13 звёзд. Он нашёл, что Солнце вместе со всем множеством тел, обращающих-ся вокруг него, движется в направлении к звезде λ Гер-кулеса (4,5 m). Точку неба, в направлении которой проис-ходит это движение, Гершель назвал солнечным апексом (от лат. apex - вершина). В дальнейшем астрономы неоднократно определяли по-ложение солнечного апекса по большому числу звёзд с из-вестными собственными дви-жениями. При этом они осно-вывались на том, что если бы Солнечная система покоилась в пространстве, то собственные движения звёзд во всех облас-тях неба имели бы самые раз-личные направления. В дейст-вительности же в области со-звездий Лиры и Геркулеса собственные движения боль-шинства звёзд направлены так, что создается впечатление, буд-то звезды разбегаются в раз-ные стороны. В диаметрально противоположной области неба, в созвездиях Большого Пса, Зайца и Голубя собственные движения большинства звёзд направлены примерно друг к другу, т. е. звёзды как бы сближаются между собой. Эти явления объяснимы лишь движением Солнечной системы в пространстве в направлении к созвездиям Лиры и Геркулеса. Действительно, каждый наблю-дал, что во время движения окружающие предметы, види-мые в направлении движения, как бы расступаются перед нами, а находящиеся позади - смыкаются. В 20-х годах XX столе-тия началось массовое вы-числение лучевых скоростей звёзд относительно Солнца. Это дало возможность не только определить положение солнечного апекса, но и узнать скорость движения Солнечной системы в пространстве. Круп-ные исследования в этом на-правлении были проведены в 1923-1936 гг. в астрономи-ческих обсерваториях несколь-ких стран, в том числе в 1923- 1925 гг. московскими астро-номами под руководством В. Г. Фесенкова. Исследова-ния показали, что у большин-ства звёзд, расположенных вблизи солнечного апекса, лу-чевая скорость близка к -20 км/с, т. е. эти звёзды приближаются к Солнцу, а звёзды, находящиеся в про-тивоположной области неба, удаляются от Солнца со ско-ростью около +20 км/с. Со-вершенно очевидно, что эта скорость свойственна самой Солнечной системе. В настоящее время установлено, что Солнечная система движется относительно окружающих её звёзд со скоростью около 20 км/с (по другим данным 25 км/с) в направлении к солнечному апексу, расположенному вблизи слабой звезды ν Геркулеса (m=4,5) недалеко от границы этого созвездия с созвездием Лиры. При этом Солнечная система ещё обращается вокруг центра Галактики с периодом 226 млн лет и со скоростью 260 км/с.Экваториальные коор-динаты солнечного апекса: прямое восхождение α А =270° (18 ч 00 м) и склонение δ А = = +30°. Собственные движения по-могают установить у некото-рых звёзд наличие планет. Смещение одиночных звёзд происходит, как иногда гово-рят, по «прямой линии» (на самом деле - по дуге боль-шого круга, незначительную часть которой часто принима-ют за отрезок прямой). Но если вокруг звезды обращается сравнительно массивный спутник, то он периодически отклоняет ее движение пооче-редно в обе стороны от дуги большого круга и тогда види-мое смещение звезды происхо-дит по слегка волнистой линии (рис.). В 1844 г. немецкий астро-ном Ф. Бессель (1784-1846) обнаружил такие отклонения в смещениях Сириуса и Проциона и предсказал существо-вание у них невидимых мас-сивных спутников. А почти через 18 лет, 31 января 1862 г., американский оптик А. Кларк, испытывая изготовленный им линзовый объектив диаметром 46 см, обнаружил спутник Сириуса - звезду 8,4 m , отсто-ящую от главной звезды на 7,6". В 1896 г. Дж. Шеберле открыл в 4,6" от Проциона его спутник - звезду 10,8 m . Оба спутника, как выяснилось впос-ледствии, оказались белыми карликами. Невидимые спутники-планеты имеют-ся и у Летящей звезды Бар-нарда, но они пока не откры-ты. Всего сейчас известно более 300 звёзд, во-круг которых обращаются планетоподобные спутники. Литература:

  • Тема. Малые тела Солнечной системы

    Краткое содержание

    Понятия: малые тела Солнечной системы, астероиды, астероидные тела, метеоры, метеориты, кометы, карликовые планеты, пояс Койпера, главный пояс астероидов, облако Орта, метеороидные тела.

  • Проект «Земля планета солнечной системы»

    Документ

    во льдах(Многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима).

  • Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение Солнечной системы.

    Ролик , вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости орбит планет направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости Галактики. Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

    Проверяем ученых

    Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.

    Но сама по себе цифра скучна, да и сейчас, когда на обочине науки устраивают шабаш адепты плоской Земли, хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики - это Млечный путь, но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть - это созвездие Лебедя. Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). «Туловище» Лебедя примерно совпадает с галактической плоскостью.

    Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика - это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.

    В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

    Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

    А гифку правильнее рисовать так:


    Источник: сайт астронома Rhys Taylor rhysy.net

    Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.

    Но этот факт, увы, «на пальцах» не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

    Разбегающиеся звезды

    Как вообще можно определить, куда движется Солнечная система относительно близких звезд? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

    На гифке показано перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.


    Источник: Hoskin, M. Herschel"s Determination of the Solar Apex, Journal for the History of Astronomy, Vol. 11, P. 153, 1980

    А с данными каталога Лаланда область удалось серьезно уменьшить.


    Оттуда же

    Дальше пошла нормальная научная работа - уточнение данных, расчеты, споры, но Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

    Еще дальше

    Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной - произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

    Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

    Космический хвост

    А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его