Лазерная химия. Основные представления в лазерной химии

). Монохроматичность лазерного излучения позволяет селективно возбуждать молекулы одного вида, при этом молекулы других видов остаются невозбужденными. Селективность возбуждения при этом процессе ограничена лишь степенью перекрывания полос в спектре поглощения вещества. Таким образом подбирая частоту возбуждения, удается не только осуществлять избирательную активацию молекул, но и менять глубину проникновения излучения в зону реакции.

Возможность фокусировки лазерного излучения позволяет вводить энергию локально, в определённую область объёма, занимаемого реагирующей смесью. Лазерное воздействие на химические реакции может быть тепловым и фотохимическим. Лазерная офтальмология и микрохирургия, в конечном счете, та же лазерная химия, но для медицинских целей.

Напишите отзыв о статье "Лазерная химия"

Литература

  • Башкин А. С. Химические лазеры / А. С. Башкин, В. И. Игошин, А. Н. Ора-евский, В. А. Щеглов - М.: Наука, 1982.
  • Сэм М. Ф. Лазеры и их применения // Соросовский образовательный журнал. - 1996. - № 6. - С. 92-98.
  • Аблесимов Н. Е. Синопсис химии: Справочно-учебное пособие по общей химии - Хабаровск: Изд-во ДВГУПС, 2005. - 84 с. - http://www.neablesimov.narod.ru/pub04c.html

Отрывок, характеризующий Лазерная химия

– А может здесь тоже был тот злой человек? – испуганно спросила Мария.
Честно признаться, у меня тоже мелькнула такая мысль, но высказать её я не успела по той простой причине, что, ведя за собой троих малышей, появился Светило... Детишки были чем-то смертельно напуганы и, трясясь как осенние листики, боязливо жались к Светилу, боясь от него отойти хоть на шаг. Но детское любопытство вскоре явно пересилило страх, и, выглядывая из-за широкой спины своего защитника, они удивлённо рассматривали нашу необычную тройку... Что же касалось нас, то мы, забыв даже поздороваться, вероятно, с ещё большим любопытством уставились на малышей, пытаясь сообразить, откуда они могли взяться в «нижнем астрале», и что же всё-таки такое здесь произошло...
– Здравствуйте, милые... Не надо вам было сюда приходить. Что-то нехорошее здесь происходит... – ласково поздоровался Светило.
– Ну, хорошего здесь вряд ли можно было бы ожидать вообще... – грустно усмехнувшись, прокомментировала Стелла. – А как же получилось, что ты ушёл?!... Ведь сюда любой «плохой» мог за это время явиться, и занять всё это...
– Что ж, тогда ты бы обратно всё «свернула»... – просто ответил Светило.
Тут уж мы обе на него удивлённо уставились – это было самое подходящее слово, которое можно было употребить, называя данный процесс. Но откуда его мог знать Светило?!. Он ведь ничего в этом не понимал!.. Или понимал, но ничего об этом не говорил?...

Др. видов остаются невозбужденными. При этом селективность возбуждения ограничена лишь степенью перекрывания полос в спектре поглощения в-ва. Подбирая частоту возбуждения, удается не только осуществлять избират. активацию молекул , но и менять глубину проникновения излучения в зону р-ции. Использование импульсов излучения малой длительности позволяет в принципе снять ограничение селективности , связанное с обменом энергией между разл. молекулами или между разл. хим. связями в одной молекуле . Большая интенсивность лазерного излучения дает возможность получать возбужденные молекулы или радикалы в высоких концентрациях . Наконец, возможность фокусировки лазерного излучения позволяет вводить энергию локально, в определенную область объема, занимаемого реагирующей смесью. Лазерное воздействие на хим. р-ции м. б. тепловым и фотохимическим. При тепловом воздействии реагирующая смесь только нагревается, энергия распределяется равномерно по всем степеням свободы реагирующих молекул . Преимущество лазерного нагрева - возможность вводить энергию в нужное место реакц. объема и за очень короткое время, а также избегать нежелат. контакта реагентов с нагреваемой пов-стью реактора. Локальный нагрев реагентов при этом может достигать тысяч градусов, что крайне трудно при др. способах нагрева. Хим. р-ция часто представляет собой нелинейный процесс, имеющий сложное пространственно-временное поведение и описываемый нелинейными дифференциальными ур-ниями с бифуркационными параметрами. Таким параметром м. б. т-ра или параметр, характеризующий распределение тепла в реагирующем объеме. Воздействие лазерного излучения на реагирующую смесь вблизи точек бифуркации позволяет резко изменять режим теплового хим. процесса при малых затратах лазерной энергии (см. Неравновесная химическая кинетика). Фотохим. воздействие лазерного излучения дает возможность достигать концентраций возбужденных молекул или радикалов, намного превышающих равновесное значение при данной т-ре. Из-за большой интенсивности излучения осуществляется многоквантовое возбуждение, при к-ром в одном элементарном акте возбуждения поглощается одновременно неск. квантов излучения (см. Многофотонные процессы). Т. обр., можно получать молекулы в высоковозбужденных состояниях с помощью широко доступных лазеров видимого и ближнего УФ диапазонов и повысить избирательность возбуждения, т. к. в далеком УФ диапазоне полосы поглощения мн. молекул сильно перекрываются. Hаиб. специфично фотохим. действие лазерного излучения в ИК области, поскольку создать в этой области длин волн источники некогерентного излучения, сравнимые по мощности с лазерами и позволяющие осуществлять фотолиз , практически невозможно. Под действием лазерного ИК излучения стимулирование хим. процессов в газах происходит путем резонансного возбуждения колебат. степеней свободы молекул . Подбором условий (давление газа , интенсивность и частота лазерного излучения) удается достичь высокой сверхравновесной концентрации колебательно возбужденных молекул и осуществить их диссоциацию (фрагментацию). Достаточно коротким ([ 10 7 с) и интенсивным (/ 10 7 4 10 9 Вт/см 2) импульсом излучения при малом давлении (доли мм рт. ст.) оказывается возможным возбудить и фрагментировать молекулы за времена более короткие, чем время межмол. обмена энергией при их столкновениях. Важным является то, что при этом достигается высокая межмол. селективность . Достигаемая селективность активации м. б. использована для лазерного изотопов разделения и получения особо чистых в-в. Предполагается, что с помощью лазерного ИК излучения окажется возможной и внутримолекулярная селективность активации молекул по заранее обусловленной хим. связи (или группе связей). Препятствием на пути к этому является быстрый обмен энергией между разл. типами колебаний, резко ускоряющийся при увеличении колебат. энергии. Фотохим. действие лазерного излучения в видимом и УФ диапазонах менее специфично, чем в ИК области, тем не менее благодаря большой интенсивности излучения оно используется для возбуждения молекул в высоколежащие электронные уровни энергии и ионизации, к-рая происходит в результате поглощения неск. фотонов в одном элементарном акте р-ции. Это позволяет отказаться от использования коротковолнового излучения обычных источников, заменив его сравнительно длинноволновым лазерным излучением. Лазерное излучение используют для стимулирования р-ций в твердых телах , в частности при создании больших интегральных схем в микроэлектронике. Соответствующие р-ции м. б. и чисто тепловыми, и фотохимическими. Решающий фактор - возможность острой фокусировки лазерного излучения и гибкого управления им. В биохимии лазеры применяют для воздействия на разл. компоненты макромолекул , напр. на остатки аминокислот белков . Лазерное излучение также влияет на ферментативные р-ции, коагуляцию крови , иммунную активность антител и др. процессы, в к-рых существенны процессы изменения

Изучает хим. процессы, стимулируемые лазерным излучением, в к-рых решающую роль играют специфич. св-ва лазерного излучения. Так, высокая монохроматичность лазерного излучения позволяет селективно возбуждать молекулы одного вида, при этом молекулы др. видов остаются невозбужденными. При этом селективность возбуждения ограничена лишь степенью перекрывания полос в спектре поглощения в-ва. Подбирая частоту возбуждения, удается не только осуществлять избират. активацию молекул, но и менять глубину проникновения излучения в зону р-ции. Использование импульсов излучения малой длительности позволяет в принципе снять ограничение селективности, связанное с обменом энергией между разл. молекулами или между разл. хим. связями в одной молекуле. Большая интенсивность лазерного излучения дает возможность получать возбужденные молекулы или радикалы в высоких концентрациях. Наконец, возможность фокусировки лазерного излучения позволяет вводить энергию локально, в определенную область объема, занимаемого реагирующей смесью. Лазерное воздействие на хим. р-ции м. б. тепловым и фотохимическим. При тепловом воздействии реагирующая смесь только нагревается, энергия распределяется равномерно по всем степеням свободы реагирующих молекул. Преимущество лазерного нагрева - возможность вводить энергию в нужное место реакц. объема и за очень короткое время, а также избегать нежелат. контакта реагентов с нагреваемой поверхностью реактора. Локальный нагрев реагентов при этом может достигать тысяч градусов, что крайне трудно при др. способах нагрева. Хим. реакция часто представляет собой нелинейный процесс, имеющий сложное пространственно-временное поведение и описываемый нелинейными дифференциальными ур-ниями с бифуркационными параметрами. Таким параметром м. б. т-ра или параметр, характеризующий распределение тепла в реагирующем объеме. Воздействие лазерного излучения на реагирующую смесь вблизи точек бифуркации позволяет резко изменять режим теплового хим. процесса при малых затратах лазерной энергии (см. Неравновесная химическая кинетика ). Фотохим. воздействие лазерного излучения дает возможность достигать концентраций возбужденных молекул или радикалов, намного превышающих равновесное значение при данной т-ре. Из-за большой интенсивности излучения осуществляется многоквантовое возбуждение, при к-ром в одном элементарном акте возбуждения поглощается одновременно неск. квантов излучения (см. Многофотонные процессы ). Т. обр., можно получать молекулы в высоковозбужденных состояниях с помощью широко доступных лазеров видимого и ближнего УФ диапазонов и повысить избирательность возбуждения, т. к. в далеком УФ диапазоне полосы поглощения мн. молекул сильно перекрываются. Hаиб. специфично фотохим. действие лазерного излучения в ИК области, поскольку создать в этой области длин волн источники некогерентного излучения, сравнимые по мощности с лазерами и позволяющие осуществлять фотолиз, практически невозможно. Под действием лазерного ИК излучения стимулирование хим. процессов в газах происходит путем резонансного возбуждения колебат. степеней свободы молекул. Подбором условий (давление газа, интенсивность и частота лазерного излучения) удается достичь высокой сверхравновесной концентрации колебательно возбужденных молекул и осуществить их диссоциацию (фрагментацию). Достаточно коротким (}