Максимальное значение степени окисления азота равно. Азот и его соединения

Химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип.

Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .

1. Степени окисления металлов в соединениях всегда положительные.

2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .

3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:

  • если с атомом металла, то степень окисления отрицательная;
  • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.

4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.

5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Элементы с неизменными степенями окисления.

Элемент

Характерная степень окисления

Исключения

Гидриды металлов: LIH -1

Степенью окисления называют условный заряд частицы в предположении, что связь полностью разорвана (имеет ионных характер).

H - Cl = H + + Cl - ,

Связь в соляной кислоте ковалентная полярная. Электронная пара в большей степени смещена в сторону атома Cl - , т.к. он более электроотрицацельный элемент.

Как определить степень окисления?

Электроотрицательность - это способность атомов притягивать к себе электроны других элементов.

Степень окисления указывается над элементом: Br 2 0 , Na 0 , O +2 F 2 -1 , K + Cl - и т.д.

Она может быть отрицательной и положительной.

Степень окисления простого вещества (несвязанное, свободное состояние) равна нулю.

Степень окисления кислорода у большинстве соединений равна -2 (исключение составляют пероксиды Н 2 О 2 , где она равна -1 и соединения с фтором - O +2 F 2 -1 , O 2 +1 F 2 -1 ).

- Степень окисления простого одноатомного иона равна его заряду: Na + , Ca +2 .

Водород в своих соединениях имеет степень окисления равную +1 (исключения составляют гидриды - Na + H - и соединения типа C +4 H 4 -1 ).

В связях «металл-неметалл» отрицательную степень окисления имеет тот атом, который обладает большей электрооприцательностью (данные об элеткроотрицательности приведены в шкале Полинга): H + F - , Cu + Br - , Ca +2 (NO 3 ) - и т.д.

Правила определения степени окисления в химических соединениях.

Возьмем соединение KMnO 4 , необходимо определить степень окисления у атома марганца.

Рассуждения:

  1. Калий - щелочной металл, стоящий в I группе периодической таблицы , в связи с чем, имеет только положительную степень окисления +1.
  2. Кислород , как известно, в большинстве своих соединений имеет степень окисления -2. Данное вещество не является пероксидом, а значит, - не исключение.
  3. Составляет уравнение:

К + Mn X O 4 -2

Пусть Х - неизвестная нам степень окисления марганца.

Количество атомов калия - 1, марганца - 1, кислорода - 4.

Доказано, что молекула в целом электронейтральна, поэтому ее общий заряд должен быть равен нулю.

1*(+1) + 1*(X ) + 4(-2) = 0,

Х = +7,

Значит, степень окисления марганца в перманганате калия = +7.

Возьмем другой пример оксида Fe 2 O 3 .

Необходимо определить степень окисления атома железа.

Рассуждение:

  1. Железо - металл, кислород - неметалл, значит, именно кислород будет окислителем и иметь отрицательный заряд. Мы знаем, что кислород имеет степень окисления -2.
  2. Считаем количества атомов: железа - 2 атома, кислорода - 3.
  3. Составляем уравнение, где Х - степень окисления атома железа:

2*(Х) + 3*(-2) = 0,

Вывод: степень окисления железа в данном оксиде равна +3.

Примеры. Определить степени окисления всех атомов в молекуле.

1. K 2 Cr 2 O 7 .

Степень окисления К +1 , кислорода О -2 .

Учитывая индексы: О=(-2)×7=(-14), К=(+1)×2=(+2).

Т.к. алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, то число положительных степеней окисления равно числу отрицательных. Степени окисления К+О=(-14)+(+2)=(-12).

Из этого следует, что у атома хрома число положительных степеней равно 12, но атомов в молекуле 2, значит на один атом приходится (+12):2=(+6). Ответ: К 2 + Cr 2 +6 O 7 -2 .

2. (AsO 4) 3- .

В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е. - 3. Составим уравнение: х+4×(- 2)= - 3 .

Ответ: (As +5 O 4 -2) 3- .

VА-подгруппу образуют р-элементы: азотN , фосфор

Р , мышьякAs , сурьмаSb и висмутBi .

Элементы N, P – типичные неметаллы,

у неметаллов As и Sb появляются некоторые свойства,

присущие металлам , у висмута металлические свойства

преобладают , хотя типичным металлом он не является.

Общая формула валентных электронов у элемен-

тов VА-группы –ns 2 np 3 .

трона . За счет трех неспаренных электроноввсе элементы в простых веществах образуют три ковалентные связи , но у азота три связи объединяют 2 атома, образуя очень проч-

ную молекулу N N, а у других элементов – каждый атом связан с тремя другими с образованием молекул типа Э4 (бе-

лый фосфор и желтый мышьяк) или полимерных структур.

У азота простое вещество в любом агрегатном состоянии состоит из отдельных молекул, при обычных условиях это газ. У всех остальных элементов простые вещества

– твердые.

Степень окисления (–3) для элементов VА-группы является минимальной.Наиболее устойчива она у N , при

переходе к Bi с увеличением числа электронных слоев ее устойчивость па-

дает. Элементы N, P, As, Sb с водородом образуют гидриды типа ЭН3 ,

проявляющие основные свойства , наиболее ярко они выражены у аммиа-

Исполнитель:

Мероприятие №

ка NH3 . В подгруппе устойчивость соединений ЭН3 и их основные свойст-

ва уменьшаются.

Все элементы VА-группы проявляют высшую степень окисления +5.

Все они образуют оксиды типа Э2 O5 (оксид Bi 2 О 5 – неустойчив) , которым соответствуют кислоты,сила кислот ослабевает при движении вниз по под-

Степень окисления +5 наиболее устойчива у Р. Соединения Bi(+5) –

очень сильные окислители. Сильные окислительные свойства проявляет азотная кислота, особенно концентрированная.

У висмута более устойчива степень окисления (+3), которая также достаточно устойчива у Sb и As. Соединения N(+3), и особенно

Р(+3), проявляют сильные восстановительные свойства.

В степени окисления +3 все элементы VА-группы образуют оксиды

типа Э 2 О 3 . Оксидам N и P соответствуют слабые кислоты. Оксиды и гидрокси-

ды As и Sb – амфотерны, основной характер преобладает у оксида и гидрокси-

да Bi(+3). Таким образом , в подгруппе кислотный характер оксидов и гид-

роксидов элементов в степени окисления (+3) ослабевает, и усиливаются

основные свойства, более характерные для гидроксидов металлов.

Элементы VА-группы, помимо перечисленных степеней окисления

5, +3, –3, проявляют и другие промежуточные степени окисления.

Для азота известны все степени окисления от –1 до +5.

Азот, как и все элементы второго периода, существенно отличается от своих электронных аналогов. По этой причине, а также из-за большого числа степеней окисления и многообразия соединений, химия азота рассматри-

вается отдельно от других элементов VА–подгруппы.

Наиболее распространенным в природе элементом VА-группы явля-

ется фосфор. Его содержание в земной коре – 0,09 масс. %; фосфор находит-

ся главным образом в виде фосфата кальция. Содержание азота – 0,03%, ос-

новная его доля сосредоточена в атмосфере в виде N2 .Содержание азота в

Исполнитель:

Мероприятие №

воздухе по объему составляет ~ 78 %. В очень малых количествах в зем-

ной коре встречаются нитраты натрия и калия (селитры). Мышьяк, сурьма и висмут относятся к редким элементам с содержанием в земной коре 10–5 5. 10–

4 %; в природе они находятся, в основном, в виде сульфидов.

Азот и фосфор – очень важные элементы биосферы, поэтому значи-

тельная часть производимых в химической промышленности нитратов и фос-

фатов используется в качестве удобрений, которые необходимы для жизнедея-

тельности растений. В организме человека N и Р играют важную роль, – азот

входит в состав аминокислот, являющихся составной частью белков, фосфор в

форме Ca5 [(PO4 )3 OH] входит в состав костей. В человеческом организме нахо-

дится в среднем около 1,8 кг N.

Некоторые характеристики атомов элементов VА-группы приведены в

Важнейшие характеристики атомов элементов VА-группы

Электроот-

рицатель-

ность (по

атома, нм

Поллингу)

увеличение числа элек-

тронных слоев;

увеличение размера атома;

уменьшение энергии иони-

уменьшение электроотри-

цательности;

Для сравнения – электроотрицательность Н – 2,2; О – 3,44 .

Азот от других элементов подгруппы отличается очень маленьким орби-

тальным радиусом и высокой электроотрицательностью, N – третий по элек-

троотрицательности элемент, после F и О.

Исполнитель:

Мероприятие №

Валентные электроны N –2s2 2p3 .

N 2s

Азот, подобно другим элементам второго периода,

заметно отличается от элементов своей подгруппы:

атом N имеет всего 4 валентные орбитали и в соединениях может обра-

зовать только 4 ковалентные связи;

из-за очень маленького атомного радиуса азот образует очень прочные

простое вещество в любом агрегатном состоянии состоит из отдельных

очень прочных молекул N

N и отличается высокой инертностью;

по электроотрицательности N уступает только F и О;

азот проявляет все возможные степени окисления: -3, –2, -1, 0, +1, +2, +3, +4, +5.

Большое число степеней окисления и многообразие соединений делает

химию азота весьма сложной. Сложность усугубляется также характерными для многих окислительно-восстановительных реакций кинетическими затруд-

нениями, обусловленными очень прочными кратными связями между атомами

N и атомами N и О. Поэтому электродные потенциалы мало помогают в опре-

делении продуктов ОВР.

Наиболее устойчивым соединением N является простое вещество.

В водных растворах, особенно кислых, очень устойчив ион NH4 + .

Азот является составной частью воздуха, из которого N 2 и получают.

Основное количество N2 используется для синтеза аммиака, из которого затем получают другие соединения азота.Среди соединений азота самое широкое практическое применение находят аммиак, азотная кислота и их соли .

Исполнитель:

Мероприятие №

Ежегодное мировое производство NH3 составляет ~ 97 млн. т/год, азотной ки-

слоты – 27 млн. т/год. Химия этих важнейших соединений N будет рассмот-

рена в первую очередь, после обсуждения свойств простого вещества.

Простое вещество

Молекула N2 – самая прочная из всех двухатомных молекул простых веществ.Три общие электронные пары в молекуле N N располагаются на свя-

зывающих орбиталях, на разрыхляющих орбиталях электронов нет, – это при-

водит к очень высокой энергии химической связи – 944 кДж/моль (для срав-

нения, энергия связи в молекуле О2 равна – 495 кДж/моль).Прочная связь обусловливает высокую инертность молекулярного азота . С химической инертностью азота связано название этого элемента. По-гречески «азот» озна-

чает "безжизненный".

При обычных условиях N2 – это бесцветный газ без запаха и вкуса.

Температуры кипения и плавления N2 близки: –196О С, и –210О С.

Азот получают фракционной перегонкой воздуха, – для этого воздух

при низких температурах сжижают, а затем начинают повышать температуру.

Из компонентов воздуха азот имеет самую низкую температуру кипения и

образует самую легкокипящую фракцию. При фракционной перегонке одно-

временно получают кислород и инертные газы.

Основное количество N2 идет на производство аммиака, кроме того,

азот применяют для создания инертной атмосферы, в том числе при производ-

стве некоторых металлов; жидкий азот используют также в качестве охлаж-

дающего агента в лаборатории и в промышленности.

При комнатной температуре азот медленно реагирует только с Li с обра-

зованием Li3 N. При горении на воздухе магния, вместе с оксидом MgO образу-

ется и Mg3 N2 .

Нитриды. Бинарные соединения азота с элементами, менее элек-

троотрицательными, чем N, называют нитридами.

Исполнитель:

Мероприятие №

Ионные нитриды содержат анион N3– . Ионные нитриды образуют Li,

металлы II и IБ-группы ; в водных растворах они подвергаются необратимо-

му гидролизу.

Mg3 N2 + 6H2 O = 2NH3 + 3 Mg(OH)2

С металлами р-блока и некоторыми легкими неметаллами азот об-

разует ковалентные нитриды, например, AlN, BN.

Большинство d-металлов образуют с азотом при высоких температурах нестехиометрические продукты внедрения, в которых атомы N занимают пус-

тоты в кристаллических решетках металлов. Поэтому такие нитриды по внеш-

нему виду, по электро- и теплопроводности напоминают металлы, но отлича-

ются от них высокой химической инертностью, твердостью и тугоплавкостью.

Например, нестехиометрические нитриды Ta и Ti плавятся при температурах выше 3200о С.

Азот непосредственно не реагирует с галогенами, а с кислородом взаимодействует только в экстремальных условиях (при электрическом

разряде).

Наиболее важной в практическом отношении является реакция азота с H2 , в результате которой получается аммиак.

N 2 + 3H 2  2NH 3 ; H0 = –92 кДж/моль.

Экзотермичность этой реакции указывает на то, что суммарная прочность связей в молекулах аммиака выше, чем в исходных молекулах. Повышение температуры в соответствии с принципом Ле-Шателье, приводит к смещению равновесия в сторону эндотермической реакции, т.е. в направлении разложения аммиака. Однако при нормальных условиях реакция идет чрезвычайно медлен-

но, слишком велика энергия активации, необходимая для ослабления прочных связей в молекулах азота и водорода. Процесс поэтому процесс приходится вести при температуре около 5000 С. Для смещения равновесия при высокой температуре вправо повышают давление до 300 – 500 атм., при этом равнове-

Исполнитель:

Мероприятие №

сие смещается в направлении реакции, идущей с уменьшением числа молекул газа, т.е. в направление образования аммиака. Повышения скорости достигают за счет применения катализаторов. Эффективен плавленый катализатор на ос-

нове Fe3 O4 с добавками Al2 O3 и SiO2 и катализатор на основе металлического

Fe. Синтез аммиака из азота и водорода является важнейшей реакцией про-

мышленной химии азота.

Соединения азота

Аммиак и соли аммония

Азот в аммиаке и солях аммония находится в минимальной степени окисления (–3). Степень окисления (–3) достаточно устойчива у азота.

Аммиак при обычных условиях – бесцветный газ с характер-

ным резким запахом , знакомым по запаху «нашатырного спирта» (10% рас-

твора аммиака в воде). Этот газ легче воздуха, поэтому его можно собирать в перевернутые вверх дном сосуды. Аммиак легко переходит в жидкость. Для этого его достаточно при обычном давлении охладить до –33,5о С. Того же эф-

фекта можно достигнуть при комнатной температуре, но повышая давление до

7 – 8 атм. При повышенном давлении жидкий аммиак хранят в стальных балло-

нах. Испаряясь, жидкий аммиак вызывает охлаждение в окружающей среде. На этом основано его применение в холодильной технике. Легкая сжижаемость аммиака обусловлена водородными связями между его молекулами. Прочность водородных связей между молекулами аммиака обусловлена очень высокой электроотрицательностью азота.

Жидкий аммиак бесцветен, подвергается автопротолизу:

2NH3  NH4 + + NH2 –

Константа этого равновесия равна 2 . 10– 23 (при –50о С). Жидкий аммиак

является хорошим ионизирующим растворителем. Соли аммония и слабые

кислоты, например, H2 S, растворенные в жидком аммиаке, становятся сильны-

ми кислотами.

Исполнитель:

Мероприятие №

Аммиак хорошо растворим в воде . Высокую растворимость аммиака в воде (до 700 объемов NH3 в одном объеме воды) также объясняют образовани-

ем водородных связей, но уже с молекулами воды. Концентрированный рас-

твор содержит 25 массовых % аммиака и имеет плотность 0,91 г/см3 . Молярная концентрация NH3 в концентрированных водных растворах достигает ~13

Молекула NH3 имеет пирамидальное строение, которое объясняют sp3 -

гибридизацией валентных атомных орбиталей азота. Одна из вершин тетраэд-

ра занята неподеленной парой электронов. Связь N –– H довольно прочная,

энергия связи составляет 389 кДж/моль, длина связи – 0,1 нм, угол между свя-

зями –108,3о . При присоединении катиона H+ за счет неподеленной электрон-

ной пары N, образуется тетраэдрический очень устойчивый ион аммония

NH4 + .

Наличие неподеленной электронной пары у N в молекуле NH3 , обу-

славливает многие характерные для аммиака свойства.

Молекула NH3 является хорошим донором электронной пары(ДЭП),

т.е. основанием по Льюису, и очень хорошим акцептором протонов A(Н+ ),

т.е. основанием по Бренстеду:

NH3 + H+  NH4 + . NH3 акцептирует протон, подобно ионам ОН– : OH– + H+  H2 O

Акцепторные свойства NH3 слабее, чем у аниона OH– . Константа протолиза для NH3 равна 1,8. 109 , а для иона OH– – 1014 .

Реакции с кислотами – это наиболее характерные для NH3 реакции.

Способность аммиака к образованию донорно-акцепторных связей на-

столько велика, что он может отрывать ионы водорода от такого прочного со-

единения, как вода.

NH3 + H–– OH  NH4 + ), и количество продуктов NH4 + и OH– мало по сравнению с равновесной концентрацией аммиака. Водные растворы аммиака ведут себя подобно слабым основаниям. По устоявшейся традиции аммиак часто обозна-

чают формулой NH4 OH и называют гидроксидом аммония, однако молекул

NH4 OH в растворе нет. Щелочную реакцию водного раствора NH3 часто опи-

сывают не приведенным выше равновесием, а как диссоциацию молекул

NH4 OH:

NH4 OH NH4 + + OH–

Константа этого равновесия равна 1,8 . 10–5 . В одном литре одномолярно-

го раствора аммиака концентрация ионов NH4 + и OH– составляет 3,9. 10–3

моль/л, рН = 11,6.

Равновесие между аммиаком и OH– способны сильно сместить вправо катионы некоторых металлов, образующие с ионами OH– нерастворимые гидроксиды.

FeCl3 + 3NH3 + 3Н–ОН  Fe(OH)3  + 3NH4 Cl.

Аммиак можно использовать для получения нерастворимых оснований .

При действии кислот на водные растворы аммиака образуются соли аммония.

NH3 + HCl = NH4 Cl

Почти все соли аммония бесцветны и растворимы в воде.

Равновесие NH3 + H+  NH4 + сильно смещено вправо (К = 1,8. 109 ),

это означает, что, NH3 является сильным акцептором протонов, а катион NH 4 +

является слабым донором H + , т.е. кислотой по Бренстеду. При добавлении щелочи к солям аммония образуется аммиак, который легко определить по за-

NH4 Cl + NaOH = NH3 + H2 O + NaCl.

Этой реакцией обычно пользуются для обнаружения ионов аммония в растворе.

Исполнитель:

Мероприятие №

Подобные реакции можно использовать для лабораторного получения

NH3 .

Хлорид аммония (его называют «нашатырь») при высоких температурах реагирует с оксидами на поверхности металлов, как кислота, обнажая чистый металл. На этом же основано использование твердой соли NH4 Cl при пайке металлов. «Кислотный» H+ из иона NH4 + способен окислять очень активные металлы, например, Mg.

Mg + 2NH4 Cl = H2 + MgCl2 + 2NH3

Характерным свойством солей аммония является их термическая неус-

тойчивость. При нагревании они довольно легко разлагаются. Продукты раз-

ложения определяются свойствами кислотного аниона. Если анион проявляет окислительные свойства, то происходит окисление NH4 + и восстановление аниона-окислителя.

NH4 NO2 = N2 + 2H2 O

NH4 NO3 = N2 О + 2H2 O или 2NH4 NO3 = N2 + O2 + 4H2 O

(NH4 )2 Cr2 O7 = N2 + Cr2 O3 + 4H2 O

Из солей летучих кислот выделяется аммиак и кислота (или ее ангид-

рид), а в случае нелетучих кислот (например, Н3 РО4 ) – только NH3 . NH4 HCO3 = NH3 + H2 O + CO2

Гидрокарбонат аммония NH4 HCO3 применяют в хлебопекарной про-

мышленности, образующиеся газы придают тесту необходимую пористость.

Соли аммония используют в производстве взрывчатых веществ и в

качестве азотных удобрений . Аммонал, применяемый в практике взрывных работ, представляет собой смесь соли NH4 NO3 (72%), порошка Al (25%) и уг-

ля (3%). Эта смесь взрывается только после детонации.

Второй тип реакций, в которых NH3 проявляет свойства донора элек-

тронной пары – это образование амминных комплексов. Аммиак в роли лиганда присоединяется к катионам многих d-элементов , образуя химиче-

Исполнитель:

Мероприятие №

Чтобы правильно расставлять степени окисления , необходимо держать в голове четыре правила.

1) В простом веществе степень окисления любого элемента равна 0. Примеры: Na 0 , H 0 2 , P 0 4 .

2) Следует запомнить элементы, для которых характерны постоянные степени окисления . Все они перечислены в таблице.


3) Высшая степень окисления элемента, как правило, совпадает с номером группы, в которой находится данный элемент (например, фосфор находится в V группе, высшая с. о. фосфора равна +5). Важные исключения: F, O.

4) Поиск степеней окисления остальных элементов основан на простом правиле:

В нейтральной молекуле сумма степеней окисления всех элементов равна нулю, а в ионе - заряду иона.

Несколько простых примеров на определение степеней окисления

Пример 1 . Необходимо найти степени окисления элементов в аммиаке (NH 3).

Решение . Мы уже знаем (см. 2), что ст. ок. водорода равна +1. Осталось найти эту характеристику для азота. Пусть х - искомая степень окисления. Составляем простейшее уравнение: х + 3 (+1) = 0. Решение очевидно: х = -3. Ответ: N -3 H 3 +1 .


Пример 2 . Укажите степени окисления всех атомов в молекуле H 2 SO 4 .

Решение . Степени окисления водорода и кислорода уже известны: H(+1) и O(-2). Составляем уравнение для определения степени окисления серы: 2 (+1) + х + 4 (-2) = 0. Решая данное уравнение, находим: х = +6. Ответ: H +1 2 S +6 O -2 4 .


Пример 3 . Рассчитайте степени окисления всех элементов в молекуле Al(NO 3) 3 .

Решение . Алгоритм остается неизменным. В состав "молекулы" нитрата алюминия входит один атом Al(+3), 9 атомов кислорода (-2) и 3 атома азота, степень окисления которого нам и предстоит вычислить. Соответствующее уравнение: 1 (+3) + 3х + 9 (-2) = 0. Ответ: Al +3 (N +5 O -2 3) 3 .


Пример 4 . Определите степени окисления всех атомов в ионе (AsO 4) 3- .

Решение . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е., -3. Уравнение: х + 4 (-2) = -3. Ответ: As(+5), O(-2).

Что делать, если неизвестны степени окисления двух элементов

А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Пример 5 . Определите степени окисления всех элементов в (NH 4) 2 SO 4 .

Решение . Степени окисления водорода и кислорода известны, серы и азота - нет. Классический пример задачи с двумя неизвестными! Будем рассматривать сульфат аммония не как единую "молекулу", а как объединение двух ионов: NH 4 + и SO 4 2- . Заряды ионов нам известны, в каждом из них содержится лишь один атом с неизвестной степенью окисления. Пользуясь опытом, приобретенным при решении предыдущих задач, легко находим степени окисления азота и серы. Ответ: (N -3 H 4 +1) 2 S +6 O 4 -2 .

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте "разделить" молекулу на несколько частей.

Как расставлять степени окисления в органических соединениях

Пример 6 . Укажите степени окисления всех элементов в CH 3 CH 2 OH.

Решение . Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы. Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность С превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН 2 ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3 C -1 H +1 2 O -2 H +1 .

Не смешивайте понятия "валентность" и "степень окисления"!

Степень окисления часто путают с валентностью . Не совершайте подобной ошибки. Перечислю основные отличия:

  • степень окисления имеет знак (+ или -), валентность - нет;
  • степень окисления может быть равна нулю даже в сложном веществе, равенство валентности нулю означает, как правило, что атом данного элемента не соединен с другими атомами (всякого рода соединения включения и прочую "экзотику" здесь обсуждать не будем);
  • степень окисления - формальное понятие, которое приобретает реальный смысл лишь в соединениях с ионными связями, понятие "валентность", наоборот, наиболее удобно применять по отношению к ковалентным соединениям.

Степень окисления (точнее, ее модуль) часто численно равен валентности, но еще чаще эти величины НЕ совпадают. Например, степень окисления углерода в CO 2 равна +4; валентность С также равна IV. А вот в метаноле (CH 3 OH) валентность углерода остается той же, а степень окисления С равна -1.

Небольшой тест на тему "Степень окисления"

Потратьте несколько минут, проверьте, как вы усвоили эту тему. Вам необходимо ответить на пять несложных вопросов. Успехов!

Соединения со степенью окисления –3. Соединения азота в степени окисления -3 представлены аммиаком и нитридами металлов.

Аммиак - NH 3 - бесцветный газ с характерным резким запахом. Молекула аммиака имеет геометрию тригональной пирамиды с атомом азота в вершине. Атомные орбитали азота находятся в sp 3 -гибридном состоянии. Три орбитали задействованы в образовании связей азот-водород, а четвертая орбиталь содержит неподеленную электронную пару, молекула имеет пирамидальную форму. Отталкивающее действие неподеленной пары электронов приводит к уменьшению валентного угла от ожидаемого 109,5 до 107,3 °.

При температуре -33,4 °С аммиак конденсируется, образуя жидкость с очень высокой теплотой испарения, что позволяет использовать его в качестве хладагента в промышленных холодильных установках.

Наличие у атома азота неподеленной электронной пары позволяет ему образовать еще одну ковалентную связь по донорно-акцепторному механизму. Таким образом в кислой среде происходит образование молекулярного катиона аммония - NH 4 + . Образование четвертой ковалентной связи приводит к выравниванию валентных углов (109,5 °) за счет равномерного отталкивания атомов водорода.

Жидкий аммиак хороший самоионизирующийся растворитель:

2NH 3 NH 4 + + NH 2 -

амид-анион

В нем растворяются щелочные и щелочноземельные металлы, образуя окрашенные токопроводящие растворы. В присутствии катализатора (FeCl 3) растворенный металл реагирует с аммиаком c выделением водорода и образованием амида, например:

2Na + 2NH 3 = 2NaNH 2 + H 2 ­

амид натрия

Аммиак очень хорошо растворим в воде (при 20 °С в одном объеме воды растворяется около 700 объемов аммиака). В водных растворах проявляет свойства слабого основания.

NH 3 + H 2 O ® NH 3 ×H 2 O NH 4 + + OH -

= 1,85·10 -5

В атмосфере кислорода аммиак горит с образованием азота, на платиновом катализаторе аммиак окисляется до оксида азота(II):

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 4NH 3 + 5O 2 = 4NO + 6H 2 O

Как основание аммиак реагирует с кислотами, образуя соли катиона аммония, например:

NH 3 + HCl = NH 4 Cl

Соли аммония хорошо растворимы в воде и слабо гидролизованы. В кристаллическом состоянии термически нестойки. Состав продуктов термолиза зависит от свойств кислоты, образующей соль:

NH 4 Cl ® NH 3 ­ + HCl­; (NH 4) 2 SO 4 ® NH 3 ­ + (NH 4)HSO 4

(NH 4) 2 Cr 2 O 7 ® N 2 + Cr 2 O 3 + 4H 2 O

При действии на водные растворы солей аммония щелочей при нагревании выделяется аммиак, что позволяет использовать данную реакцию как качественную на соли аммония и как лабораторный метод получения аммиака.

NH 4 Cl + NaOH = NaCl + NH 3 ­ + H 2 О

В промышленности аммиак получают прямым синтезом.

N 2 + 3H 2 2NH 3

Поскольку реакция сильно обратима, синтез ведут при повышенном давлении (до 100 мПа). Для ускорения процесс проводят в присутствии катализатора (губчатое железо, промотированное добавками) и при температуре около 500 °С.

Нитриды образуются в результате реакций многих металлов и неметаллов с азотом. Свойства нитридов закономерно изменяются в периоде. Например, для элементов третьего периода:

Нитриды s-элементов I и II групп представляют собой кристаллические солеподобные вещества, легко разлагающиеся водой с образованием аммиака.

Li 3 N + 3H 2 O = 3LiOH + NH 3

Из нитридов галогенов в свободном состоянии выделен только Cl 3 N, кислотный характер проявляется в реакции с водой:

Cl 3 N + 3H 2 O = 3HClO + NH 3

Взаимодействие нитридов разной природы приводит к образованию смешанных нитридов:

Li 3 N + AlN = Li 3 AlN 2 ; 5Li 3 N + Ge 3 N 4 = 3Li 5 GeN 3

нитридоалюминат нитридогерманат(IV) лития

Нитриды ВN, AlN, Si 3 N 4 , Ge 3 N 4 – твердые полимерные вещества с высокими температурами плавления (2000-3000 °С), они полупроводники или диэлектрики. Нитриды d-металлов - кристаллические соединения переменного состава (бертолиды), очень твердые, тугоплавкие и химически устойчивые, проявляют металлические свойства: металлический блеск, электропроводность.

Соединения со степенью окисления –2. Гидразин - N 2 H 4 - наиболее важное неорганическое соединение азота в степени окисления -2.

Гидразин представляет собой бесцветную жидкость, с температурой кипения 113,5 °С, дымящуюся на воздухе. Пары гидразина чрезвычайно ядовиты и образуют с воздухом взрывообразные смеси. Получают гидразин, окисляя аммиак гипохлоритом натрия:

2N -3 H 3 + NaCl +1 O = N 2 -2 H 4 + NaCl -1 + H 2 O

Гидразин смешивается с водой в любых соотношениях и в растворе ведет себя как слабое двухкислотное основание, образуя два ряда солей.

N 2 H 4 + H 2 O N 2 H 5 + + OH - , K b = 9,3×10 -7 ;

катион гидрозония

N 2 H 5 + + H 2 O N 2 H 6 2+ + OH - , K b = 8,5×10 -15 ;

катион дигидрозония

N 2 H 4 + HCl N 2 H 5 Cl; N 2 H 5 Cl + HCl N 2 H 6 Cl 2

хлорид гидрозония дихлорид дигидрозония

Гидразин сильнейший восстановитель:

4KMn +7 O 4 + 5N 2 -2 H 4 + 6H 2 SO 4 = 5N 2 0 + 4Mn +2 SO 4 + 2K 2 SO 4 + 16H 2 O

Несимметричный диметилгидразин (гептил) широко применяется в качестве ракетного топлива.

Соединения со степенью окисления –1. Гидроксиламин - NH 2 OH - основное неорганическое соединение азота в степени окисления -1.

Получают гидроксиламин восстановлением азотной кислоты водородом в момент выделения при электролизе:

HNO 3 + 6H = NH 2 OH + 2H 2 O

Это бесцветное кристаллическое вещество (т.пл. 33 °С), хорошо растворимое в воде, в которой проявляет свойства слабого основания. С кислотами дает соли гидроксиламмония – устойчивые бесцветные вещества, растворимые в воде.

NH 2 OH + H 2 O + + OH - , K b = 2×10 -8

ион гидроксиламмония

Атом азота в молекуле NH 2 OН проявляет промежуточную степень окисления (между -3 и +5) поэтому гидроксиламин может выступать как в роли восстановителя, так и в роли окислителя:

2N -1 H 2 OH + I 2 + 2KOH = N 0 2 + 2KI + 4H 2 O;

восстановитель

2N -1 H 2 OH + 4FeSO 4 + 3H 2 SO 4 = 2Fe 2 (SO 4) 3 + (N -3 H 4) 2 SO 4 + 2H 2 O

окислитель

NH 2 OН легко разлагается при нагревании, подвергаясь диспропорционированию:

3N -1 H 2 OH = N 0 2 + N -3 H 3 + 3H 2 O;

Соединения со степенью окисления +1. Оксид азота(I) - N 2 O (закись азота, веселящий газ). Строение его молекулы можно передать резонансом двух валентных схем, которые показывают, что рассматривать это соединение как оксид азота(I) можно только формально, реально это оксонитрид азота(V) - ON +5 N -3 .

N 2 O - бесцветный газ со слабым приятным запахом. В малых концентрациях вызывает приступы безудержного веселья, в больших дозах оказывает общее анестезирующее действие. Смесь закиси азота (80%) и кислорода (20%) использовалась в медицине для наркоза.

В лабораторных условиях оксид азота(I) можно получить разложением нитрата аммония. N 2 O, полученный данным методом, содержит примеси высших оксидов азота, которые чрезвычайно токсичны!

NH 4 NO 3 ¾® N 2 O + 2H 2 O

По химическим свойствам оксид азота(I) типичный несолеобразующий оксид, с водой, кислотами и щелочами не реагирует. При нагревании разлагается с образованием кислорода и азота. По этой причине N 2 O может выступать в роли окислителя, например:

N 2 O + H 2 = N 2 + H 2 O

Соединения со степенью окисления +2. Оксид азота(II) - NO - бесцветный газ, чрезвычайно токсичен. На воздухе быстро окисляется кислородом с образованием не менее токсичного оксида азота(IV). В промышленности NO получают окислением аммиака на платиновом катализаторе или, пропуская воздух через электрическую дугу (3000-4000 °С).

4NH 3 + 5О 2 = 4NО + 6H 2 О; N 2 + O 2 = 2NO

Лабораторным методом получения оксида азота(II) является взаимодействие меди с разбавленной азотной кислотой.

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO­ + 4H 2 O

Оксид азота(II) - несолеобразующий оксид, сильный восстановитель, легко реагирует с кислородом и галогенами.

2NO + O 2 = 2NO 2 ; 2NO + Cl 2 = 2NOCl

хлористый нитрозил

В то же время, при взаимодействии с сильными восстановителями NO выполняет функцию окислителя:

2NO + 2H 2 = N 2 + 2H 2 O; 10NO + 4Р = 5N 2 + 2Р 2 O 5

Соединения со степенью окисления +3. Оксид азота(III) - N 2 O 3 - жидкость интенсивно синего цвета (т.кр. -100 °С). Устойчив только в жидком и твердом состоянии при низких температурах. По-видимому, существует в двух формах:

Получают оксид азота(III) совместной конденсацией паров NO и NO 2 . В жидкости и в парах диссоциирует.

NO 2 + NO N 2 O 3

По свойствам типичный кислотный оксид. Реагирует с водой, образуя азотистую кислоту, с щелочами образует соли - нитриты.

N 2 O 3 + H 2 O = 2HNO 2 ; N 2 O 3 + 2NaOH = 2NaNO 2 + H 2 O

Азотистая кислота - кислота средней силы (K a = 1×10 -4). В чистом виде не выделена, в растворах существует в двух таутомерных формах (таутомеры - изомеры, находящиеся в динамическом равновесии).

нитрито-форма нитро-форма

Соли азотистой кислоты устойчивы. Нитрит-анион проявляет ярко выраженную окислительно-восстановительную двойственность. В зависимости от условий он может выполнять как функцию окислителя, так и функцию восстановителя, например:

2NaNO 2 + 2KI + 2H 2 SO 4 = I 2 + 2NO + K 2 SO 4 + Na 2 SO 4 + 2H 2 O

окислитель

KMnO 4 + 5NaNO 2 + 3H 2 SO 4 = 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

восстановитель

Азотистая кислота и нитриты склонны к диспропорционированию:

3HN +3 O 2 = HN +5 O 3 + 2N +2 O + H 2 O

Соединения со степенью окисления +4. Оксид азота(IV) - NO 2 - бурый газ, с резким неприятным запахом. Чрезвычайно токсичен! В промышленности NO 2 получают окислением NO. Лабораторным методом получения NO 2 является взаимодействие меди с концентрированной азотной кислотой, а также термическое разложение нитрата свинца.

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2

Молекула NO 2 имеет один неспаренный электрон и является стабильным свободным радикалом, поэтому оксид азота легко димеризуется.

Процесс димеризации обратим и очень чувствителен к температуре:

парамагнитен, диамагнитен,

бурый бесцветен

Диоксид азота - кислотный оксид, взаимодействует с водой, образуя смесь азотной и азотистой кислоты (смешанный ангидрид).

2NO 2 + H 2 O = HNO 2 + HNO 3 ; 2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Соединения со степенью окисления +5. Оксид азота(V) - N 2 O 5 - белое кристаллическое вещество. Получается дегидратацией азотной кислоты или окислением оксида азота(IV) озоном:

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3 ; 2NO 2 + O 3 = N 2 O 5 + O 2

В кристаллическом состоянии N 2 O 5 имеет солеподобное строение - + - , в парах (т.возг. 33 °С) - молекулярное.

N 2 O 5 - кислотный оксид - ангидрид азотной кислоты:

N 2 O 5 + H 2 O = 2HNO 3

Азотная кислота - HNO 3 - бесцветная жидкость с температурой кипения 84,1 °С, при нагревании и на свету разлагается.

4HNO 3 = 4NO 2 + O 2 + 2H 2 O

Примеси диоксида азота придают концентрированной азотной кислоте желто-бурую окраску. С водой азотная кислота смешивается в любых соотношениях и является одной из сильнейших минеральных кислот, в растворе нацело диссоциирует.

Строение молекулы азотной кислоты описывается следующими структурными формулами:

Сложности с написанием структурной формулы HNO 3 вызваны тем обстоятельством, что, проявляя в данном соединении степень окисления +5, азот, как элемент второго периода, может образовать только четыре ковалентные связи.

Азотная кислота - один из сильнейших окислителей. Глубина ее восстановления зависит от многих факторов: концентрация, температура, восстановитель. Обычно при окислении азотной кислотой образуется смесь продуктов восстановления:

HN +5 O 3 ® N +4 O 2 ® N +2 O ® N +1 2 O ® N 0 2 ® +

Превалирующим продуктом окисления концентрированной азотной кислотой неметаллов и неактивных металлов является оксид азота(IV):

I 2 + 10HNO 3 (конц) = 2HIO 3 + 10NO 2 + 4H 2 O;

Pb + 4HNO 3 (конц) = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

Концентрированная азотная кислота пассивирует железо и алюминий. Алюминий пассивируется даже разбавленной азотной кислотой. Азотная кислота любой концентрации не действует на золото, платину, тантал, родий и иридий. Золото и платина растворяется в царской водке - смеси концентрированной азотной и соляной кислот в соотношении 1: 3.

Au + HNO 3 + 4HCl = H + NO + 2H 2 O

Сильное окисляющее действие царской водки обусловлено образование атомарного хлора при распаде хлористого нитрозила - продукта взаимодействия азотной кислоты с хлороводородом.

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O;

NOCl = NO + Cl×

Эффективным растворителем малоактивных металлов является смесь концентрированной азотной и плавиковой кислот.

3Ta + 5HNO 3 + 21HF = 3H 2 + 5NO + 10H 2 O

Разбавленная азотная кислота при взаимодействии с неметаллами и малоактивными металлами восстанавливается преимущественно до оксида азота(II), например:

3P + 5HNO 3 (разб) + 2H 2 O = 3H 3 PO 4 + 5NO­;

3Pb + 8HNO 3 (разб) = 3Pb(NO 3) 2 + 2NO­ + 4H 2 O

Активные металлы восстанавливают разбавленную азотную кислоту до N 2 O, N 2 или NH 4 NO 3 , например,

4Zn + 10HNO 3 (разб) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Основная масса азотной кислоты идет на производство удобрений и взрывчатых веществ.

Получают азотную кислоту в промышленности контактным или дуговым способом, которые отличаются первой стадией - получением оксида азота(II). Дуговой способ основан на получении NO при пропускании воздуха через электрическую дугу. В контактном способе NO получают окислением аммиака кислородом на платиновом катализаторе. Далее оксид азота(II) окисляется до оксида азота(IV) кислородом воздуха. Растворяя NO 2 в воде в присутствии кислорода получают азотную кислоту с концентрацией 60-65%.

4NO 2 + O 2 + 2H 2 O = 4HNO 3

При необходимости азотную кислоту концентрируют перегонкой с концентрированной серной кислотой. В лаборатории 100 %-ную азотную кислоту можно получить действием концентрированной серной кислоты на кристаллический нитрат натрия при нагревании.

NaNO 3 (кр) + H 2 SO 4 (конц) = HNO 3 ­ + NaHSO 4

Соли азотной кислоты - нитраты - хорошо растворимы в воде, термически неустойчивы. Разложение нитратов активных металлов (исключая литий), стоящих в ряду стандартных электродных потенциалов левее магния, приводит к образованию нитритов. Например:

2KNO 3 = 2KNO 2 + O 2

При разложении нитратов лития, магния, а также нитратов металлов, расположенных в ряду стандартных электродных потенциалов правее магния, вплоть до меди, выделяется смесь оксида азота(IV) и кислорода. Например:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Нитраты металлов, расположенных в конце ряда активности, разлагаются до свободного металла:

2AgNO 3 = 2Ag + 2NO 2 + O 2

Нитраты натрия, калия и аммония широко используются для производства пороха и взрывчатых веществ, а также в качестве азотных удобрений (селитры). В качестве удобрений используют также сульфат аммония, аммиачную воду и карбамид (мочевину) - полный амид угольной кислоты:

Азид водорода (динитридонитрат) - HN 3 (HNN 2) – бесцветная летучая жидкость (т.пл. –80 °С, т.кип. 37 °С) с резким запахом. Центральный атом азота находится в sp-гибридизации, степень окисления +5, соседние с ним атомы имеют степень окисления –3. Структура молекулы:

Водный раствор HN 3 – азотистоводородная кислота по силе близка к уксусной, K a = 2,6×10 -5 . В разбавленных растворах устойчива. Её получают взаимодействием гидразина и азотистой кислоты:

N 2 Н 4 + HNO 2 = HN 3 + 2Н 2 О

По окислительным свойствам HN 3 (HN +5 N 2) напоминает азотную кислоту. Так, если при взаимодействии металла с азотной кислотой образуются оксид азота(II) и вода, то с азотистоводородной кислотой – азот и аммиак. Например,

Cu + 3HN +5 N 2 = Cu(N 3) 2 + N 2 0 ­ + NH 3

Смесь HN 3 и HCl ведет себя подобно царской водке. Соли азотистоводородной кислоты - азиды. Относительно устойчивы только азиды щелочных металлов, при температуре > 300 °С они разрушаются без взрыва. Остальные распадаются со взрывом при ударе или нагревании. Азид свинца используют в производстве детонаторов:

Pb(N 3) 2 = Pb + 3N 2 0 ­

Исходным продуктом для получения азидов является NaN 3 , который образуется в результате реакции амида натрия и оксида азота(I):

NaNH 2 + N 2 O = NaN 3 + H 2 O

4.2.Фосфор

Фосфор представлен в природе одним изотопом - 31 Р, кларк фосфора равен 0,05 мол.%. Встречается в виде фосфатных минералов: Ca 3 (PO 4) 2 - фосфорит, Ca 5 (PO 4) 3 X (X = F,Cl,OH) - апатиты. Входит в состав костей и зубов животных и человека, а также в состав нуклеиновых кислот (ДНК и РНК) и аденозинфосфорных кислот (АТФ, АДФ и АМФ).

Получают фосфор восстановлением фосфорита коксом в присутствии диоксида кремния.

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 2P­ + 5CO

Простое вещество - фосфор - образует несколько аллотропных модификаций, из которых основными являются белый, красный и черный фосфор. Белый фосфор образуется при конденсации паров фосфора и представляет собой белое воскоподобное вещество (т.пл. 44 °С), нерастворимое в воде, растворимое в некоторых органических растворителях. Белый фосфор имеет молекулярное строение и состоит из тетраэдрических молекул P 4 .

Напряженность связей (валентный угол P-P-P составляет всего 60 °) обусловливает высокую реакционную способность и токсичность белого фосфора (смертельная доза около 0,1 г). Поскольку белый фосфор хорошо растворим в жирах, в качестве антидота при отравлении нельзя применять молоко. На воздухе белый фосфор самопроизвольно воспламеняется, поэтому хранят его в герметически упакованной химической посуде под слоем воды.

Красный фосфор имеет полимерное строение. Получается при нагревании белого фосфора или облучении его светом. В отличие от белого фосфора малореакционноспособен и нетоксичен. Однако остаточные количества белого фосфора могут придавать красному фосфору токсичность!

Черный фосфор получается при нагревании белого фосфора под давлением 120 тыс.атм. Имеет полимерное строение, обладает полупроводниковыми свойствами, химически устойчив и нетоксичен.

Химические свойства. Белый фосфор самопроизвольно окисляется кислородом воздуха при комнатной температуре (окисление красного и черного фосфора идет при нагревании). Реакция протекает в два этапа и сопровождается свечением (хемилюминесценция).

2P + 3O 2 = 2P 2 O 3 ; P 2 O 3 + O 2 = P 2 O 5

Ступенчато происходит также взаимодействие фосфора с серой и галогенами.

2P + 3Cl 2 = 2PCl 3 ; PCl 3 + Cl 2 = PCl 5

При взаимодействии с активными металлами фосфор выступает в роли окислителя, образуя фосфиды - соединения фосфора в степени окисления -3.

3Ca + 2P = Ca 3 P 2

Кислотами-окислителями (азотная и концентрированная серная кислоты) фосфор окисляется до фосфорной кислоты.

P + 5HNO 3 (конц) = H 3 PO 4 + 5NO 2 ­ + H 2 O

При кипячении с растворами щелочей белый фосфор диспропорционирует:

4P 0 + 3KOH + 3H 2 O = P -3 H 3 ­ + 3KH 2 P +1 O 2

фосфин гипофосфит калия

Азот - едва ли не самый распространенный химический элемент во всей Солнечной Системе. Если быть конкретнее, то азот занимает 4 место по распространенности. Азот в природе - инертный газ.

Этот газ не имеет ни цвета, ни запаха, его очень трудно растворить в воде. Однако соли-нитраты имеют свойство очень хорошо реагировать с водой. Азот имеет малую плотность.

Азот - удивительный элемент. Есть предположение, что свое название он получил из древнегреческого языка, что в переводе с него значит «безжизненный, испорченный». Отчего же такое негативное отношение к азоту? Ведь нам известно, что он входит в состав белков, а дыхание без него практически невозможно. Азот играет важную роль в природе. Но в атмосфере этот газ инертен. Если его взять таким, какой он есть в первозданном виде, то возможно множество побочных эффектов. Пострадавший может даже умереть от удушья. Ведь азот оттого и называется безжизненным, что не поддерживает ни горения, ни дыхания.

При обычных условиях такой газ реагирует только с литием, образовывая такое соединение, как нитрид лития Li3N. Как мы видим, степень окисления азота в таком соединении равна -3. С остальными металлами и конечно же, реагирует тоже, однако лишь при нагревании или при использовании различных катализаторов. К слову говоря, -3 - низшая степень окисления азота, так как только 3 электрона нужны для полного заполнения внешнего энергетического уровня.

Этот показатель имеет разнообразные значения. Каждая степень окисления азота имеет свое соединение. Такие соединения лучше просто запомнить.

5 - высшая степень окисления у азота. Встречается в и во всех солях-нитратах.