Метод эпр применяющий микроволновое излучение. Электронный парамагнитный резонанс

  • 2.3. Изучение кинетики полимеризации
  • 2.4. Определение и изучение межмолекулярных и внутримолекулярных водородных связей
  • 2.5. Определение степени кристалличности полимеров
  • 2.7. Заключение
  • Глава 3. Метод ядерного магнитного резонанса
  • 3.1. Основы метода
  • 3.2. Области применения ЯМР-спектроскопии в макромолекулярной химии
  • 3.3. Примеры применения метода ЯМР
  • Определение структуры вещества
  • Определение молекулярной массы полимера
  • Изучение процессов комплексообразования
  • О возможности определения стереорегулярности полимеров
  • Определение состава сополимера
  • Корреляция химических сдвигов винильных соединений с их параметрами и индексами реакционной способности
  • 3.4. Заключение
  • Глава 4. Рентгеновская спектроскопия
  • 4.1. Общие положения
  • 4.2. Примеры применения рентгеноструктурного анализа
  • 4.3. Определение степени кристалличности полимеров
  • 4.4. Заключение
  • Глава 5. Полярографический метод в химии полимеров
  • 5.1. Общие положения
  • 5.2. Области применения полярографии в химии полимеров
  • 5.3. Качественная идентификация полимеров
  • 5.4. Контроль синтеза макромолекул
  • 5.7. Заключение
  • Глава 6. Спектроскопия электронного парамагнитного резонанса
  • 6.1. Краткие основы метода
  • 6.3. Исследование структуры радикалов и молекулярных движений
  • 6.4. Исследование химических процессов в полимерах
  • 3.5. Заключение
  • Глава 7. Флуоресценция полимеров
  • 7.1. Суть метода
  • 7.2. Области применения флуоресценции
  • 7.3. Флуоресценция полимеров
  • 7.4. Различение полимеров и добавок
  • 7.5. Определение молекулярной массы
  • 7.6. Заключение
  • Глава 8. Масс-спектрометрия полимеров
  • 8.1. Общие положения
  • 8.3. Масс-спектры карбазолов
  • 8.4. Заключение
  • Глава 9. Диэлектрические методы исследования строения полимеров
  • 9.1. Термины и их определение
  • 9.2. Зависимость диэлектрических свойств от строения полимерных материалов
  • 9.3. Диэлектрические свойства поливинилкарбазолов
  • 9.4. Электрофотографический метод
  • 9.5. Фоточувствительные свойства поливинилкарбазола
  • 9.6. Заключение
  • Глава 10. Хроматографические методы в химии полимеров
  • 10.1. Общие положения
  • 10.2. Гель-проникающая хроматография.
  • 10.3. Тонкослойная хроматография полимеров
  • 10.4. Пиролитическая газовая хроматография
  • 10.5. Заключение
  • Глава 11. Определение некоторых параметров полимеризации
  • 11.1. Методы определения скорости полимеризации
  • 11.2. Расчет состава сополимеров
  • 11.3. Заключение
  • Глава 12. Методы термического анализа полимерных материалов
  • 12.1. Термогравиметрический метод
  • 12.3. Заключение
  • Глава 13. Методы определения физических состояний полимеров
  • 13.1. Термомеханический метод
  • 13.2. Частотно-температурный метод определения физических состояний аморфных линейных полимеров
  • 13.4. Заключение
  • Глава 14. Методы измерения внутреннего трения
  • 14.1. Способы измерения внутреннего трения
  • 14.2. Терморелаксационные кривые полимеров
  • 14.3. Заключение
  • Глава 15. Методы измерения акустических характеристик полимеров
  • 15.1. Методы измерения акустических характеристик
  • 15.2. Области применения
  • 15.3. Заключение
  • Глава 16. Методы определения вязкости расплавов и растворов полимеров
  • 16.1. Капиллярная вискозиметрия
  • 16.2. Ротационная вискозиметрия
  • 16.3. Измерения вязкости разбавленных растворов полимеров
  • 16.4. Заключение
  • Глава 17. Методы определения молекулярной массы и молекулярно-массового распределения полимеров
  • 17.1. Методы определения молекулярных масс полимеров
  • 17.2. Определение молекулярной массы по концевым группам
  • 17.3. Методы определения молекулярно-массового распределения полимеров
  • 17.4.Области применения ММР в исследовательской практике
  • 17.5. Влияние конверсии мономера на ММР
  • 17.6. Температура полимеризации и ее связь с молекулярной массой.
  • 17.7. Вязкость расплавов полимеров
  • 17.8. Заключение
  • Глава 18. Механические свойства полимерных материалов и методы их определения
  • 18.1. Области применения механических свойств
  • 18.2. Методы определения важнейших механических показателей полимерных материалов
  • 18.3. Заключение
  • Список литературы
  • Глава 6. Спектроскопия электронного парамагнитного резонанса

    6.1. Краткие основы метода

    Спектроскопия электронного парамагнитного резонанса(ЭПР) – это явление резонансного поглощения энергии электромагнитных волн парамагнитными частицами, помещенными в постоянное магнитное поле. Это поглощение возникает вследствие того, что неспаренные

    электроны парамагнитных частиц ориентируются в постоянном магнитном поле так, что их собственный момент количества движения (спин) направлен либо по полю, либо против поля. Поглощение представляет собой функцию неспаренных электронов, содержащихся в

    исследуемом

    Вследствие

    поглощения

    высокочастотного поля образцом появляется сигнал ЭПР. Спектр ЭПР

    представляет собой зависимость поглощения микроволновой энергии от

    внешнего

    магнитного

    Поглощениепля

    сверхвысокочастотного магнитного поля регистрируется либо на экране

    осциллографа, либо на самописце радиоспектрометра.

    рис. 6.1 приведена

    ЭПР-спектре

    гипотетического соединения.

    радикала. Для этих целей составлены атласы спектров ЭПР различных соединений. Для интерпретации спектров ЭПР важны следующие параметры линий: форма, интенсивность, положение и расщепление.

    Следует заметить, что приборы сразу же выдают первую производную кривой поглощения энергии (рис. 6.1).

    Интенсивность линии ЭПР-спектра – это площадь под его кривой. Она пропорциональна числу неспаренных электронов в образце. За положение линии в спектре ЭПР принимается точка, в которой первая

    ~O -CH -O ~

    Рис. 6.2. Схема появления сверхтонкого расщепления в ЭПР-спектре срединного радикала полиформальдегида

    когда система

    содержит ядра с магнитным моментом,

    например протон (Н1 ), вблизи неспаренного электрона, на магнитный

    момент электрона влияет ориентация магнитного момента. ядраВ

    результате такого взаимодействия каждый магнитный энергетический

    электрона

    расщепляется

    ПодуровнейЭто

    взаимодействие электрона и магнитного ядра называется сверхтонким

    взаимодействием (СТВ), а

    расщепление

    энергетических

    уровней–

    сверхтонким расщеплением (рис. 6.2).

    6.2. Области применения ЭПР-спектроскопии в

    макромолекулярной химии

    ЭПР-спектроскопия

    макромолекулярной

    используется для изучения свободных радикалов, образующихся в следующих процессах:

    · полимеризации (фото-, радиационное инициирование и т. д.);

    · деструкции полимеров;

    · окисление полимеров;

    · расщепление макромолекул при механодеструкции.

    6.3. Исследование структуры радикалов и молекулярных движений

    Энергия СТВ неспаренного электрона с ядрами складывается из двух частей – изотропной и анизотропной. Так, изотропная часть определяет энергию дипольного взаимодействия электрона с ядром, и она зависит от угла между осьюр -орбитали неспаренного электрона и направлением постоянного магнитного поля. Анизотропное СТВ проявляется в спектре ЭПР радикалов в твердых телах, где ориентация радикалов жестко фиксированы. В жидкостях анизотропное СТВ отсутствует.

    полиэтилена -CH 2 - CH - CH 2 - CH - (рис. 6.3).

    В поликристаллическом полимере спектр состоит из шести линий

    (рис. 6.3, а ). Это

    обусловлено тем, что

    взаимодействие

    неспаренного

    электрона

    осуществляется

    магнитноэквивалентными

    протонами,

    константы

    примерно одинаковы.

    Рис. 6.3. Спектры ЭПР срединного радикала полиэтилена в поликристалле (а ) и в монокристалле при ориентации оси макромолекулы вдоль поля (б ) и перпендикулярно полю (в )

    Однако спектр полиэтилена ориентированного, в котором зигзаг цепи полимера расположен вдоль направления поля, уже имеет пять линий (рис. 6.3, б ). Этот ЭПР-спектр обусловлен взаимодействием неспаренного электрона только с четырьмя протонами. Взаимодействие с α-водородом в этой ориентации мало и не проявляется в спектре.

    Если теперь повернуть поле и направить его вдольр -орбитали, перпендикулярно зигзагу цепи, то появляются 10 линий (рис. 6.3, в ). Удвоение числа линий связано с расщеплением на α-протоне, которое при этой ориентации достаточно велико.

    Рис. 6.4. Спектры ЭПР срединного ~CH2 - C H - CH2 ~ (а ) и концевого

    ~CH2 - C H2 (б ) макрорадикалов полиэтилена

    В полиэтилене цепи имеют плоскую конформацию, и поэтому в срединном радикале все пять протонов, ближайших к реакционному центру радикала, магнитно эквивалентны. Спектр ЭПР такого радикала (рис. 6.4, а ) состоит из шести линий, распределение интенсивностей которых описывается биномиальным законом. Спектр ЭПР концевого радикала состоит из пяти линий (рис. 6.4, б ).

    6.4. Исследование химических процессов в полимерах

    Метод ЭПР используется для обнаружения, радикалов исследования их превращений и радикальных реакций в полимерах.

    Для исследования химических процессов важно не только идентифицировать радикалы, но и измерить их концентрации. Прямое определение свободных радикалов с помощью ЭПР в ходе свободнорадикальной полимеризации в настоящее время не совсем успешно. Это обусловлено тем, что при обычных экспериментальных скоростях полимеризации концентрация радикалов очень мала.

    Методом ЭПР идентифицированы растущие макрорадикалы в жидкой и твердой фазах, определены их концентрации, найдены константы скорости роста и обрыва цепей.

    Метод ЭПР приобрел большое значение в химии, физике, биологии, медицине, поскольку позволяет определять структуры и концентрации органических и неорганических свободных радикалов. Свободные радикалы могут быть созданы химическим методом, фотохимически или при действии излучения высокой энергии.

    Спектр ЭПР дают свободные радикалы, молекулы с нечетным числом электронов, триплетные состояния органических молекул, парамагнитные ионы переходных металлов и их комплексы.

    Метод ЭПР начал применятся в биологических исследованиях в 50-ые годы 20 в. Благодаря довольно высокой чувствительности и возможности в определении природы парамагнитных частиц этот метод нашел широкое применение для изучения целого ряда биологических процессов.

    Помимо сигналов свободных радикалов в тканях наблюдается целый ряд сигналов металлов (Fe, Cu, Mn, Ni, Co). Эти металлы входят в состав металлопротеинов, принимающих участие в целом ряде ферментативных процессов. Железосодержащие белки (цитохромы, ферредоксины) являются компонентами электрон-транспортных цепей в митохондриях и хлоропластах.

    Методом ЭПР исследован целый ряд ферментативных систем, обнаружены свободно-радикальные продукты субстратов. В ряде случаев оказалось возможным наблюдать за окислительно-восстановительными превращениями ионов металлов, входящих в активный центр фермента.

    ЭПР-спектроскопия широко применяется в исследованиях фотосинтеза: изучается механизм первичных стадий разделения зарядов в реакционных центрах и дальнейший перенос электрона по цепи электронного транспорта.

    Помимо изучения механизмов реакций, протекающих с участием парамагнитных частиц, метод ЭПР широко используют и для исследования структурно-динамических свойств макромолекул и биомембран.

    В последнее время для изучения биологических и полимерных систем часто используются методы «парамагнитного зонда», «спиновых меток» и «спиновых ловушек». Все они основаны на использовании стабильных азотнокислых радикалов различного строения, а точнее на анализе изменений ширины линий спектров ЭПР, вызванных вращательной и поступательной диффузией этих радикалов.

    Основная идея метода спиновых меток и зондов состоит в присоединении к той или иной функциональной группе белка свободного радикала и изучению характеристик его сигналов ЭПР. Наиболее удобны в этом отношении нитроксильные радикалы, содержащие свободнорадикальную группу:

    где R 1 и R 2 – различные химические группировки.

    Метод «спиновых меток» заключается в том, что к непарамагнитной молекуле стабильный радикал прикрепляется ковалентной или какой-либо другой связью так, чтобы свободная валентность оказалась незатронутой. Характер движения отчетливо проявляется в форме спектра и служит важным источником информации об исходной молекуле.

    Если молекула встраивается в белковую молекулу и там удерживается с помощью электростатических сил или гидрофобных взаимодействий, то такая молекула называется спиновым зондом. Метод основан на исследовании вращательной и поступательной подвижности радикала-зонда в водных или органических средах или в матрице полимера. Подвижность радикала зависит от подвижности молекул окружающей среды, поэтому радикал является своеобразным молекулярным датчиком структурной и динамической информации о локальном окружении.

    Форма сигнала ЭПР, даваемого спиновой меткой или зондом, зависит от микроокружения нитроксильного радикала и, в первую очередь, от вращательной подвижности той группы, в состав которой он входит.

    Основной недостаток спиновых меток и зондов заключается в том, что хотя эти молекулы и невелики, всё же, включаясь в липидный бислой, они несколько изменяют его свойства.

    В основе метода «спиновых ловушек» лежит реакция специально вводимой в исследуемую систему непарамагнитной молекулы (ловушки) с короткоживущим радикалом, при этом образуется стабильный радикал. Кинетическое поведение образующегося стабильного радикала и его структура дают сведения о кинетике и механизме процессов в изучаемой системе.

    Объектами исследования в химии с применением ЭПР-спектроскопии являются: 1) свободные радикалы в промежуточных продуктах органических реакций; 2) кинетика реакций; 3) химия поверхностных явлений; 4) разрушение, происходящее в результате облучения; 5) полимеризация, обусловленная свободными радикалами; 6) свободные радикалы, замороженные при низких температурах; 7) металлы переменной валентности и их комплексы.

    Метод ЭПР дает ценный вклад в исследование кинетики и механизмов химических реакций. Во-первых, измерение ширины линий в спектрах ЭПР можно использовать для определения констант скорости процессов с участием парамагнитных частиц, характеристическое время жизни которых лежит в интервале 10 -5 -10 -10 с. Во-вторых, метод ЭПР позволяет регистрировать с высокой чувствительностью в разных условиях парамагнитные частицы, что дает ценную информацию о механизмах реакций. В-третьих, спектрометр ЭПР можно использовать как аналитический прибор для детектирования в ходе реакций концентрации реагирующих парамагнитных молекул. Количество парамагнитных центров в образце пропорционально площади под спектром поглощения.

    Метод ЭПР широко используется для исследования быстрых процессов, связанных с изменением молекулярной структуры радикалов. Эти процессы включают заторможенное вращение и конформационные переходы.

    Для короткоживущих радикалов чувствительность метода может быть повышена путем использования проточной системы или непрерывного облучения. Спектры ЭПР нестабильных радикалов можно получить, зафиксировав их в стеклах, матрицах замороженных благородных газов или кристаллах.

    Вопросы для собеседования

    1. Теоретические основы метода.

    2. Аналитические параметры ЭПР-спектра.

    3. Спектрометры ЭПР.

    4. Применение ЭПР.

    Тестовые задания

    1. Условие резонанса в методе ЭПР:

    а) n= gH 0 (1-s) / 2p; б) δ = (ΔН/Н 0);·в)hn=gβH 0 ; г) δ = (Δν/ν 0)/(ΔН/Н 0).

    2. Что происходит в момент резонанса в методе ЭПР:

    а) происходит поглощение квантов излучения, переориентации спинов не происходит;

    б) происходит поглощение квантов излучения и переориентации спинов, т.е. переход из нижнего энергетического состояния в верхнее и наоборот. Количество переходов снизу вверх больше числа переходов сверху вниз.

    в) происходит поглощение квантов излучения и переориентации спинов, т.е. переход из нижнего энергетического состояния в верхнее и наоборот. Количество переходов сверху вниз больше числа переходов снизу вверх.

    3. Параметры спектров ЭПР:

    а) g-фактор, ширина полосы поглощения, интенсивность линии поглощения;

    б) общее число сигналов, интенсивность сигналов, химический сдвиг, мультиплетность сигнала;

    в) g-фактор, ширина полосы поглощения, интенсивность линии поглощения, СТС спектров ЭПР.


    МАСС-СПЕКРОМЕТРИЯ

    Данный метод принципиально отличается от спектроскопических методов. Методы масс-спектрометрии основаны на ионизации вещества, разделении ионов, согласно отношению (m/z ), и регистрации массы образующихся осколков.

    Теоретические и экспериментальные основы масс-спектрометрии были заложены еще Д.Д. Томсоном, который впервые в 1912 г. создал прибор для получения масс-спектра положительных ионов. Однако его прибор имел низкое разрешение. Его ученик Ф. Астон в 1918 г. существенно повысил разрешение и на своем приборе впервые открыл изотопы элементов. Практически одновременно с Ф. Астоном в Чикаго А. Демпстер сконструирован первый масс-спектрометр, в котором анализатором служило поперечное магнитное поле, а ионные токи измерялись электрическими методами. Схема его используется и в современных приборах.

    Ионизация молекул должна проводиться в таких условиях, при которых образовавшийся ион вне зависимости от метода ионизации не претерпевал бы никаких столкновений с другими молекулами или ионами. Это необходимо для установления взаимосвязи между свойствами иона и молекулы.

    Методы ионизации

    Ионизация может проводиться различными методами.

    1. Метод ионизации электронным ударом (ЭУ).

    Это наиболее распространенный метод получения ионов в связи с простотой и доступностью источников ионов и их высокой эффективностью. Допустим, что через пары вещества проходит поток электронов, энергию которых можно постепенно увеличивать. Если эта энергия достигнет определенного уровня, то при столкновении электрона с молекулой может произойти «выбивание» из нее электрона с образованием молекулярного иона:

    многоатомная молекула молекулярный ион (катион-радикал)

    Наименьшая энергия бомбардирующих электронов, при которой возможно образование из данной молекулы иона, называется энергией ионизации вещества. Энергия ионизации является мерой прочности, с какой молекула удерживает наименее связанный с ней электрон. Для органических молекул энергия ионизации составляет 9 ÷12 эВ.

    Если энергия электронов значительно превышает энергию ионизации, то образующийся молекулярный ион получает избыточную энергию, которой может оказаться достаточно для разрыва в нем связей. Происходит распад молекулярного иона на частицы меньшей массы (фрагменты). Такой процесс называется фрагментацией . В практике масс-спектрометрии используются электроны с энергией 30÷100 эВ, что обеспечивает фрагментацию молекулярного иона.

    Молекулярные ионы - это такие ионы, массы которых равны массе ионизируемой молекулы. К сожалению, нет прямых методов определения структуры ионов. Поэтому часто используют предположение о тождественности структуры молекулярного иона (М +) и нейтральной молекулы (М). Вероятность образования молекулярного иона больше для простых, малых молекул. С увеличением числа атомов в молекуле увеличивается вероятность фрагментации молекулярного иона.

    Известны два основных типа фрагментации молекулярного иона - диссоциация и перегруппировка.

    Диссоциация - распад молекулярного иона с сохранением последовательности связей. В результате процесса образуются катион и радикал:

    Диссоциация углеводородов приводит к фрагментам с нечетными значениями отношения m/z.

    Перегруппировка сопровождается изменением последовательности связей, в результате чего образуется новый катион-радикал меньшей массы и нейтральная устойчивая молекула (Н 2 О, СО, СО 2 и т.д.):

    Перегруппировка углеводородов и кислородсодержащих соединений приводит к фрагменту с четным значением отношения m/z. Измерение массы образующихся осколков и их относительного количества позволяет получить ценную информацию о строении органических соединений.

    Рассмотрим устройство масс-спектрометра (рис. 1). Масс-спектрометр должен содержать узлы для выполнения следующих функций: 1) ионизации пробы, 2) ускорение ионов электрическим полем, 3) распределение ионов согласно отношению m/z, 4) детектирование ионов по соответствующему электрическому сигналу.

    Рис.1. Устройство масс-спектрометра

    1 - источник электронов; 2 - ионизационная камера; 3 - ускорительные пластины (отрицательный потенциал); 4 - магнит; 5 - щель;

    6 - коллектор ионов (детектор ионов)

    Для получения масс-спектра пары вещества небольшими количествами с помощью специальной системы напуска вводятся в ионизационную камеру (2) , где поддерживается глубокий вакуум (давление 10 -6 мм рт. ст.). Молекулы вещества бомбардируются потоком электронов, излучаемых раскаленным катодом (1). Образующиеся ионы выталкиваются из ионизационной камеры небольшой разностью потенциалов (3). Получаемый поток ионов ускоряется, фокусируется сильным электрическим полем и попадает в магнитное поле (4).

    В результате бомбардировки молекул вещества электронами образуются частицы, имеющие положительный или отрицательный заряд, а также нейтральные частицы. При прохождении потока частиц через магнитное поле нейтральные частицы не изменяют направления, а положительные и отрицательные отклоняются в разные стороны. Величины отклонения ионов пропорциональны заряду и обратно пропорциональны их массе.

    Каждый отдельный ион, характеризуемый конкретной величиной m/z, при данной напряженности магнитного поля движется по собственной траектории. Интервал сканирования масс можно изменять, варьируя либо напряженностью магнитного поля, либо потенциалом электрического поля.

    В обычной масс-спектрометрии принято регистрировать только частицы, имеющие положительный заряд, т.к. при бомбардировке молекул электронами положительно заряженных ионов обычно больше, чем отрицательно заряженных. Если необходимо изучать и отрицательно заряженные ионы, следует изменить знак потенциала ускорения (ускорительные пластины).

    Если на выходе ионов из магнитного поля установить регистрирующее устройство, то частицы, различающиеся значениями m/z, будут давать раздельные сигналы. Интенсивность сигналов будет пропорциональна количеству частиц с данным значением m/z. Интенсивность сигналов определяется как их высота, выраженная в мм. Высота пика с максимальной интенсивностью принимается за 100 % (базовый пик), интенсивность остальных пиков пересчитывается пропорционально и выражается в процентах.

    С ростом отношения m/z разница в отклонении магнитным полем частиц, различающихся на одну атомную единицу массы, уменьшается. В связи с этим важной характеристикой масс-спектрометров является их разрешающая способность (R) , определяющая максимальную массу ионов, различающихся на одну атомную единицу массы (для которой прибор разделяет пики не менее чем на 90%):

    где М - максимальная масса, для которой перекрывание пиков менее 10%; ΔМ - одна атомная единица массы.

    Стандартные приборы имеют R ≈ 5000/1, а для приборов с двойной фокусировкой потока ионов R ≈ 10000/1 и даже больше. Такие приборы способны уловить разницу в молекулярной массе ионов до 0,0001. Масс-спектрометр с двойной фокусировкой может легко разделить пики ионов с одинаковыми номинальными величинами молекулярных масс, но разным элементным составом. Например, может различить N 2 (28,0061), CO (27,9949), и C 2 H 4 (28,0313).

    Установление эмпирической формулы по данным масс-спектров задача не простая, но ее можно решить, используя подходящий алгоритм. Для получения масс-спектра требуется ничтожно малое количество вещества - около 1 мкг.

    2. Химическая ионизация (ХИ).

    В этом методе образец до облучения пучком электронов разбавляют большим избытком «газа-реагента». Вероятность первичных ионизирующих столкновений между электронами и молекулами образца после этого настолько мала, что первичные ионы образуются почти исключительно из молекул реагента. В качестве реагентов обычно используют газы с низкой молекулярной массой, например, CH 4 , изо-C 4 H 10 , NH 3 и инертные газы (Ar, He). Вторичные ионы образуются в результате переноса атома водорода или электрона.

    Если газом-реагентом служит метан, то реакции протекают в такой последовательности:

    CH 4 + ē → CH 4 + + 2ē

    CH 4 + + ē → CH 3 + + H + + 2ē

    CH 4 + + CH 4 → CH 5 + + CH 3

    CH 3 + + CH 4 → C 2 H 5 + + H 2

    R-CH 3 + CH 5 + → R-CH 4 + + CH 4

    где R-CH 3 - молекула исследуемого вещества.

    Исследования показали, что частицы CH 5 + и C 2 H 5 + в сумме составляют около 90% ионов, присутствующих в этой системе. Масс-спектры, получаемые после химической ионизации, намного проще, содержат меньше пиков, и поэтому их часто легче интерпретировать.

    Явление электронного парамагнитного резонанса

    Если парамагнитный атом поместить в магнитное поле, то каждый его энергоуровень будет расщепляться на количество подуровней равных $2J+1$(количество возможных $m_J)$. Интервал между соседними уровнями при этом равен:

    В том случае, если атом в данном состоянии поместить еще в электромагнитную волну , имеющую частоту $\omega $, которая удовлетворит условию:

    то под воздействием магнитной компоненты волны в соответствии с правилом отбора будут возникать переходы атома между соседними подуровнями, внутри одного уровня. Такое явление называют электронным парамагнитным резонансом (ЭПР). Первым его отметил Е.К. Завойский в 1944 г. Так как ЭПР связано с резонансом, то переходы появляются только при определенной частоте падающей волны. Такую частоту легко оценить, если использовать выражение (2):

    При $g\approx 1$ и типичной индукции магнитного поля, которое используют в условиях лаборатории, $B\approx 1\ Тл$ получают $\nu ={10}^{10}Гц$. Что означает, что частоты локализованы в радиодиапазоне (СВЧ).

    При явлении резонанса энергия передается от поля к атому. Кроме того, при переходе атома с высоких подуровней Зеемана на более низкие подуровни, энергия передается от атома к полю. Надо отметить, что в случае теплового равновесия количество атомов имеющих меньшую энергию больше, чем число атомов обладающих большей энергией. Значит, переходы, которые увеличивают энергию атомов, превалируют над переходами в сторону с меньшей энергией. Получается, что парамагнетик поглощает энергию поля в радиодиапазоне и при этом увеличивает свою температуру.

    Опыты с явлением электронного парамагнитного резонанса дали возможность, применяя выражение (2), находить один из параметров: $g,B\ или\ {\omega }_{rez}$ по остальным величинам. Так, измеряя с высокой точностью $B$ и ${\omega }_{rez}$ в состоянии резонанса, находят величину фактора Ланде и магнитный момент атома в состоянии с J.

    В жидкостях и твердых телах атомы нельзя считать изолированными. Пренебрегать их взаимодействием нельзя. Оно ведет к тому, что интервалы между соседними подуровнями при расщеплении Зеемана являются разными, линии ЭПР имеют конечную ширину.

    ЭПР

    Итак, явление электронного парамагнитного резонанса состоит в поглощении парамагнетиком микроволнового радиоизлучения за счет переходов между подуровнями расщепления Зеемана. При этом расщепление энергоуровней вызвано воздействием постоянного магнитного поля на магнитные моменты атомов вещества. Магнитные моменты атомов в таком поле ориентируются по полю. Одновременно с эти идет расщепление энергоуровней Зеемана и перераспределение по данным уровням атомов. Заполняемость атомами подуровней оказывается разной.

    В состоянии термодинамического равновесия среднее количество атомов ($\left\langle N\right\rangle $), заселяющих данный подуровень можно вычислить, используя формулу Больцмана:

    где $\triangle E_{mag}\sim mH$. Подуровни с меньшим магнитным квантовым числом ($m$) имеют больше атомов, как состояния с меньшей потенциальной энергией. Значит, существует преимущественная ориентация магнитных моментов атомов по магнитному полю, которая соответствует намагниченному состоянию парамагнетика. В случае накладывания на парамагнетик переменного магнитного поля с частотой равной (кратной) частоте перехода между подуровнями расщепления Зеемана происходит резонансное поглощение электромагнитных волн. Оно вызвано превышением количества переходов, которые связаны с увеличением магнитного квантового числа на один:

    над количеством переходов типа:

    Так, из-за резонансного поглощения энергии переменного магнитного поля атомы будут совершать переходы с нижних более заполненных уровней, на верхние уровни. Поглощение пропорционально количеству поглощающих атомов в единице объема.

    Если вещество составлено из атомов с одним валентным электроном в состоянии s, имеющих полный магнитный момент равный спиновому магнитному моменту s - электрона, то ЭПР наиболее эффективен.

    Особенным парамагнитным резонансом считают резонансное поглощение электромагнитных волн электронами проводимости в металлах. Оно связано со спином электронов и спиновым парамагнетизмом электронного газа в таком веществе. В ферромагнетиках выделяют ферромагнитный резонанс, который связывают с переориентацией электронных моментов в доменах или между ними.

    Для изучения электронного парамагнитного резонанса используют радиоспектроскопы. В таких приборах частота ($\omega $) остается неизменной. Изменяют индукцию магнитного поля (B), которое создает электромагнит (рис.1).

    Рисунок 1. Электронный парамагнитный резонанс (ЭПР). Автор24 - интернет-биржа студенческих работ

    Маленький образец А располагают в объемном резонаторе R, который настроен на длину волны около 3 см. Радиоволны такой длины создаются генератором G. Эти волны через волновод V подводят к резонатору. Часть волн поглощается образцом А, часть из них через волновод попадают в детектор D. При проведении опыта проводят плавное изменение индукции магнитного поля (B), которое создается электромагнитом. Когда величина индукции удовлетворяет условию возникновения резонанса (2) образец начинает интенсивно поглощать волну.

    Замечание 1

    ЭПР один из самых простых методов радиоспектроскопии.

    Примеры

    Пример 1

    Задание : Каков магнитный момент атома $Ni$ в состоянии ${{}^3F}_4$, если резонансное поглощение энергии возникает при воздействии постоянного поля с магнитной индукцией $B_0$ и переменного магнитного поля с индукцией $B_0$, перпендикулярного к постоянному полю. Частота переменного поля равна $\nu $.

    Решение :

    Как известно в состоянии резонанса выполняется равенство:

    \[\hbar \omega =h\nu =\delta E={\mu }_bgB\left(1.1\right).\]

    Из формулы (1.1) найдем фактор Ланде:

    Для заданного состояния (${{}^3F}_4$) имеем: $L=3$, $S=1$, $J=4$. Магнитный момент задан при помощи выражения:

    \[\mu ={\mu }_bg\sqrt{J(J+1)}=\frac{h\nu }{B_0,\ }\sqrt{20}.\]

    Ответ : $\mu =\frac{h\nu }{B_0,\ }\sqrt{20}.$

    Пример 2

    Задание : Какую полезную информацию можно получить при изучении электронного парамагнитного резонанса?

    Решение :

    Эмпирически получив резонанс из условий резонанса можно найти одну из величин: фактор Ланде ($g$), индукцию магнитного поля в условиях резонансного поглощения энергии атомом (B), резонансную частоту (${\omega }_{rez}$). При этом B и ${\omega }_{rez}$ можно измерить с высокой точностью. Следовательно, ЭПР дает возможность получить значение $g\ $с высокой точностью и, следовательно, магнитный момент атома для состояния с квантовым числом $J$. Величина квантового числа S определяется по мультиплетности спектров. Если известны $g,\ J,\ S$ легко вычислить $L$. Получается, что становятся известными все квантовые числа атома и спиновый орбитальный и полный магнитный моменты атома.

    ЭПР

    Принцип метода ЭПР

    История открытия метода ЭПР

    Метод ЭПР является основным методом для изучения парамагнитных частиц присутствующих в биологических системах. К парамагнитным частицам имеющим важное биологическое значение относятся два главных типа соединений - это свободные радикалы и металлы переменной валентности (такие как Fe, Cu, Co, Ni, Mn ) или их комплексы. Кроме свободнорадикальных состояний методом ЭПРисследуют триплетные состояния, возникающие в ходе фотобиологических процессов.

    Метод электронного парамагнитного резонанса был открыт сравнительно недавно - в 1944 г . в Казанском Университете Евгением Константиновичем ЗАВОЙСКИМ при исследовании поглощения электромагнитной энергии парамагнитными солями металлов. Он заметил, что монокристалл CuCl 2 , помещенный в постоянное магнитное поле 40 Гаусс (4 мТл) начинает поглощать микроволновое излучение с частотой около 133 Мгц.

    Пионерами применения ЭПР в биологических исследованиях в СССР были Л.А. Блюменфельд и А.Э. Калмансон, которые опубликовали в 1958 г. в журнале Биофизика статью об изучении свободных радикалов, полученных под действием ионизирующего излучения на белки.

    Механический и магнитный моменты электрона

    Орбитальное и спиновое движение электронов лежат в основе их орбитального и спинового механических моментов. Орбитальный момент количества движения электрона Р по орбите радиуса R равен:

    Где I - сила тока в контуре, а S - площадь контура (в данном случае круговой орбиты равна pR2 ). Подставляя в формулу (2) выражение для площади и учитывая, что:

    Сопоставляя выражения для механического и магнитного моментов электрона (1) и (4), можно написать, что:

    Где n - орбитальное квантовое число, принимающее значения 0, 1, 2 и т В этом случае с учетом (6), выражение для магнитного орбитального момента будет выглядеть:

    Спиновый магнитный момент электрона связан со спиновым движением электрона, которое можно представить, как движение вокруг собственной оси. Спиновый механический момент электрона равен:

    Где S - спиновое квантовое число, равное 1/2 .

    Магнитный и механический спиновые моменты связаны соотношением:

    (10)

    Где MS - магнитное квантовое число, равное +1/2 . Отношение магнитного момента к механическому называется гиромагнитным отношением (g ). Можно видеть, что для орбитального движения: ,а для спинового: Для гиромагнитного отношения электронов, имеющих различный вклад орбитального и спинового движения, вводят коэффициент пропорциональности g , такой, что:

    (11)

    Этот коэффициент пропорциональности называется g -фактором. g =1, при S =0, т.е. когда отсутствует спиновое движение электрона и существует только орбитальное, и g =2, если отсутствует орбитальное движение и существует только спиновое (например, для свободного электрона).

    Магнитный момент электрона складывается в общем случае из спинового и орбитального магнитных моментов. Однако, в большинстве случаев, орбитальный магнитный момент равен нулю. Поэтому при обсуждении принципа метода ýïð будет рассматриваться только спиновый магнитный момент .

    Эффект Зеемана

    Энергия взаимодействия магнитного момента электрона с магнитным полем выражается уравнением:

    (12)

    Где m Н - напряженность магнитного поля, cos(mH ) - косинус угла между m и Н .

    Эффект Зеемана (Рис. 1) (ЕS =+1/2 и ES =-1/2 )

    Из уравнения (11) следует, что:

    В этом случае разница в энергии между двумя уровнями составит:

    (15)

    Уравнение (14) описывает эффект Зеемана, который можно выразить следующим словами: энергетические уровни электронов, помещенных в магнитное поле, расщепляются в этом поле в зависимости от величины спинового магнитного момента и интенсивности магнитного поля.

    Основное уравнение резонанса

    Количество электронов, имеющих ту или иную энергию, будет определяться в соответствии с распределением Больцмана, а именно: ,

    Если теперь на систему электронов, находящуюся в магнитном поле, подать электромагнитную энергию, то при определенных значениях величины энергии падающего кванта будут происходить переходы электронов между уровнями. Необходимым условием переходов является равенство энергии падающего кванта (hn ) разности энергий между уровнями электронов с различными спинами (gbH ).

    (17)

    Уравнение (17) выражает основное условие поглощения энергии электронами. Под влиянием излучения электроны, находящиеся на более высоком энергетическом уровне, будут испускать энергию и возвращаться на нижний уровень, это явление называется индуцированной эмиссией .

    Электроны же, находящиеся на нижнем уровне, будут поглощать энергию и переходить на более высокий энергетический уровень, это явление называется резонансным поглощением . Поскольку вероятности одиночных переходов между энергетическими уровнями равны, а общая вероятность переходов пропорциональна количеству электронов, находящихся на данном энергетическом уровне, то поглощение энергии будет преобладать над ее излучением . Это связано с тем, что как следует из уравнения (16) заселенность нижнего уровня выше заселенности верхнего энергетического уровня.

    В этом месте следует отметить особое положение свободных радикалов, т.е. молекул, имеющих неспаренные электроны на внешней электронной орбитали, в распределении электронов по уровням энергии. Если на орбитали имеется парное количество электронов, то естественно, заселенность энергетических уровней будет одинакова и количество поглощенной энергии электронами будет равно количеству излученной энергии.

    Поглощение энергии веществом, помещенным в магнитное поле, будет заметно только в том случае, когда на орбитали будет находиться только один электрон, тогда можно будет говорить о Больцмановском распределении электронов между энергетическими уровнями.

    Характеристики спектров ЭПР

    Амплитуда сигнала

    Для определения концентрации измереяют площади под кривой поглощения у эталона с известной концентрацией парамагнитных центров у измеряемого образца и неизвестную концентрацию; находят из пропорции, при условии, что оба образца имеют одинаковую форму и объем:

    (18)

    Где C изм. и C эт. - концентрации измеряемого образца и эталона соответственно, а S изм. и S эт. - площади под линиями поглощения измеряемого сигнала и эталона.

    Для определения площади под линией поглощения неизвестного сигнала можно воспользоваться приемом численного интегрирования:

    Где f(H) - первая производная линии поглощения (спектр ЭПР), F(H) - функция линии поглощения, а H - напряженность магнитного поля.

    Где f"(H) - первая производная от линии поглощения, или спектр ЭПР . От интеграла легко перейти к интеральной сумме, учитывая, что H=n*DH , получим:


    (21)

    Где DH - шаг изменения магнитного поля, а n i - номер шага.

    Таким образом площадь под кривой поглощения будет равна произведению квадрата величины шага магнитного поля на сумму произведений амплитуды спектра ЭПР на номер шага. Из выражения (21) легко видеть, что при больших n (т.е. вдали от центра сигнала) вклад удаленных частей спектра может быть достаточно большим даже при малых значениях амплитуды сигнала.

    Форма линии

    Хотя согласно основному уравнению резонанса поглощение происходит только при равенстве энергии падающего кванта разности энергии между уровнями неспаренных электронов, спектр ЭПР является не линейчатым, а непрерывным в некоторой окрестности точки резонанса. Функция, описывающая сигнал ЭПР называется функцией формы линии . В разбавленных растворах, когда можно пренебречь взаимодействием между парамагнитными частицами, кривая поглощения описывается функцией Лоренца:

    Функция Гаусса является огибающей спектра ЭПР если между парамагнитными частицами существует взаимодействие. Учитывать форму линии особенно важно при определении площади под кривой поглощения. Как видно из формул (22) и (23) у функции Лоренца более медленное убывание и соответственно более широкие крылья, что может давать значительную ошибку при интегрировании спектра.

    Ширина линии

    Ширина спектра ЭПР зависит от взаимодействия магнитного момента электрона с магнитными моментами окружающих ядер (решетки) и электронов.

    Рассмотрим механизм поглощения энергии неспаренными электронами подробнее. Если в низкоэнергетическом состоянии на ходится N 1 электронов, а в высокоэнергетическом N 2 и N 1 больше N 2 , то при подаче электромагнитной энергии на образец разность заселенности уровней будет уменьшаться пока не станет равной нулю.

    Это происходит потому, что вероятности одиночного перехода под действием излучения из низкоэнергетического состояния в высокоэнергетическое и наоборот (W 12 и W 21) равны между собой, а заселенность нижнего уровня выше. Введем переменную n =N 1 -N 2 . Тогда изменение разности заселенности уровней во времени можно записать:

    и; откуда

    (24)

    Однако, в эксперименте изменения разности заселенности уровней не наблюдается благодаря тому, что существуют процессы релаксации, поддерживающие постоянной эту разность. Механизм релаксации заключается в передаче кванта электромагнитной энергии решетке или окружающим электронам и возвращении электрона на низкоэнергетический уровень

    Если обозначить вероятности переходов индуцируемых решеткой через P 12 и P 21 , причем P 12 меньше P 21 , то изменение разности заселенности уровней будет:

    В стационарном состоянии, когда изменение разности заселенности равно нулю, начальная разность заселенности уровней (n 0) остается постоянной и равной:

    Или заменив P 12 +P 21 на 1/Т 1 , получим

    (29)

    Величина Т 1 называется временем спин-решеточной релаксации и характеризует среднее время жизни спинового состояния. В итоге, изменение разности заселенности уровней системы неспаренных электронов, находящейся под воздействием электромагнитного излучения и взаимодействующей с решеткой, будет определяться уравнением:

    И при 2WT 1 много меньше 1 , n = n 0 , т.е при относительно небольших мощностях разность заселенности уровней остается практически постоянной . Из соотношения неопределенностей Гейзенберга следует, что:

    (32)

    Если принять, что Dt равно Т 1 , а соответствует gbDH , то уравнение (32) можно переписать в виде:

    (33)

    Т.е. неопределенность в ширине линии обратно пропорциональна времени спин-решеточной релаксации.

    Кроме взаимодействия магнитного момента неспаренного электрона с решеткой, возможно также его взаимодействие с магнитными моментами других электронов. Это взаимодействие приводит к уменьшению времени релаксации и тем самым к уширению линии спектра ЭПР. В этом случае вводят понятие времени спин-спиновой релаксации (Т 2). Наблюдаемое время релаксации считают суммой времени спин-решеточной и спин-спиновой релаксации.

    Для свободных радикалов в растворах Т 1 много меньше T 2 , следовательно ширина линии будет определяться Т 2 .Среди механизмов уширения линий следует упомянуть следующие: диполь-дипольное взаимодействие; анизотропия g-фактора; динамическое уширение линии и спиновый обмен .

    В основе диполь-дипольного взаимодействия лежит взаимодействие магнитного момента неспаренного электрона с локальным магнитным полем, создаваемым соседними электронами и ядрами. Напряженность магнитного поля в какой-либо точке зависит от расстояния до этой точки и взаимной ориентации магнитных моментов неспаренного электрона и другого взаимодействующего электрона или ядра. Изменение энергии неспаренного электрона будет определяться:

    (34)

    Где m - магнитный момент электрона, R - расстояние, до источника локального магнитного поля, q - угол между взаимодействующими магнитными моментами.

    Вклад анизотропии g -фактора в уширение линии ЭПР связан с тем, что орбитальное движение электрона создает переменнное магнитное поле с которым взаимодействует спиновый магнитный момент. Это взаимодействие приводит к отклонению g -фактора от значения 2,0023 , соответствующего свободному электрону .

    Для кристаллических образцов величины g -фактора, соответствующие ориентации кристалла обозначают g xx , g yy и g zz соответственно. При быстром движении молекул, например в растворах, анизотропия g -фактора может усредняться.

    Уширение сигнала ЭПР может быть связано с взаимным превращением двух форм радикала. Так, если каждая из форм радикала имеет свой спектр ЭПР, то увеличение скорости взаимного превращения этих форм друг в друга будет приводить к уширению линий, т.к. при этом уменьшается время жизни радикала в каждом состоянии. Такое изменение ширины сигнала называется динамическим уширением сигнала. Спиновый обмен является еще одним способом уширения сигнала ЭПР. Механизм уширения сигнала при спиновом обмене заключается в изменении направления спинового магнитного момента электрона на противоположное при соударении с другим неспаренным электроном или иным парамагнетиком.

    Поскольку при таком соударении уменьшается время жизни электрона в данном состоянии, то сигнал ЭПР уширяется. Наиболее частым случаем уширения линии ЭПР по механизму спинового обмена является уширение сигнала в присутствие кислорода или парамагнитных ионов металлов.

    Сверхтонкая структура

    В основе расщепления линии ЭПР на несколько лежит явление сверхтонкого взаимодействия, т. е. взаимодействия магнитных моментов неспаренных электронов (M S)с магнитными моментами ядер (M N).


    Поскольку в присутствии магнитного момента ядра суммарный магнитный момент равен M S + M N , где M S - магнитный момент электрона, а M N - магнитный момент ядра, то суммарное магнитное поле Н сумм. = Н 0 ± Н лок. , где Н лок. - локальное магнитное поле, создаваемое магнитным моментом ядра.
    В данном случае вместо одного резонансного значения поля будут два - Н 0 + Н лок. и Н 0 - Н лок. , которым будут соответствовать две линии. Таким образом, вместо одной линии при Н 0 мы получаем две линии при Н 0 + Н лок. и Н 0 - Н лок. .

    Важной особенностью сверхтонкого взаимодействия являются правила отбора для переходов между уровнями. Разрешенными переходами являются переходы при которых изменение спинового магнитного момента неспаренного электрона (DM S) равно 1 , а спинового магнитного момента ядра (DM N) равно 0 .

    В рассмотренном нами примере спин ядра, взаимодействующего с неспаренным электроном, был полуцелочисленным и был равен ± 1/2 , что в конечном итоге дало нам расщепление на две линии. Такая величина спина характерна для протонов . У ядер атомов азота (N 14) спин целочисленный. Он может принимать значения ±1 и 0 . В этом случае при взаимодействии неспаренного электрона с ядром атома азота будет наблюдаться расщепление на три одинаковых линии, соответствующих величине спина +1 , -1 и 0 . В общем случае число линий в спектре ЭПР равно N +1 .

    Естественно, что количество неспаренных электронов и соответственно площадь под кривой поглощения ЭПР не зависят от величины спина ядра и являются постоянными величинами. Следовательно, при расщеплении одиночного сигнала ЭПР на два или три, интенсивность каждой компоненты будет соответственно в 2 или 3 раза ниже.

    Очень похожая картина возникает, если неспаренный электрон взаимодействует не с одним, а с несколькими эквивалентными (с одинаковой константой сверхтонкого взаимодействия) ядрами, имеющими магнитный момент отличный от нуля, например двумя протонами. В этом случае возникает три состояния, соответствующие ориентации спинов протонов:

    1. оба по полю,

    2. оба против поля

    3. один по полю и один против поля.

    Вариант 3 имеет вдвое большую вероятность, чем 1 или 2 , т.к. может быть осуществлен двумя способами. В результате такого распределения неспаренных электронов одиночная линия расщепится на три с соотношением интенсивностей 1:2:1 . В общем случае, для n эквивалентных ядер со спином М N число линий равно 2nM N +1 .

    Устройство радиоспектрометра ЭПР

    Устройство радиоспектрометра ЭПР во многом напоминает устройство спектрофотометра для измерения оптического поглощения в видимой и ультрафиолетовой частях спектра.


    Источником излучения в радиоспектрометре является клистрон, представляющий из себя радиолампу, дающую монохроматическое излучение в диапазоне сантиметровых волн. Диафрагме спектрофотометра в радиоспектрометре соответствует аттенюатор, позволяющий дозировать мощность, падающую на образец. Кювета с образцом в радиоспектромере находится в специальном блоке, называемом резонатором. Резонатор представляет собой параллелепипед, имеющий цилиндрическую или прямоугольную полость в которой находится поглощающий образец. Размеры резонатора таковы, что в нем образуется стоячая волна. Элементом отсутствующем в оптическом спектрометре является электромагнит, создающий постоянное магнитное поле, необходимое для расщепления энергетических уровней электронов.

    Излучение, прошедшее измеряемый образец, в радиоспектрометре и в спектрофотометре, попадает на детектор, затем сигнал детектора усиливается и регистрируется на самописце или компьютере. Следует отметить еще одно отличие радиоспектрометра. Оно заключается в том, что излучение радиодиапазона передается от источника к образцу и далее к детектору с помощью специальных трубок прямоугольного сечения, называемых волноводами. Размеры сечения волноводов определяются длиной волны передаваемого излучения. Эта особенность передачи радиоизлучения по волноводам и определяет тот факт, что для регистрации спектра ЭПР в радиоспектрометре используется постоянная частота излучения, а условие резонанса достигается изменением величины магнитного поля.

    Еще одной важной особенностью радиоспектрометра является усиление сигнала посредством его модуляции высокочастотным переменным полем. В результате модуляции сигнала происходит его дифференцирование и превращение линии поглощения в свою первую производную, являющуюся сигналом ЭПР.

    Сигналы ЭПР, наблюдаемые в биологических системах

    Применение метода ЭПР в биологических исследованиях связано с изучением двух основных видов парамагнитных центров - свободных радикалов и ионов металлов переменной валентности. Изучение свободных радикалов в биологических системах связано с трудностью, заключающейся в низкой концентрации свободных радикалов, образующихся при жизнедеятельности клеток. Концентрация радикалов в нормально метаболизирующих клетках составляет по разным источникам примерно 10 -8 - 10 -10 М , в то время как современные радиоспектрометры позволяют измерять концентрации радикалов 10 -6 - 10 -7 М .

    Повысить концентрацию свободных радикалов можно затормозив их гибель и повысив скорость их образования. Это можно сделать путем облучения (УФ или ионизирующей радиацией) биологических объектов находящихся при низкой температуре.

    Изучение структуры радикалов более или менее сложных биологически важных молекул и было одним из первых направлений применения метода ЭПР в биологических исследованиях.


    Спектры ЭПР УФ-облученного цистеина


    Спектр ЭПР печени крысы

    Другим важным направлением применения метода ЭПР в биологических исследованиях было изучение металлов переменной валентности и/или их комплексов, существующих in vivo .

    Если взглянуть на спектр ЭПР, например, печени крысы, то можно увидеть сигналы цитохрома Р-450 , имеющие g -фактор 1,94 и 2,25 , сигнал метгемоглобина с g -фактором 4,3 и сигнал свободных радикалов, принадлежащий семихинонным радикалам аскорбиновой кислоты и флавинов с g -фактором 2,00 .

    Благодаря коротким временам релаксации сигналы ЭПР металлопротеинов можно наблюдать только при низкой температуре, например, температуре жидкого азота.

    Однако, сигналы ЭПР некоторых радикалов можно наблюдать и при комнатной температуре. К таким сигналам относятся сигналы ЭПР многих семихинонных или феноксильных радикалов, таких как семихинонный радикал убихинона, феноксильный и семихинонный радикал a-токоферола (витамина Е ), витамина D , и многие другие.