Метровый телескоп. Большой телескоп азимутальный

БТА, или большой телескоп азимутальный – это тот самый телескоп с 6-метровым 40-тонным зеркалом, который долгое время был самым крупным в мире. Свою работу он начал в 1975 году, и благодаря ему было сделано немало открытий. Однако любое зеркало любого телескопа со временем требует обновления, случилось это и здесь.

Когда телескоп только строился, в мире вообще не существовало технологий создания цельного зеркала такого большого размера. Поэтому с первого раза сделать его не получилось. Первая заготовка треснула, когда остывала. Вторая попытка закончилась неудачно – на поверхности зеркала было слишком много крупных дефектов. Однако это зеркало все-таки было установлено и прослужило до 1978 года. И только с третьей попытки зеркало получилось хорошего качество, и его установили взамен дефектного в том же 1978 году. Однако со временем потребовалась его перешлифовка и нанесение нового отражающего покрытия — его отражающая способность снизилась до 70%.

Работа велась на Лыткаринском заводе оптического стекла, и заняла 10 лет. Только на снятие 8-миллиметрового верхнего слоя с 6-метрового зеркала ушло около года. Заметим, что точность поверхности главного зеркала телескопа составляет доли микрометра, и работа эта очень тонкая, тем более для такой огромной поверхности.

Все работы по подготовке зеркала завершились лишь 3 ноября 2017 года. Затем встала проблема его транспортировки к телескопу. Габариты контейнера составили 6.5 метров, а согласование маршрута заняло несколько месяцев (бюрократизм в действии). Масса тягача и зеркала составила в сумме 93 тонны, но за 8 дней зеркало было доставлено на обсерваторию.

Теперь зеркало будет храниться в герметичном контейнере до мая, после чего будет установлено на телескоп. За это время сотрудники подготовят сам телескоп, тем более, что масса обновленного зеркала теперь меньше благодаря прорезанным в нем камерам.

Однако и после установки главного зеркала наблюдения за небесными объектами не начнутся. Зеркало не имеет отражающего слоя, оно пока просто прозрачное. Все работы по алюминированию поверхности будут проведены уже после установки зеркала в телескоп. Это и упростит процесс, и позволит получить поверхность наилучшего качества. Если нанести отражающий слой сразу, то за время транспортировки и установки зеркала он мог получить немало царапин и других повреждений.

И еще – новое зеркало – это вовсе не то, которое верой и правдой прослужило столько лет. Это восстановленная первая заготовка. А то, которое стоит в телескопе сейчас, снимут и поместят в контейнер. Повторная полировка и алюминирование его – слишком дорогостоящий процесс, на который у обсерватории просто нет денег.

Привет, камрады. Чего-то я пощу вам в основном потраченные объекты, да помойки. Давайте побываем на действующем объекте - на настоящей астрофизической обсерватории с телескопом огромным.

Итак, вот она, специальная астрофизическая обсерватория Российской академии наук, известная, как объект под кодом 115.
Расположена она на Северном Кавказе у подножия горы Пастуховая в Зеленчукском районе Карачаево-Черкесской Республики России (п. Нижний Архыз и станица Зеленчукская). В настоящее время обсерватория является крупнейшим российским астрономическим центром наземных наблюдений за Вселенной, который располагает крупными телескопами: шестиметровым оптическим рефлектором БТА и кольцевым радиотелескопом РАТАН-600. Основана в июне 1966 года.


Фото 2.

С помощью этого козлового крана крана строили обсерваторию.



Фото 3.

Более подробно вы можете почитать http://www.sao.ru/hq/sekbta/40_SAO/SAO_40/SAO_40.htm тут.


Фото 4.

Обсерватория создавалась как центр коллективного пользования для обеспечения работы оптического телескопа БТА (Большой Телескоп Азимутальный) с диаметром зеркала 6 метров и радиотелескопа РАТАН-600 с диаметром кольцевой антенны 600 метров, тогда крупнейших в мире астрономических инструментов. Они были введены в строй в 1975-1977 годах и предназначены для изучения объектов ближнего и дальнего космоса методами наземной астрономии.


Фото 5.


Фото 6.


Фото 7.


Фото 8.


Фото 9.


Фото 10.


Фото 11.

Глядя на эту футуристическую дверь так и хочется зайти внутрь и ощутить всю мощь.


Фото 12.


Фото 13.

Вот мы внутри.


Фото 14.


Фото 15.

Перед нами старая панель управления. Судя по всему, она не работает.


Фото 16.


Фото 17.


Фото 18.


Фото 19.


Фото 20.


Фото 21.


Фото 22.


Фото 23.

А вот и самое интересное. БТА - «большой телескоп азимутальный». Это чудо является самым большим телескопом в мире с 1975 года, когда он превзошёл 5-метровый телескоп Хейла Паломарской обсерватории, и по 1993, когда заработал телескоп Кека с 10-метровым сегментированным зеркалом.


Фото 24.

Да,

этого самого Кека.

БТА является телескопом-рефлектором. Главное зеркало диаметром 605 см имеет форму параболоида вращения. Фокусное расстояние зеркала 24 метра, вес зеркала без учёта оправы - 42 тонны. Оптическая схема БТА предусматривает работу в главном фокусе главного зеркала и двух фокусах Несмита. В обоих случаях можно применять корректор аберраций.

Телескоп установлен на альт-азимутальной монтировке. Масса подвижной части телескопа - около 650 тонн. Общая масса телескопа - около 850 тонн.



Фото 25.

Главный конструктор - д. т. н. Баграт Константинович Иоаннисиани (ЛОМО).

Фото 26.

Оптическая система телескопа изготавливалась на Ленинградском оптико-механическом объединении им. В.И. Ленина (ЛОМО), Лыткаринском заводе оптического стекла (ЛЗОС), Государственном оптическом институте им. С. И. Вавилова (ГОИ).
Для его изготовления строились даже отдельные цеха, не имевшие аналогов.
Знаете ли вы, что?
- Заготовка для зеркала, отлитая в 1964 году остывала более двух лет.
- Для обработки заготовки использовалось 12 000 карат натуральных алмазов в виде порошка, обработка шлифовальным станком, изготовленном на Коломенском заводе тяжелого станкостроения велась в течении 1,5 лет.
- Масса заготовки для зеркала составила 42 тонн.
- В общей сложности создание уникального зеркала продолжалось в течение 10 лет.


Фото 27.


Фото 28.

Главное зеркало телескопа подвергается температурной деформации, как и у всех огромных телескопов подобного типа. Если температура зеркала изменяется быстрее, чем на 2° в сутки, разрешение телескопа падает в полтора раза. Поэтому внутри установлены специальные кондиционеры, поддерживающие оптимальный температурный режим. Запрещено открывать купол телескопа при разности температур снаружи и внутри башни больше чем 10°, так как такие перепады температуры могут привести к разрушению зеркала.


Фото 29.


Фото 30.

Отвес

Фото 31.

К сожалению, Северный Кавказ не самое лучшее место для подобного мегадевайса. Дело в том, что в горах, открытых всем ветрам очень высокая турбулентность атмосферы, что значительно ухудшает видимость и не позволяет использовать всю мощь данного телескопа.


Фото 32.


Фото 33.

11 мая 2007 года начата перевозка первого главного зеркала БТА на изготовивший его Лыткаринский завод оптического стекла (ЛЗОС) с целью глубокой модернизации. Сейчас на телескопе установлено второе главное зеркало. После обработки в Лыткарино - удаления с поверхности 8 миллиметров стекла и переполировки телескоп должен войти в десятку самых точных в мире. Модернизация завершена в ноябре 2017 года. Установка и начало исследований запланированы на 2018.


Фото 34.


Фото 35.


Фото 36.


Фото 37.

Надеюсь, вам понравилась прогулка. Идём на выход.

Фото 38.


Фото 39.


Фото 40.

Оформлено с помощью «

Что можно увидеть в телескоп?

Один из самых частых вопросов: «Что можно увидеть в телескоп?». При правильном подходе и выборе прибора можно увидеть множество интересных объектов на небе. Видимость космических объектов зависит от диаметра объектива. Чем больше диаметр, тем больше телескоп будет собирать света от объекта, и тем более мелкие детали мы сможем различить.

Рассмотри варианты. Данные фотографии получены при идеальных условиях наблюдения. И стоит отметить, что человеческий глаз воспринимает цвета по-другому.

1. Что можно увидеть в телескоп 60-70 мм или 70-80 мм

Данные приборы самые популярные среди начинающих. Большинство из них можно использовать и как зрительную трубу для наземных объектов.

С их помощью можно увидеть множество объектов на небе, например, кратеры на Луне диаметром 8 км, пятна на солнце (только с апертурным фильтром), четыре спутника Юпитера, фазы Венеры, Лунные кратеры диаметром 7-10 км, облачные полосы на Юпитере и 4 его спутника, кольца Сатурна.

Фото объектов, которые сделаны в телескоп с диаметром 60-80 мм:

Перечень рекомендуемых телескопов с диаметром объектива 60, 70, 80 мм:

2. Что можно увидеть в телескоп рефрактор 80-90 мм, рефлектор 100-120 мм, катадиоптрический 90-125 мм

В телескопы с данным диаметром Вы увидите лунные кратеры размером около 5 км, структуру солнечных пятен, грануляцию и факельные поля. Всегда используйте светофильтр для Солнца! Марс будет виден как небольшой кружок. Также можно увидеть щель Кассини в кольцах Сатурна и 4-5 спутников, Большое красное пятно (БКП) на Юпитере и др.

Фото объектов, которые сделаны в телескоп с этим диаметром объектива:

Перечень рекомендуемых телескопов с диаметром объектива 80, 90, 100-125 мм:

3.Что можно увидеть в телескоп рефрактор 100-130 мм, рефлектор или катадиоптрический 127-150 мм.

Данные модели позволят Вам рассмотреть космос уже более детально. С данным диаметром Вы сможете добиться значительных успехов в астрономии и увидеть:


4.Что можно увидеть в телескоп рефрактор 150-180 мм, рефлектор или катадиоптрический 127-150 мм

Лучше использовать только для загородных наблюдений, так как использование их в городских условиях будет мешать полностью раскрыть потенциал апертуры из-за лишней городской засветки. Рефракторы данных диаметров достаточно сложно найти, ведь их стоимость значительно превышает рефлекторы и зеркально-линзовые телескопы с такими же параметрами.

С их помощью Вы сможете увидеть двойные звезды с разделением менее 1″, слабые звезды до 14 зв. величины, лунные образования размером 2 км, 6-7 спутников Сатурна и другие космические объекты.

Фото объектов, которые сделаны в телескоп с данным диаметром:

10 самых больших телескопов

Вдали от огней и шума цивилизации, на вершинах гор и в безлюдных пустынях живут титаны, чьи многометровые глаза всегда обращены к звездам.

Мы подобрали 10 крупнейших наземных телескопов: одни созерцают космос уже много лет, другим лишь предстоит увидеть «первый свет».

10. Large Synoptic Survey Telescope

Диаметр главного зеркала: 8,4 метра

Местонахождение: Чили, пик горы Серо-Пачон, 2682 метра над уровнем моря

Тип: рефлектор, оптический

Хотя LSST будет располагаться в Чили, это проект США и его строительство целиком финансируют американцы, в том числе Билл Гейтс (лично вложил 10 миллионов долларов из необходимых 400).

Предназначение телескопа - фотографирование всего доступного ночного неба раз в несколько ночей, для этого аппарат оснащен 3,2 гигапиксельной фотокамерой. LSST выделяется очень широким углом обзора в 3,5 градуса (для сравнения – Луна и Солнце, как они видны с Земли, занимают всего 0,5 градуса). Подобные возможности объясняются не только внушающим диаметром главного зеркала, но и уникальностью конструкции: вместо двух стандартных зеркал LSST использует три.

Среди научных целей проекта заявлены поиск проявлений темной материи и темной энергии, картографирование Млечного пути, детектирование кратковременных событий вроде взрывов новых или сверхновых, а также регистрация малых объектов Солнечной системы вроде астероидов и комет, в частности, вблизи Земли и в Поясе Койпера.

Ожидается, что LSST увидит «первый свет» (распространенный на Западе термин, означает момент, когда телескоп впервые используется по прямому назначению) в 2020 году. На данный момент идет строительство, выход аппарата на полное функционирование запланирован на 2022 год.

Large Synoptic Survey Telescope, концепт

9. South African Large Telescope

Диаметр главного зеркала: 11 x 9,8 метров

Местонахождение: ЮАР, вершина холма недалеко от поселения Сутерланд, 1798 метров над уровнем моря

Тип: рефлектор, оптический

Самый большой оптический телескоп южного полушария располагается в ЮАР, в полупустынной местности недалеко от города Сутерланд. Треть из 36 миллионов долларов, необходимых для конструирования телескопа, вложило правительство ЮАР; остальная часть поделена между Польшей, Германией, Великобританией, США и Новой Зеландией.

Свой первый снимок SALT сделал в 2005 году, немногим после окончания строительства. Его конструкция довольно нестандартна для оптических телескопов, однако широко распространена среди поколения новейших «очень больших телескопов»: главное зеркало не едино и состоит из 91 шестиугольного зеркала диаметром в 1 метр, угол наклона каждого из которых может регулироваться для достижения определенной видимости.

Предназначен для проведения визуального и спектрометрического анализа излучения астрономических объектов, недоступных телескопам северного полушария. Сотрудники SALT занимаются наблюдениями квазаров, близких и далеких галактик, а также следят за эволюцией звезд.

Аналогичный телескоп есть в Штатах, он называется Hobby-Eberly Telescope и расположен в Техасе, в местечке Форт Дэвис. И диаметр зеркала, и его технология почти полностью совпадают с SALT.

South African Large Telescope

8. Keck I и Keck II

Диаметр главного зеркала: 10 метров (оба)

Местонахождение: США, Гавайи, гора Мауна Кеа, 4145 метров над уровнем моря

Тип: рефлектор, оптический

Оба этих американских телескопа соединены в одну систему (астрономический интерферометр) и могут работать вместе, создавая единое изображение. Уникальное расположение телескопов в одном из лучших мест на Земле с точки зрения астроклимата (степень вмешательства атмосферы в качество астрономических наблюдений) превратило Keck в одну из самых эффективных обсерваторий в истории.

Главные зеркала Keck I и Keck II идентичны между собой и подобны по своей структуре телескопу SALT: они состоят из 36 шестиугольных подвижных элементов. Оборудование обсерватории позволяет наблюдать небо не только в оптическом, но и в ближнем инфракрасном диапазоне.

Помимо основной части широчайшего спектра исследований, Keck является на данный момент одним из самых эффективных наземных инструментов в поиске экзопланет.

Keck на закате

7. Gran Telescopio Canarias

Диаметр главного зеркала: 10,4 метров

Местонахождение: Испания, Канарские острова, остров Ла Пальма, 2267 метров над уровнем моря

Тип: рефлектор, оптический

Строительство GTC закончилось в 2009 году, тогда же обсерватория и была официально открыта. На церемонию приехал даже король Испании Хуан Карлос I. Всего на проект было потрачено 130 миллионов евро: 90% профинансировала Испания, а остальные 10% поровну поделили Мексика и Университет Флориды.

Телескоп способен наблюдать за звездами в оптическом и среднем инфракрасном диапазоне, обладает инструментами CanariCam и Osiris, которые позволяют GTC проводить спектрометрические, поляриметрические и коронографические исследования астрономических объектов.

Gran Telescopio Camarias

6. Arecibo Observatory

Диаметр главного зеркала: 304,8 метров

Местонахождение: Пуэрто-Рико, Аресибо, 497 метров над уровнем моря

Тип: рефлектор, радиотелескоп

Один из самых узнаваемых телескопов в мире, радиотелескоп в Аресибо не раз попадал в объективы кинокамер: к примеру, обсерватория фигурировала в качестве места финальной конфронтации между Джеймсом Бондом и его антагонистом в фильме «Золотой Глаз», а также в научно-фантастической экранизации романа Карла Сагана «Контакт».

Этот радиотелескоп попал даже в видеоигры – в частности, в одной из карт сетевого режима Battlefield 4, которая называется Rogue Transmission, военное столкновение между двумя сторонами происходит как раз вокруг конструкции, полностью скопированной с Аресибо.

Выглядит Аресибо действительно необычно: гигантская тарелка телескопа диаметром почти в треть километра помещена в естественную карстовую воронку, окруженную джунглями, и покрыта алюминием. Над ней подвешен подвижный облучатель антенны, поддерживаемый 18 тросами с трех высоких башен по краям тарелки-рефлектора. Гигантская конструкция позволяет Аресибо ловить электромагнитное излучение относительно большого диапазона – с длиной волны от от 3 см до 1 м.

Введенный в строй еще в 60-х годах, этот радиотелескоп использовался в бесчисленных исследованиях и успел помочь сделать ряд значительных открытий (вроде первого обнаруженного телескопом астероида 4769 Castalia). Однажды Аресибо даже обеспечил ученых Нобелевской премией: в 1974 году были награждены Халс и Тейлор за первое в истории обнаружение пульсара в двойной звездной системе (PSR B1913+16).

В конце 1990-х годов обсерватория также стала использоваться в качестве одного из инструментов американского проекта по поиску внеземной жизни SETI.

Arecibo Observatory

5. Atacama Large Millimeter Array

Диаметр главного зеркала: 12 и 7 метров

Местонахождение: Чили, пустыня Атакама, 5058 метров над уровнем моря

Тип: радиоинтерферометр

На данный момент этот астрономический интерферометр из 66 радиотелескопов 12-и и 7-метрового диаметра является самым дорогим действующим наземным телескопом. США, Япония, Тайвань, Канада, Европа и, конечно, Чили потратили на него около 1,4 миллиарда долларов.

Поскольку предназначением ALMA является изучение миллиметровых и субмиллиметровых волн, наиболее благоприятным для такого аппарата является сухой и высокогорный климат; этим объясняется расположение всех шести с половиной десятков телескопов на пустынном чилийском плато в 5 км над уровнем моря.

Телескопы доставлялись постепенно: первая радиоантенна начала функционировать в 2008 году, а последняя – в марте 2013 года, когда ALMA и был официально запущен на полную запланированную мощность.

Главной научной целью гигантского интерферометра является изучение эволюции космоса на самых ранних стадиях развития Вселенной; в частности, рождения и дальнейшей динамики первых звезд.

Радиотелескопы системы ALMA

4. Giant Magellan Telescope

Диаметр главного зеркала: 25,4 метров

Местонахождение: Чили, обсерватория Лас-Кампанас, 2516 метров над уровнем моря

Тип: рефлектор, оптический

Далеко к юго-западу от ALMA в той же пустыне Атакама строится еще один крупный телескоп, проект США и Австралии – GMT. Главное зеркало будет состоять из одного центрального и шести симметрично окружающих его и чуть изогнутых сегментов, образуя единый рефлектор диаметром более чем в 25 метров. Помимо огромного рефлектора, на телескоп будет установлена новейшая адаптивная оптика, которая позволит максимально устранить искажения, создаваемые атмосферой при наблюдениях.

Ученые рассчитывают, что эти факторы позволят GMT получать изображения в 10 раз более четкие, чем снимки Hubble, и вероятно даже более совершенные, чем у его долгожданного наследника – космического телескопа James Webb.

Среди научных целей GMT значится очень широкий спектр исследований – поиск и снимки экзопланет, исследование планетарной, звездной и галактической эволюции, изучение черных дыр, проявлений темной энергии, а также наблюдение самого первого поколения галактик. Рабочий диапазон телескопа в связи с заявленными целями – оптический, ближний и средний инфракрасный.

Закончить все работы предполагается к 2020 году, однако заявлено, что GMT может увидеть «первый свет» уже с 4 зеркалами, как только они окажутся введены в конструкцию. В данный момент идет работа по созданию уже четвертого зеркала.

Концепт Giant Magellan Telescope

3. Thirty Meter Telescope

Диаметр главного зеркала: 30 метров

Местонахождение: США, Гавайи, гора Мауна Кеа, 4050 метров над уровнем моря

Тип: рефлектор, оптический

По своим целям и характеристикам TMT похож на GMT и гавайские телескопы Keck. Именно на успехе Keck и основан более крупный TMT с той же технологией разделенного на множество шестиугольных элементов главного зеркала (только в этот раз его диаметр в три раза больше), а заявленные исследовательские цели проекта почти полностью совпадают с задачами GMT, вплоть до фотографирования самых ранних галактик чуть ли не на краю Вселенной.

СМИ называют разную стоимость проекта, она варьируется от 900 миллионов до 1,3 миллиарда долларов. Известно, что желание участвовать в TMT выразили Индия и Китай, которые согласны взять на себя часть финансовых обязательств.

В данный момент выбрано место для строительства, однако до сих пор ведется противодействие некоторых сил в администрации Гавайев. Гора Мауна Кеа является священным местом для коренных гавайцев, и многие среди них категорически против строительства сверхкрупного телескопа.

Предполагается, что все административные проблемы уже очень скоро будут решены, а полностью завершить строительство планируется примерно к 2022 году.

Концепт Thirty Meter Telescope

2. Square Kilometer Array

Диаметр главного зеркала: 200 или 90 метров

Местонахождение: Австралия и Южная Африка

Тип: радиоинтерферометр

Если этот интерферометр будет построен, то он станет в 50 раз более мощным астрономическим инструментом, чем крупнейшие радиотелескопы Земли. Дело в том, что своими антеннами SKA должен покрыть площадь примерно в 1 квадратный километр, что обеспечит ему беспрецедентную чувствительность.

По структуре SKA очень напоминает проект ALMA, правда, по габаритам будет значительно превосходить своего чилийского собрата. На данный момент есть две формулы: либо строить 30 радиотелескопов с антеннами в 200 метров, либо 150 с диаметром в 90 метров. Так или иначе, протяженность, на которой будут размещены телескопы, будет составлять, согласно планам ученых, 3000 км.

Чтобы выбрать страну, где будет строиться телескоп, был проведен своего рода конкурс. В «финал» вышли Австралия и ЮАР, и в 2012 году специальная комиссия объявила свое решение: антенны будут распределены между Африкой и Австралией в общую систему, то есть SKA будет размещен на территории обеих стран.

Заявленная стоимость мегапроекта – 2 миллиарда долларов. Сумма разделена между целым рядом стран: Великобританией, Германией, Китаем, Австралией, Новой Зеландией, Нидерландами, ЮАР, Италией, Канадой и даже Швецией. Предполагается, что строительство будет полностью завершено к 2020 году.

Художественное изображение 5-километрового ядра SKA

1. European Extremely Large Telescope

Диаметр главного зеркала: 39.3 метра

Местонахождение: Чили, вершина горы Серро Армазонес, 3060 метров

Тип: рефлектор, оптический

На пару лет - возможно. Однако к 2025 году на полную мощность выйдет телескоп, который превзойдет TMT на целый десяток метров и который, в отличии от гавайского проекта, уже находится на стадии строительства. Речь идет о бесспорном лидере среди новейшего поколения крупных телескопов, а именно о Европейском очень большом телескопе, или E-ELT.

Его главное почти 40-метровое зеркало будет состоять из 798 подвижных элементов диаметром в 1,45 метра. Это вместе с самой современной системой адаптивной оптики позволит сделать телескоп настолько мощным, что он, по мнению ученых, сможет не только находить планеты, подобные Земле по размерам, но и сможет с помощью спектрографа изучить состав их атмосферы, что открывает совершенно новые перспективы в изучении планет вне солнечной системы.

Помимо поиска экзопланет, E-ELT займется исследованием ранних стадий развития космоса, попробует измерить точное ускорение расширения Вселенной, проверит физические константы на, собственно, постоянство во времени; также этот телескоп позволит ученым глубже чем когда-либо погрузиться в процессы формирования планет и их первичный химический состав в поисках воды и органики – то есть, E-ELT поможет ответить на целый ряд фундаментальных вопросов науки, включая те, что затрагивают возникновение жизни.

Заявленная представителями Европейской южной обсерватории (авторами проекта) стоимость телескопа - 1 миллиард евро.

Концепт European Extremely Large Telescope

Сравнение размеров E-ELT и египетских пирамид