Основные понятия жидкого кон-тинуума. Гипотеза сплошности среды

Понятие об аэродинамических трубах и гидролотках

Принцип обратимости движения и моделирования в аэродинамике

Гипотеза сплошности среды

Влажность

Влажностью называется физический параметр, который определяет массовое коли-чество водяных паров находящихся в единице объема воздуха.

Абсолютная влажность – это физический параметр, который определяет массу во-дяных паров, содержащихся в 1 см 3 объема воздуха.

Относительная влажность – это физический параметр, который определяет отно-шение абсолютной влажности к массе водяного пара, которая необходима для насыщения 1 см 3 воздуха при заданной температуре.

ЛЕКЦИЯ 1.4 ГИПОТЕЗА СПЛОШНОСТИ СРЕДЫ.

ПРИНЦИПЫ ОБРАТИМОСТИ ДВИЖЕНИЯ И МОДЕЛИРОВАНИЯ В АЭРОДИНАМИКЕ

Схему, которая заменяет дискретную структуру воздуха сплошной средой, впервые предложил известный ученый Л. Эйлер в 1753 г.

Она получила название гипотезы сплошности среды . Применение ее значительно облегчает исследования законов движения воздуха и газов. Как известно, при нормальных условиях в воздуха помещается молекул.

Критерием оценки сплошности среды является число Кнудсена:

Длинна свободного пробега молекул

L – характерный размер течения (длина обтекаемого тела).

Для характеристики степени разреженности среды в пограничном слое используется

отношение длины свободного пробега молекул к толщинй пограничного слоя

Толщина пограничного слоя зависит от характера течения (числа Маха ) и числа Re. В зависимости от числа Кнудсена(течение газа можно разделить на три основ-ные области:

1 Если 0,01, то средняя длина пробега молекул меньше 1 % от толщины пограничного слоя, в этом случае течение считается сплошным. В этом случае газодинамические параметры воздуха ( являются непрерывными величи-нами, то есть имеет место область обычной газовой динамики.

2 Если 1 , то длинна свободного пробега молекул мала по сравне-нию с размером обтекаемого тела, но соизмерима с толщиной пограничного слоя. В этом случае течение называется течением со скольжением .

3 Если 1 , то длинна свободного пробега больше или соизмеримы по вели-чине с толщиной пограничного слоя. В этом случае имеется область свободно молекулярных течений . В этой области элементарные частицы не взаимодейст-вуют между собой и пограничного слоя фактически нет.

С увеличением высоты уменьшается количество молекул в исследуемом объеме га-за, а это приводит к уменьшению силового взаимодействия частиц воздуха с обтекаемым телом. Силы взаимодействия между потоком и телом представляют собой суммарный им-пульс силы ударов частиц воздуха о поверхность обтекаемого тела.



На высотах Н 80 км в расчетах учитывается дискретная структура воздуха.

Рис 1.4.1 Схема гипотезы сплошности среды

Необходимым условием для дифференциального исчисления параметров и аэроди-намических сил при взаимодействии воздуха с телом, является непрерывность газодина-мических параметров ().


Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные дискретные объекты упрощен-ными моделями, представляющими собой материальный континуум, т. е. материальную среду, масса которой непрерывно распределена по объему, т.е. жидкость можно рассматривать как сплошную среду (континуум), лишенную молекул и межмолеку-лярных пространств. Гипотеза сплошности среды означает, что вся-кий малый элемент объема жидкости считается все-таки настолько боль-шим, что содержит еще очень боль-шое число молекул.
Согласно гипотезе сплошности масса среды распределена в объеме непрерывно и в общем неравномер-но.
Реально существующее хаотиче-ское движение молекул отражается в этом случае в величине макроскопи-ческих параметров -  P T W, кото-рые для континуума являются функ-циями точек пространства.
Для газа используют критерий Кнудсена: Kn = l / L, где l – длина свободного пробега молекул, L – ха-ракт. размер течения.
1. Kn 2. Kn > 0,01 то течения разрежен-ных газов. В этой области различают три степени разреженности: (0,01- 0,1) – течения со скольжением; (0,1- 10) – переходная, наименее исследо-ванная область течения разреженных газов; (>10) – свободномолекулярное течение.
Жидкий объем – это мысленно вы-деленный в жидкости малый или ко-нечный объем, состоящий из одной или из одних и тех же частиц, кото-рые при движении может деформи-роваться, но масса жидкости, заклю-ченная в нем не изменяется и не смешивается с окружающей средой.
Контрольный объем – это мыслен-но выделенный постоянный объем, занимающий неизменное положение в пространстве (ч/з к.о. протекает жидкость).
Контрольная поверхность – это по-верхность, ограничивающая кон-трольный объем (для жидкого объе-ма – поверхность жидкого объема)..
Внешняя или окружающая среда – жидкость и все остальное, находя-щееся вне выделенного объема.
Жидкий контур – контур в про-странстве, состоящий из одних и тех же жидких частиц.
Скорость жидкости в данной точке – мгновенная скорость движения центра массы жидкой частицы, про-ходящей в данный момент через дан-ную точку пространства.

  • Основные понятия жидкого кон -тинуума гипотезу сплошности изучаемой среды и заменить реаль-ные дискретные объекты упрощен-ными моделями, представляющими собой материальный континуум, т. е. материальную среду ...


  • Гипотеза сплошности среды . Основные понятия жидкого кон -тинуума . Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные.


  • Гипотеза сплошности среды . Основные понятия жидкого кон -тинуума . Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные.


  • Гипотеза сплошности среды . Основные понятия жидкого кон -тинуума . Указанные обстоятельства позво-ляют ввести гипотезу сплошности изучаемой среды и заменить реаль-ные... подробнее ».


  • Гипотезу сплошности : упрощен-ные модели, представляющими со-бой материальный континуум, т. е. материальную среду , масса которой непрерывно распределена по объе-му, т.е. жидкость можно рассмат-ривать как сплошную среду (кон -тинуум )...


  • Основные понятия , используемые в кинематике жидкости .
    Согласно гипотезе сплошности , рассматриваемый континуум – это жидкая частица, в которой
    Если в предыдущих вопросах, изучая гидростатику, за модель для изучения жидкости в равновесии взяли сплошную среду ...


  • Основные понятия и определения. Действие шума на человека.
    Звуковое давление – разность между мгновенным значением давления в точке среды и статическим давлением в той же точке, т.е. давление в невозмущённой среде .


  • 3) гидравлические струи, которые ограничены жидкой (как мы увидим позже, такие струйки называют затопленными) или газовой средой .
    Чрезвычайно важное значение имеет в гидравлике понятие о гидравлическом радиусе.


  • Основные понятия . Производственная физическая культура – система физкультурно-оздоровительных мероприятий, формы и содержание
    Профессиональное заболевание – это категория болезней, вызываемых влиянием производственной среды или трудового процесса.


  • Уравнение неразрывности жидкости . Довольно часто при решении задач приходится определять неизвестные функции типа
    В качестве пятого уравнения используют уравнение состояния сплошной среды .

Найдено похожих страниц:10


Для того чтобы стало возможным теоретическое исследование направленного движения жидкости с использованием математического аппарата исчисления бесконечно малых (дифференциального исчисления) и теории непрерывных функций (интегрального исчисления), необходимо выполнить определенную идеализацию жидкости и абстрагироваться от её дискретного молекулярного строения.

Все тела (в том числе и газообразные и капельной жидкости) состоят из отдельных элементарных частиц. Причём объёмы, занимаемые телами, значительно больше объёмов, в которых сосредоточено само вещество. По существу, все тела «состоят из пустоты», но в то же время в любом существенном для практических задач малом объёме пространства, занятого телом, заключено достаточно большое число частиц. Как правило, размеры рассматриваемых объёмов жидкости и твердых тел, обтекаемых этой жидкостью, оказываются несопоставимо бόльшими по сравнению с размерами молекул и межмолекулярными расстояниями. Указанные обстоятельства дают основание приближенно рассматривать жидкость как материальную среду, заполняющую пространство непрерывно сплошным образом , и ввести гипотезу сплошной среды , на основании которой реальные дискретные объекты заменяются упрощенными моделями материального континуума . Эти умозрительные выводы сформулированы в постулате Даламбера – Эйлера , утверждающем, что при изучении направленного движения жидкостей и сил взаимодействия их с твердыми телами, жидкости можно рассматривать как сплошную среду - континуум, лишенную молекул и межмолекулярных пространств .

Принимая гипотезу сплошности мы тем самым предполагаем макроскопическое поведение жидкостей одинаковым, как если бы их структура была идеально непрерывной, а физические величины, например масса и количество движения, связанные с тем веществом, которое содержится внутри рассматриваемого объёма, считаем равномерно распределённым по этому объёму, отвлекаясь от того, что в действительности они концентрируются в его малых частях.

Гипотеза сплошной среды (или гипотеза сплошности) – первый шаг на пути формирования моделей жидкости, рассматриваемых в различных разделах механики жидкости и газа и, в том числе, в газовой динамике. Такая идеализация существенно упрощает реальную дискретную среду и позволяет, в частности, при исследовании движения жидкости использовать хорошо разработанный математический аппарат исчисления бесконечно малых (дифференциального и интегрального исчислений) и теорию непрерывных функций.

Гипотеза сплошной среды даёт возможность придать определенный смысл понятию «значение в точке» , применяемому к различным параметрам жидкости, например плотности, скорости, температуре, и вообще считать эти величины непрерывными функциями координат и времени. На этом основании можно составить уравнения, описывающие движение жидкости (уравнения движения), форма которых не зависит от микроскопической структуры частиц этой жидкости. В этом смысле движения жидкостей и газов изучаются одинаково – уравнения не зависят от того, существует ли какая-либо структура частиц . Аналогичная гипотеза вводится в механике деформируемых твердых тел, и потому эти два предмета вместе часто называют механикой сплошных сред .


Несмотря на естественность гипотезы сплошной среды, определение свойств этой гипотетически непрерывной среды , которая движется таким же образом, как и реальная жидкость с данной структурой частиц, оказывается трудным делом. Используя методы кинетической теории газов, с помощью упрощающих предположений о столкновении молекул можно показать, что уравнения, определяющие локальную скорость газа, имеют такой же вид, как и в случае движения некоторой непрерывной жидкости (хотя значения коэффициентов молекулярного переноса определяются не строго). Математическое обоснование рассмотрения движения газов как движения сплошной среды обычно выходит за рамки традиционных курсов механики жидкости и газа и, тем более, прикладной гидро- или газодинамики. Более того, это обоснование неполно для капельных жидкостей и поэтому принято ограничиваться введением такой гипотезы.

Критерием приемлемости всякой физической гипотезы является степень совпадения результатов, полученных на её основе, с результатами наблюдений и измерений. Для капельных жидкостей и газов правомерность использования гипотезы сплошной среды в широком диапазоне изменения параметров полностью подтверждается. Обширные экспериментальные данные свидетельствуют о том, что обычные реальные жидкости в нормальных условиях, а зачастую и при значительных отклонениях от них, движутся так, как если бы они были непрерывны.

Количественные пределы применимости законов газовой динамики, основанной на модели сплошной среды, определяются величиной критерия Кнудсена .

«В гидродинамике и в задачах обычной газодинамики жидкость представляют как сплошную среду. Это тоже своеобразная модель жидкости. Это представление допускает, что объем жидкости можно дробить на какие угодно мелкие части, вплоть до бесконечно малых, но ее свойства при этом остаются теми же самыми. Иначе говоря, здесь не принимается во внимание молекулярная структура вещества. Представление о жидкости, как о сплошной среде, было вызвано необходимостью использовать для расчетов методы математического анализа, в которых приходится оперировать бесконечно малыми массами и объемами. Модель сплошной среды применима для несжимаемых жидкостей, а также для газов не очень низких плотностей. Если же плотность газа становится очень низкой, как, например, на больших высотах, то расстояние между молекулами (длина свободного пробега) становятся соизмеримыми с размерами обтекаемых тел, и модель сплошной среды уже никак не соответствует реальной картине обтекания».

& (Виноградов) с.11

Теория была введена в практику исследования Даламбером в 1744 году, а затем Эйлером в 1753 году в противовес корпускулярной теории Ньютона.

Воздух атмосферы представляет собой смесь различных газов. До принятия гипотезы сплошности исходили при экспериментах из того, что существует как бы смесь несвязанных между собой молекул газов, между которыми существуют дыры (сито).

Гипотеза сплошности в аэродинамике основана на том, что расстояние между молекулами воздуха и свободный пробег молекул малы по сравнению с обтекаемым воздухом телом. В связи с этим принимается, что воздух (и вода) однородная, сплошная, без разрывов масса .

Длина свободного пробега молекул зависит от числа молекул в единице объема, т.е. от плотности среды. Мы уже знаем, что вся масса воздуха находится в пределах тропосферы (высота Н ≤ 10…17 км) и что плотность сильно уменьшается с ростом высоты над уровнем моря. У Земли (Н = 0) в одном кубическом миллиметре содержится 2,7∙10 +16 молекул воздуха при массовой плотности ρ о ≈ 0,125 кг∙с 2 /м 4 . На высоте Н = 160 км в том же объеме содер-

жится 1 молекула воздуха. А плотность воздуха, например, на высоте Н = 20 км, ρ 20 = 0,008965 кг∙с 2 /м 4 .

Длина свободного пробега по высотам в среднем распределяется следующим образом (таблица 2.2).

Таблица 2.2

Некоторые ученые считают границей применимости гипотезы сплошности отношение длины свободного пробега молекулы воздуха к хорде крыла, равное 1/10 +5 .

Кроме плотности воздуха длина свободного пробега зависит от температуры (т.е. от скорости хаотического движения) и от размеров молекул. Средняя длина пробега молекул воздуха рассчитывается по формуле

где К – отношение теплоемкости воздуха при постоянном давлении с р к его теплоемкости при постоянном объеме с v , т.е.

;

ν – кинематический коэффициент вязкости, м 2 /с; a – скорость звука в воздушной среде в м/с.

Так как параметры ν и a зависят от высоты над уровнем моря, то и параметр L св зависит от той же высоты (см. таблицу 2.2).

Критерием применимости гипотезы сплошности является число Кнудсена

Или , (2.5)

где b – хорда крыла, δ – толщина пограничного слоя.

Окончательно, или другое значение коэффициента Кнудсена таково:

, (2.6)

где М – число Маха, Re – коэффициент Рейнольдса, равный

где v – скорость движения в м/с, b – средняя хорда крыла в метрах, ν – коэффициент кинематической вязкости в м 2 /с (рис. 2.1).

Практический смысл гипотезы сплошности для специалистов в области приборостроения и самолетостроения состоит с возможности определения границ применения способов измерения воздушных параметров, например, манометрического метода при определении скорости, числа М , подъемной силы.

Рис. 2.1. Обтекание крыла потоком воздуха

По Ньютону получалось в его корпускулярной теории, что сопротивление движению есть результат ударов частиц о тело и равно:

где ρ ∞ – плотность воздуха; v – скорость движения; S – площадь крыла.

Теперь мы уже будем знать, что формула неверна, она завышает силу сопротивления в два раза.

Область аэродинамики, рассматривающая движение твердых тел в сильно разреженном газе, называется супераэродинамикой .

Выводы из гипотезы сплошности:

Гипотеза упрощает исследование процессов движения.

Она позволяет рассматривать все механические характеристики жидкой среды – скорости, плотности, давления, числа М и т.д., как функции координат точки и времени. Эти функции предполагаются непрерывными и дифференцируемыми.

Из гипотезы сплошности следуют ограничения применимости методов измерения скоростных параметров. Например, манометрический метод может быть достоверно использован при Н ≈ 30000 метров над уровнем моря, при скоростях, соответствующих числу Re = 10 2 …10 7 .

При большом разряжении воздуха и при несоблюдении критерия Кнудсена воздушную среду нельзя считать сплошной. В этих условиях нельзя считать применяемым и принцип непрерывности течения потока воздуха. В этих условиях иными становятся законы образования силы сопротивления движению и подъемной силы. В свободномолекулярном потоке газа единственными силами воздействия газовой среды на движущееся тело являются силы ударов молекул газа о поверхность тела. Величину аэродинамических сил можно оценить по ударной теории Ньютона.

ЛЕКЦИЯ №2

В основе гипотезы сплошности лежит предположение о том, что в жидкостях и газах все пространство непрерывно занято веществом.

Для газов, у которых длина свободного пробега молекул существенно зависит от температуры и давления, условия сплошности выражаются в том, что линейные характерные размеры области течений велики по сравнению с длиной свободного пробега молекул.

Следовательно, сплошность определяется не абсолютным состоянием жидкости и газа, а отношением параметров среды (длина свободного пробега для газов и амплитуда колебания молекул для жидкости) к линейным размерам, характеризующим потоки.

Таким образом, под сплошной средой понимают непрерывное, безграничное или ограниченное множество (континуум) материальных точек с непрерывным распределением по их множеству вещественных, кинематических, динамических и других физических характеристик, обусловленных разнообразными как «внешними», так и «внутренними» движениями материи, включая сюда и взаимодействие среды с внешними и внутренними полями.

Модель сплошной среды отличается от дискретной системы материальных точек тем, что вместо физических величин, сосредоточенных в отдельных ее точках, приходится иметь дело с непрерывными распределениями этих величин в пространстве - скалярными, векторными и тензорными полями.

Так, распределение массы в сплошной среде определяется заданием в каждой ее точке плотности среды, объемное силовое действие - плотностью распределения объемных сил, а действие поверхностных сил - напряжениями, определяемыми отношением главного вектора поверхностных сил, приложенных к ориентированной в пространстве бесконечно малой площадке, к величине этой площадки. Характеристикой внутреннего напряженного состояния среды в данной точке служит тензор напряжений, знание которого позволяет определять напряжения, приложенные к любой произвольно ориентированной площадке. Перенос тепла или вещества задается соответствующими им векторами потоков.

В кинематике сплошных сред, наряду с принятыми в кинематике дискретной системы точек понятиями перемещений, скоростей и ускорений, появляется характерное для сплошной среды представление о бесконечно малой деформации среды, определяемой тензором деформаций. Если рассматривается непрерывное движение текучей среды, то основное значение приобретает тензор скоростей деформаций, равный отношению тензора бесконечно малых деформаций к бесконечно малому промежутку времени, в течение которого деформация осуществилась.

При рассмотрении частных классов задач обычно приходится приписывать модели сплошной среды дополнительные макроскопические характеристики, определяющие ее индивидуальные материальные свойства, обусловленные действительными микроскопическими свойствами: молекулярной структурой и «скрытыми», движениями материи. В механике сплошных сред эти характеристики вводятся феноменологически, в форме заданных наперед констант или количественных закономерностей. Среди таких характеристик выделим, прежде всего, отражающие вещественные свойства среды при ее равновесном состоянии: молекулярный вес и плотность распределения массы, концентрацию примесей в многокомпонентных и многофазных смесях жидкостей, газов и твердых частиц, затем температуру и теплоемкость среды, электропроводность, магнитную проницаемость и другие физические свойства.



Модель сплошной среды представляет собой результат статистического осреднения скрытой молекулярной структуры среды и совершаемых внутри нее тепловых и других форм движений материи и взаимодействий между молекулами вещества.