Относительная погрешность измерений формула. Вычисление абсолютной и относительной погрешности

При измерении какой-нибудь величины неизменно есть некоторое отклонение от правдивого значения, от того что ни один прибор не может дать точного итога. Для того, дабы определить допустимые отклонения полученных данных от точного значения, применяют представления относительной и безусловной погрешности.

Вам понадобится

  • – итоги измерений;
  • – калькулятор.

Инструкция

1. В первую очередь, проведите несколько измерений прибором одной и той же величины, дабы иметь вероятность посчитать действительное значение. Чем огромнее будет проведено измерений, тем вернее будет итог. Скажем, взвесьте яблоко на электронных весах. Возможен, вы получили итоги 0,106, 0,111, 0,098 кг.

2. Сейчас посчитайте действительное значение величины (действительное, от того что правдивое обнаружить нереально). Для этого сложите полученные итоги и поделите их на число измерений, то есть обнаружьте среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

3. Для расчета безусловной погрешности первого измерения вычитайте из итога действительное значение: 0,106-0,105=0,001. Таким же образом вычислите безусловные погрешности остальных измерений. Обратите внимание, самостоятельно от того, получится итог с минусом либо с плюсом, знак погрешности неизменно позитивный (то есть вы берете модуль значения).

4. Дабы получить относительную погрешность первого измерения, поделите безусловную погрешность на действительное значение: 0,001/0,105=0,0095. Обратите внимание, обыкновенно относительная погрешность измеряется в процентах, следственно умножьте полученное число на 100%: 0,0095х100%=0,95%. Таким же образом считайте относительные погрешности остальных измерений.

5. Если правдивое значение теснее вестимо, сразу принимайтесь за расчет погрешностей, исключив поиск среднего арифметического итогов измерений. Сразу вычитайте из правдивого значения полученный итог, при этом вы обнаружите безусловную погрешность.

6. После этого разделяете безусловную погрешность на правдивое значение и умножайте на 100% – это будет относительная погрешность. Скажем, число учеников 197, но его округлили до 200. В таком случае рассчитайте погрешность округления: 197-200=3, относительная погрешность: 3/197х100%=1,5%.

Погрешность является величиной, которая определяет допустимые отклонения полученных данных от точного значения. Существуют представления относительной и безусловной погрешности. Их нахождение – одна из задач математического обзора. Впрочем на практике больше значимо бывает посчитать погрешность разброса какого-нибудь измеряемого показателя. Физические приборы имеют собственную возможную погрешность. Но не только ее надобно рассматривать при определении показателя. Для подсчета погрешности разброса σ нужно провести несколько измерений данной величины.

Вам понадобится

  • Прибор для измерения требуемой величины

Инструкция

1. Измерьте прибором либо другим средством измерения надобную вам величину. Повторите измерения несколько раз. Тем огромнее будет получено значений, тем выше точность определения погрешности разброса. Традиционно проводят 6-10 измерений. Запишите полученный комплект значений измеряемой величины.

2. Если все полученные значения равны, следственно, погрешность разброса равна нулю. Если же в ряду есть отличающиеся значения, вычислите погрешность разброса. Для ее определения существует особая формула.

3. Согласно формуле, вычислите вначале среднюю величину <х> из полученных значений. Для этого сложите все значения, а их сумму поделите на число проводимых измерений n.

4. Определите поочередно разность между всей полученной величиной и средним значением <х>. Запишите итоги полученных разностей. После этого возведите все разности в квадрат. Обнаружьте сумму данных квадратов. Сбережете конечный полученный итог суммы.

5. Вычислите выражение n(n-1), где n – число проводимых вами измерений. Поделите итог суммы из предыдущего вычисления на полученное значение.

6. Возьмите корень квадратный частного от деления. Это и будет погрешность разброса σ, измеренной вами величины.

Проводя измерения, невозможно гарантировать их точность, всякий прибор дает некую погрешность . Дабы узнать точность измерений либо класс точности прибора, нужно определить безусловную и относительную погрешность .

Вам понадобится

  • – несколько итогов измерений либо иная выборка;
  • – калькулятор.

Инструкция

1. Проведите измерения не менее 3-5 раз, дабы иметь вероятность посчитать действительное значение параметра. Сложите полученные итоги и поделите их на число измерений, вы получили действительное значение, которое применяется в задачах взамен правдивого (его определить нереально). Скажем, если измерения дали итог 8, 9, 8, 7, 10, то действительное значение будет равно (8+9+8+7+10)/5=8,4.

2. Обнаружьте безусловную погрешность всего измерения. Для этого из итога измерения вычитайте действительное значение, знаками пренебрегайте. Вы получите 5 безусловных погрешностей, по одному для всякого измерения. В примере они будут равны 8-8,4 = 0,4, 9-8,4 =0,6, 8-8,4=0,4, 7-8,4 =1,4, 10-8,4=1,6 (взяты модули итогов).

3. Дабы узнать относительную погрешность всякого измерения, поделите безусловную погрешность на действительное (правдивое) значение. После этого умножьте полученный итог на 100%, традиционно именно в процентах измеряется эта величина. В примере обнаружьте относительную погрешность таким образом: ?1=0,4/8,4=0,048 (либо 4,8%), ?2=0,6/8,4=0,071 (либо 7,1 %), ?3=0,4/8,4=0,048 (либо 4,8%), ?4=1,4/8,4=0,167 (либо 16,7%), ?5=1,6/8,4=0,19 (либо 19%).

4. На практике для особенно точного отображения погрешности применяют среднее квадратическое отклонение. Дабы его обнаружить, возведите в квадрат все безусловные погрешности измерения и сложите между собой. После этого поделите это число на (N-1), где N – число измерений. Вычислив корень из полученного итога, вы получите среднее квадратическое отклонение, характеризующее погрешность измерений.

5. Дабы обнаружить предельную безусловную погрешность , обнаружьте минимальное число, заведомо превышающее безусловную погрешность либо равное ему. В рассмотренном примере примитивно выберите наибольшее значение – 1,6. Также изредка нужно обнаружить предельную относительную погрешность , в таком случае обнаружьте число, превышающее либо равное относительной погрешности, в примере она равна 19%.

Неотделимой частью всякого измерения является некоторая погрешность . Она представляет собой добротную отзыв точности проведенного изыскания. По форме представления она может быть безусловной и относительной.

Вам понадобится

  • – калькулятор.

Инструкция

1. Погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют идентично при многократном повторении измерений. Они непрерывны либо правомерно изменяются. Они могут быть вызваны неправильной установкой прибора либо несовершенством выбранного способа измерения.

2. Вторые появляются от могущества причин, и беспричинный нрав. К ним дозволено отнести неправильное округление при подсчете показаний и могущество окружающей среды. Если такие ошибки гораздо поменьше, чем деления шкалы этого прибора измерения, то в качестве безусловной погрешности уместно взять половину деления.

3. Промах либо дерзкая погрешность представляет собой итог слежения, тот, что круто отличается от всех остальных.

4. Безусловная погрешность приближенного числового значения – это разность между итогом, полученным в ходе измерения и правдивым значением измеряемой величины. Правдивое либо действительное значение особенно верно отражает исследуемую физическую величину. Эта погрешность является самой легкой количественной мерой ошибки. Её дозволено рассчитать по дальнейшей формуле: ?Х = Хисл – Хист. Она может принимать позитивное и негативное значение. Для большего понимания разглядим пример. В школе 1205 учащихся, при округлении до 1200 безусловная погрешность равняется: ? = 1200 – 1205 = 5.

5. Существуют определенные правила расчета погрешности величин. Во-первых, безусловная погрешность суммы 2-х само­стоятельных величин равна сумме их безусловных погрешностей: ?(Х+Y) = ?Х+?Y. Подобный подход применим для разности 2-х погрешностей. Дозволено воспользоваться формулой: ?(Х-Y) = ?Х+?Y.

6. Поправка представляет собой безусловную погрешность , взятую с обратным знаком: ?п = -?. Её применяют для исключения систематической погрешности.

Измерения физических величин неизменно сопровождаются той либо другой погрешностью . Она представляет собой отклонение итогов измерения от правдивого значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

1. Погрешности могут появиться в итоге могущества разных факторов. Среди них дозволено выделить несовершенство средств либо способов измерения, неточности при их изготовлении, неисполнение особых условий при проведении изыскания.

2. Существует несколько систематизаций погрешностей. По форме представления они могут быть безусловными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:?х = хисл- хист. Вторые определяются отношением безусловных погрешностей к величине правдивого значения показателя.Формула расчета имеет вид:? = ?х/хист. Измеряется в процентах либо долях.

3. Приведенная погрешность измерительного прибора находится как отношение?х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

4. По условиям происхождения различают основные и добавочные. Если измерения проводились в типичных условиях, то появляется 1-й вид. Отклонения, обусловленные выходом значений за пределы типичных, является дополнительной. Для ее оценки в документации обыкновенно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

5. Также погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые появляются от могущества причин, и беспричинный нрав. Промах представляет собой итог слежения, тот, что круто отличается от всех остальных.

6. В зависимости от нрава измеряемой величины могут применяться разные методы измерения погрешности. 1-й из них это способ Корнфельда. Он основан на исчислении доверительного промежутка в пределах от малейшего до максимального итога. Погрешность в этом случае будет представлять собой половину разности этих итогов: ?х = (хmax-xmin)/2. Еще один из методов – это расчет средней квадратической погрешности.

Измерения могут проводиться с различной степенью точности. При этом безусловно точными не бывают даже прецизионные приборы. Безусловная и относительная погрешности могут быть малы, но в действительности они есть фактически неизменно. Разница между приближенным и точным значениями некой величины именуется безусловной погрешностью . При этом отклонение может быть как в крупную, так и в меньшую сторону.

Вам понадобится

  • – данные измерений;
  • – калькулятор.

Инструкция

1. Перед тем как рассчитывать безусловную погрешность, примите за начальные данные несколько постулатов. Исключите дерзкие погрешности. Примите, что нужные поправки теснее вычислены и внесены в итог. Такой поправкой может быть, скажем, перенос начальной точки измерений.

2. Примите в качестве начального расположения то, что знамениты и учтены случайные погрешности. При этом подразумевается, что они поменьше систематических, то есть безусловной и относительной, характерных именно для этого прибора.

3. Случайные погрешности влияют на итог даже высокоточных измерений. Следственно всякий итог будет больше либо менее приближенным к безусловному, но неизменно будут расхождения. Определите данный промежуток. Его дозволено выразить формулой (Xизм- ?Х)?Хизм? (Хизм+?Х).

4. Определите величину, максимально приближенную к правдивому значению. В реальных измерениях берется среднее арифметическое, которое дозволено обнаружить по формуле, изображенной на рисунке. Примите итог за правдивую величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

5. Зная правдивую величину измерения, вы можете обнаружить безусловную погрешность, которую нужно рассматривать при всех последующих измерениях. Обнаружьте величину Х1 – данные определенного измерения. Определите разность?Х, отняв от большего числа меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание!
Как водится, на практике безусловно точное измерение провести не получается. Следственно за эталонную величину принимается предельная погрешность. Она представляет собой наивысшее значение модуля безусловной погрешности.

Полезный совет
В утилитарных измерениях за величину безусловной погрешности обыкновенно принимается половина наименьшей цены деления. При действиях с числами за безусловную погрешность принимается половина значения цифры, которая находится в дальнейшим за точными цифрами разряде. Для определения класса точности прибора больше главным бывает отношение безусловной погрешности к итогу измерений либо к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методологии. Точность зависит также от наблюдательности и состояния экспериментатора. Погрешности разделяются на безусловные, относительные и приведенные.

Инструкция

1. Пускай однократное измерение величины дало итог x. Правдивое значение обозначено за x0. Тогда безусловная погрешность ?x=|x-x0|. Она оценивает безусловную ошибку измерения. Безусловная погрешность складывается из 3 составляющих: случайных погрешностей, систематических погрешностей и промахов. Обыкновенно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

2. Правдивое значение измеряемой величины находится в интервале (x-?x ; x+?x). Короче это записывается как x0=x±?x. Главно измерять x и?x в одних и тех же единицах измерения и записывать в одном и том же формате числа, скажем, целая часть и три цифры позже запятой. Выходит, безусловная погрешность дает границы промежутка, в котором с некоторой вероятностью находится правдивое значение.

3. Относительная погрешность выражает отношение безусловной погрешности к действительному значению величины: ?(x)=?x/x0. Это безразмерная величина, она может записываться также в процентах.

4. Измерения бывают прямые и косвенные. В прямых измерениях сразу замеряется желанная величина соответствующим прибором. Скажем, длина тела измеряется линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

5. Если итог представляет собой связанность от 3 непринужденно измеряемых величин, имеющих погрешности?x1, ?x2, ?x3, то погрешность косвенного измерения?F=?[(?x1 ?F/?x1)?+(?x2 ?F/?x2)?+(?x3 ?F/?x3)?]. Тут?F/?x(i) – частные производные от функции по всякой из непринужденно измеряемых величин.

Полезный совет
Промахи – это дерзкие неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методологии эксперимента. Дабы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и детально расписывайте полученный итог.

Итог всякого измерения неминуемо сопровождается отклонением от правдивого значения. Вычислить погрешность измерения дозволено несколькими методами в зависимости от ее типа, скажем, статистическими способами определения доверительного промежутка, среднеквадратического отклонения и пр.

Инструкция

1. Существует несколько причин, по которым появляются погрешности измерений . Это приборная неточность, несовершенство методологии, а также ошибки, вызванные невнимательностью оператора, проводящего замеры. Помимо того, зачастую за правдивое значение параметра принимают его действительную величину, которая на самом деле является лишь особенно возможной, исходя из обзора статистической выборки итогов серии экспериментов.

2. Погрешность – это мера отклонения измеряемого параметра от его правдивого значения. Согласно способу Корнфельда, определяют доверительный промежуток, тот, что гарантирует определенную степень безопасности. При этом находят так называемые доверительные пределы, в которых колеблется величина, а погрешность вычисляют как полусумму этих значений:? = (xmax – xmin)/2.

3. Это интервальная оценка погрешности , которую имеет толк проводить при маленьком объеме статистической выборки. Точечная оценка заключается в вычислении математического ожидания и среднеквадратического отклонения.

4. Математическое ожидание представляет собой интегральную сумму ряда произведений 2-х параметров слежений. Это, собственно, значения измеряемой величины и ее вероятности в этих точках:М = ?xi pi.

5. Классическая формула для вычисления среднеквадратического отклонения полагает расчет среднего значения анализируемой последовательности значений измеряемой величины, а также рассматривает объем серии проведенных экспериментов:? = ?(?(xi – xср)?/(n – 1)).

6. По методу выражения выделяют также безусловную, относительную и приведенную погрешность. Безусловная погрешность выражается в тех же единицах, что и измеряемая величина, и равна разности между ее расчетным и правдивым значением:?x = x1 – x0.

7. Относительная погрешность измерения связана с безусловной, впрочем является больше высокоэффективной. Она не имеет размерности, изредка выражается в процентах. Ее величина равна отношению безусловной погрешности к правдивому либо расчетному значению измеряемого параметра:?x = ?x/x0 либо?x = ?x/x1.

8. Приведенная погрешность выражается отношением между безусловной погрешностью и некоторым условно принятым значением x, которое является постоянным для всех измерений и определяется по градуировке шкалы прибора. Если шкала начинается с нуля (односторонняя), то это нормирующее значение равно ее верхнему пределу, а если двусторонняя – ширине каждого ее диапазона:? = ?x/xn.

Самоконтроль при диабете считается значимым компонентом лечения. Для измерения сахара крови в домашних условиях применяется глюкометр. Возможная погрешность у этого прибора выше, чем у лабораторных анализаторов гликемии.


Измерение сахара крови нужно для оценки результативности лечения диабета и для коррекции дозы препаратов. От назначенной терапии зависит то, сколько раз в месяц понадобится мерить сахар. Изредка забор крови на обзор необходим неоднократно в течение дня, изредка довольно 1-2 раз в неделю. Самоконтроль исключительно нужен беременным и больным 1 типом диабета.

Допустимая погрешность у глюкометра по мировым стандартам

Глюкометр не считается высокоточным прибором. Он предуготовлен только для ориентировочного определения концентрации сахара в крови. Возможная погрешность у глюкометра по мировым эталонам составляет 20% при гликемии больше 4,2 ммоль/л. Скажем, если при самоконтроле зафиксирован ярус сахара 5 ммоль/л, то настоящее значение концентрации находится в интервале от 4 до 6 ммоль/л. Возможная погрешность у глюкометра в стандартных условиях измеряется в процентах, а не в ммоль/л. Чем выше показатели, тем огромнее погрешность в безусловных числах. Скажем, если сахар крови достигает около 10 ммоль/л, то оплошность не превышает 2 ммоль/л, а если сахар – около 20 ммоль/л, то разница с итогом лабораторного измерения может быть до 4 ммоль/л. В большинстве случаев глюкометр завышает показатели гликемии.Эталоны допускают превышение заявленной погрешности измерения в 5% случаев. Это значит, что всякое двадцатое изыскание может значительно искажать итоги.

Допустимая погрешность у глюкометров различных фирм

Глюкометры подлежат непременной сертификации. В сопровождающих прибор документах обыкновенно указаны цифры возможной погрешности измерений. Если этого пункта нет в инструкции, то погрешность соответствует 20%. Некоторые изготовители глюкометров уделяют специальное внимание точности измерений. Существуют приборы европейских фирм, которые имеют возможную погрешность поменьше 20%. Лучший показатель на сегодняшний день составляет 10-15%.

Погрешность у глюкометра при самоконтроле

Допустимая погрешность измерения характеризует работу прибора. На точность изыскания влияют и некоторые другие факторы. Ненормально подготовленная кожа, слишком малый либо огромный объем полученной капли крови, недопустимый температурный режим – все это может приводить к ошибкам. Только в том случае, если все правила самоконтроля соблюдаются, дозволено рассчитывать на заявленную возможную погрешность изыскания. Правила самоконтроля с поддержкой глюкометра дозволено узнать у лечащего доктора.Точность глюкометра дозволено проверить в сервисном центре. Гарантийные обязательства изготовителей предусматривают бесплатные консультации и устранение неполадок.


Пусть некоторая случайная величина a измеряется n раз в одинаковых условиях. Результаты измерений дали набор n различных чисел

Абсолютная погрешность - величина размерная. Среди n значений абсолютных погрешностей обязательно встречаются как положительные, так и отрицательные.

За наиболее вероятное значение величины а обычно принимают среднее арифметическое значение результатов измерений

.

Чем больше число измерений, тем ближе среднее значение к истинному.

Абсолютной погрешностью i

.

Относительной погрешностью i -го измерения называется величина

Относительная погрешность - величина безразмерная. Обычноотносительная погрешность выражается в процентах, для этого e i домножают на 100%. Величина относительной погрешности характеризует точность измерения.

Средняя абсолютная погрешность определяется так:

.

Подчеркнем необходимость суммирования абсолютных значений (модулей) величин Dа i . В противном случае получится тождественный нулевой результат.

Средней относительной погрешностью называется величина

.

При большом числе измерений .

Относительную погрешность можно рассматривать как значение погрешности, приходящееся на единицу измеряемой величины.

О точности измерений судят на основании сравнения погрешностей результатов измерений. Поэтому погрешности измерений выражают в такой форме, чтобы для оценки точности достаточно было сопоставить только одни погрешности результатов, не сравнивая при этом размеры измеряемых объектов или зная эти размеры весьма приближенно. Из практики известно, что абсолютная погрешность измерения угла не зависит от значения угла, а абсолютная погрешность измерения длины зависит от значения длины. Чем больше значение длины, тем при данном методе и условиях измерения абсолютная погрешность будет больше. Следовательно, по абсолютной погрешности результата о точности измерения угла судить можно, а о точности измерения длины нельзя. Выражение погрешности в относительной форме позволяет сравнивать в известных случаях точность угловых и линейных измерений.


Основные понятия теории вероятности. Случайная погрешность.

Случайной погрешностью называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайные ошибки являются неизбежным следствием любых измерений и обусловлены:

а) неточностью отсчетов по шкале приборов и инструментов;

б) не идентичностью условий повторных измерений;

в) беспорядочными изменениями внешних условий (температуры, давления, силового поля и т.д.), которые невозможно контролировать;

г) всеми другими воздействиями на измерения, причины которых нам неизвестны. Величину случайной погрешности можно свести к минимуму путем многократного повторения эксперимента и соответствующей математической обработки полученных результатов.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения.

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

В связи с тем, что возникновение случайных погрешностей неизбежно и неустранимо, основной задачей всякого процесса измерения является доведение погрешностей до минимума.

В основе теории погрешностей лежат два основных предположения, подтверждаемых опытом:

1. При большом числе измерений случайные погрешности одинаковой величины, но разного знака, т.е погрешности в сторону увеличения и уменьшения результата встречаются достаточно часто.

2. Большие по абсолютной величине погрешности встречаются реже, чем малые, таким образом, вероятность возникновения погрешности уменьшается с ростом ее величины.

Поведение случайных величин описывают статистические закономерности, которые являются предметом теории вероятностей. Статистическим определением вероятности w i события i является отношение

где n - общее число опытов, n i - число опытов, в которых событие i произошло. При этом общее число опытов должно быть очень велико (n ®¥). При большом числе измерений случайные ошибки подчиняются нормальному распределению (распределение Гаусса), основными признаками которого являются следующие:

1. Чем больше отклонение значения измеренной величины от истинного, тем меньше вероятность такого результата.

2. Отклонения в обе стороны от истинного значения равновероятны.

Из приведенных выше допущений вытекает, что для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. Пусть произведено n измерений: x 1 , x 2 , ... x n - одним и тем же методом и с одинаковой тщательностью. Можно ожидать, что число dn полученных результатов, которые лежат в некотором достаточно узком интервале от x до x + dx , должно быть пропорционально:

Величине взятого интервала dx ;

Общему числу измерений n .

Вероятность dw (x ) того, что некоторое значение x лежит в интервале от x до x + dx, определяется следующим образом:

(при числе измерений n ®¥).

Функция f (х ) называется функцией распределения или плотностью вероятности.

В качестве постулата теории ошибок принимается, что результаты прямых измерений и их случайные погрешности при большом их количестве подчиняются закону нормального распределения.

Найденная Гауссом функция распределения непрерывной случайной величины x имеет следующий вид:

, где mиs - параметры распределения.

Параметрmнормального распределения равен среднему значению áx ñ случайной величины, которое при произвольной известной функции распределения определяется интегралом

.

Таким образом, величина m является наиболее вероятным значением измеряемой величины x, т.е. ее наилучшей оценкой.

Параметр s 2 нормального распределения равен дисперсии D случайной величины, которая в общем случае определяется следующим интегралом

.

Квадратный корень из дисперсии называется средним квадратическим отклонением случайной величины .

Среднее отклонение (погрешность) случайной величины ásñ определяется с помощью функции распределения следующим образом

Средняя погрешность измерений ásñ, вычисленная по функции распределения Гаусса, соотносится с величиной среднего квадратического отклонения s следующим образом:

< s> = 0,8s .

Параметры s и m связаны между собой следующим образом:

.

Это выражение позволяет находить среднее квадратическое отклонение s , если имеется кривая нормального распределения.

График функции Гаусса представлен на рисунках. Функция f (x ) симметрична относительно ординаты, проведенной в точке x = m; проходит через максимум в точке x = m и имеет перегиб в точках m ±s. Таким образом, дисперсия характеризует ширину функции распределения, или показывает, насколько широко разбросаны значения случайной величины относительно ее истинного значения. Чем точнее измерения, тем ближе к истинному значению результаты отдельных измерений, т.е. величина s - меньше. На рисунке A изображена функция f (x ) для трех значений s.

Площадь фигуры, ограниченной кривой f (x ) и вертикальными прямыми, проведенными из точек x 1 и x 2 (рис.Б), численно равна вероятности попадания результата измерения в интервал Dx = x 1 - x 2 , которая называется доверительной вероятностью. Площадь под всей кривой f (x ) равна вероятности попадания случайной величины в интервал от 0 до ¥, т.е.

,

так как вероятность достоверного события равна единице.

Используя нормальное распределение, теория ошибок ставит и решает две основные задачи. Первая - оценка точности проведенных измерений. Вторая - оценка точности среднего арифметического значения результатов измерений.5. Доверительный интервал. Коэффициент Стъюдента.

Теория вероятностей позволяет определить величину интервала, в котором с известной вероятностью w находятся результаты отдельных измерений. Эта вероятность называется доверительной вероятностью , а соответствующий интервал (<x > ± Dx ) w называется доверительным интервалом. Доверительная вероятность также равна относительной доле результатов, оказавшихся внутри доверительного интервала.

Если число измерений n достаточно велико, то доверительная вероятность выражает долю из общего числа n тех измерений, в которых измеренная величина оказалась в пределах доверительного интервала. Каждой доверительной вероятности w соответствует свой доверительный интервал.w 2 80%. Чем шире доверительный интервал, тем больше вероятность получить результат внутри этого интервала. В теории вероятностей устанавливается количественная связь между величиной доверительного интервала, доверительной вероятностью и числом измерений.

Если в качестве доверительного интервала выбрать интервал, соответствующий средней погрешности, то есть Da = áDа ñ, то при достаточно большом числе измеренийон соответствует доверительной вероятности w 60%. При уменьшении числа измерений доверительная вероятность, соответствующая такому доверительному интервалу (áа ñ ± áDа ñ), уменьшается.

Таким образом, для оценки доверительного интервала случайной величины можно пользоваться величиной средней погрешностиáDа ñ.

Для характеристики величины случайной погрешности необходимо задать два числа, а именно, величину доверительного интервала и величину доверительной вероятности. Указание одной только величины погрешности без соответствующей ей доверительной вероятности в значительной мере лишено смысла.

Если известна средняя погрешность измерения ásñ, доверительный интервал, записанный в виде (<x > ± ásñ) w , определен с доверительной вероятностью w = 0,57.

Если известно среднее квадратическое отклонение s распределения результатов измерений, указанный интервал имеет вид (<x t w s) w , где t w - коэффициент, зависящий от величины доверительной вероятности и рассчитывающийся по распределению Гаусса.

Наиболее часто используемые величиныDx приведены в таблице 1.

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения .

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах) , возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

с лучайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.



Расчет погрешностей прямых измерений

Систематические погрешности . Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления.

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности . Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Таблица 1

Число измерений N

Коэффициент Стъюдента

5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.

Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности

.

Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.

6). Округляется погрешность и результат . Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.

Округление начинают с абсолютной погрешности!!! Число значащих цифр, которое оставляют в значении погрешности, вообще говоря, зависит от коэффициента надежности и числа измерений. Однако даже для очень точных измерений (например, астрономических), в которых точное значение погрешности важно, не оставляют более двух значащих цифр. Бóльшее число цифр не имеет смысла, так как определение погрешности само имеет свою погрешность. В нашем практикуме сравнительно небольшой коэффициент надежности и малое число измерений. Поэтому при округлении (с избытком) полной абсолютной погрешности оставляют одну значащую цифру.

Разряд значащей цифры абсолоютной погрешности определяет разряд первой сомнительной цифры в значении результата. Следовательно, само значение результата нужно округлять (с поправкой) до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности . Сформулированное правило следует применять и в тех случаях, когда некоторые из цифр являются нулями.

Если при измерении массы тела получен результат , то писать нули в конце числа 0,900 необходимо. Запись означала бы, что о следующих значащих цифрах ничего не известно, в то время как измерения показали, что они равны нулю.

7). Вычисляется относительная погрешность .

При округлении относительной погрешности достаточно оставить две значащие цифры.

р езультат серии измерений некоторой физической величины представляют в виде интервала значений с указанием вероятности попадания истинного значения в данный интервал, то есть результат необходимо записать в виде:

Здесь – полная, округленная до первой значащей цифры, абсолютная погрешность и – округленное с учетом уже округленной погрешности среднее значение измеряемой величины. При записи результата измерений обязательно нужно указать единицу измерения величины.

Рассмотрим несколько примеров:

1. Пусть при измерении длины отрезка мы получили следующий результат: см и см. Как грамотно записать результат измерений длины отрезка? Сначала округляем с избытком абсолютную погрешность, оставляя одну значащую цифру см. Значащая цифра погрешности в разряде сотых. Затем округляем с поправкой среднее значение с точностью до сотых, т. е. до той значащей цифры, разряд которой совпадает с разрядом значащей цифры погрешности см. Вычисляем относительную погрешность

.

см; ; .

2. Пусть при расчете сопротивления проводника мы получили следующий результат: и . Сначала округляем абсолютную погрешность, оставляя одну значащую цифру . Затем округляем среднее значение с точностью до целых . Вычисляем относительную погрешность

.

Результат измерений записываем так:

; ; .

3. Пусть при расчете массы груза мы получили следующий результат: кг и кг. Сначала округляем абсолютную погрешность, оставляя одну значащую цифру кг. Затем округляем среднее значение с точностью до десятков кг. Вычисляем относительную погрешность

.

.

Вопросы и задачи по теории погрешностей

1. Что значит измерить физическую величину? Приведите примеры.

2. Почему возникают погрешности измерений?

3. Что такое абсолютная погрешность?

4. Что такое относительная погрешность?

5. Какая погрешность характеризует качество измерения? Приведите примеры.

6. Что такое доверительный интервал?

7. Дайте определение понятию «систематическая погрешность».

8. Каковы причины возникновения систематических погрешностей?

9. Что такое класс точности измерительного прибора?

10. Как определяются абсолютные погрешности различных физических приборов?

11. Какие погрешности называются случайными и как они возникают?

12. Опишите процедуру вычисления средней квадратичной погрешности.

13. Опишите процедуру расчета абсолютной случайной погрешности прямых измерений.

14. Что такое «коэффициент надежности»?

15. От каких параметров и как зависит коэффициент Стьюдента?

16. Как рассчитывается полная абсолютная погрешность прямых измерений?

17. Напишите формулы для определения относительной и абсолютной погрешностей косвенных измерений.

18. Сформулируйте правила округления результата с погрешностью.

19. Найдите относительную погрешность измерения длины стены при помощи рулетки с ценой деления 0,5см. Измеренная величина составила 4,66м.

20. При измерении длины сторон А и В прямоугольника были допущены абсолютные погрешности ΔА и ΔВ соответственно. Напишите формулу для расчета абсолютной погрешности ΔS, полученной при определении площади по результатам этих измерений.

21. Измерение длины ребра куба L имело погрешность ΔL. Напишите формулу для определения относительной погрешности объема куба по результатам этих измерений.

22. Тело двигалось равноускоренно из состояния покоя. Для расчета ускорения измерили путь S, пройденный телом, и время его движения t. Абсолютные погрешности этих прямых измерений составили соответственно ΔS и Δt. Выведите формулу для расчета относительной погрешности ускорения по этим данным.

23. При расчете мощности нагревательного прибора по данным измерений получены значения Рср = 2361,7893735 Вт и ΔР = 35,4822 Вт. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

24. При расчете величины сопротивления по данным измерений получены следующие значения: Rср = 123,7893735 Ом, ΔR = 0,348 Ом. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

25. При расчете величины коэффициента трения по данным измерений получены значения μср = 0,7823735 и Δμ = 0,03348. Запишите результат в виде доверительного интервала, выполнив необходимое округление.

26. Ток силой 16,6 А определялся по прибору с классом точности 1,5 и номиналом шкалы 50 А. Найдите абсолютную приборную и относительную погрешности этого измерения.

27. В серии из 5 измерений периода колебаний маятника получились следующие значения: 2,12 с, 2,10 с, 2,11 с, 2,14 с, 2,13 с. Найдите абсолютную случайную погрешность определения периода по этим данным.

28. Опыт падения груза с некоторой высоты повторяли 6 раз. При этом получались следующие величины времени падения груза: 38,0 с, 37,6 с, 37,9 с, 37,4 с, 37,5 с, 37,7 с. Найдите относительную погрешность определения времени падения.

Цена деления – это измеряемая величина, вызывающая отклонение указателя на одно деление. Цена деления определяется как отношение верхнего предела измерения прибора к числу делений шкалы.

Основной качественной характеристикой любого датчика КИП является погрешность измерения контролируемого параметра. Погрешность измерения прибора это величина расхождения между тем, что показал (измерил) датчик КИП и тем, что есть на самом деле. Погрешность измерения для каждого конкретного типа датчика указывается в сопроводительной документации (паспорт, инструкция по эксплуатации, методика поверки), которая поставляется вместе с данным датчиком.

По форме представления погрешности делятся на абсолютную , относительную и приведенную погрешности.

Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.

Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).

Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.

Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.


Нормирующее значение Хn зависит от типа шкалы датчика КИП:

  1. Если шкала датчика односторонняя и нижний предел измерения равен нулю (например, шкала датчика от 0 до 150 м3/ч), то Хn принимается равным верхнему пределу измерения (в нашем случае Хn = 150 м3/ч).
  2. Если шкала датчика односторонняя, но нижний предел измерения не равен нулю (например, шкала датчика от 30 до 150 м3/ч), то Хn принимается равным разности верхнего и нижнего пределов измерения (в нашем случае Хn = 150-30 = 120 м3/ч).
  3. Если шкала датчика двухсторонняя (например, от -50 до +150 ˚С), то Хn равно ширине диапазона измерения датчика (в нашем случае Хn = 50+150 = 200 ˚С).

Приведенная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.

У некоторых приборов в паспортах вместо погрешности измерения указывают класс точности. К таким приборам относятся механические манометры, показывающие биметаллические термометры, термостаты, указатели расхода, стрелочные амперметры и вольтметры для щитового монтажа и т.п. Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. При этом класс точности не является непосредственной характеристикой точности измерений, выполняемых этим прибором, он лишь указывает на возможную инструментальную составляющую погрешности измерения. Класс точности прибора наноситься на его шкалу или корпус по ГОСТ 8.401-80.

При присвоении прибору класса точности он выбирается из ряда 1·10 n ; 1,5·10 n ; (1,6·10 n); 2·10 n ; 2,5·10 n ; (3·10 n); 4·10 n ; 5·10 n ; 6·10 n ; (где n =1, 0, -1, -2, и т. д.). Значения классов точности, указанные в скобках, не устанавливают для вновь разрабатываемых средств измерений.

Определение погрешности измерения датчиков выполняют, например, при их периодической поверке и калибровке. С помощью различных задатчиков и калибраторов с высокой точностью генерируют определенные значения той или иной физической величины и сличают показания поверяемого датчика с показаниями образцового средства измерения, на которое подается то же самое значение физической величины. Причем погрешность измерения датчика контролируется как при прямом ходе (увеличение измеряемой физической величины от минимума до максимума шкалы), так и при обратном ходе (уменьшение измеряемой величины от максимума до минимума шкалы). Это связано с тем, что из-за упругих свойств чувствительного элемента датчика (мембрана датчика давления), различной интенсивности протекания химических реакций (электрохимический сенсор), тепловой инерции и т.п. показания датчика будут различны в зависимости от того, как меняется воздействующая на датчик физическая величина: уменьшается или увеличивается.

Довольно часто в соответствии с методикой поверки отсчет показаний датчика при поверке нужно выполнять не по его дисплею или шкале, а по величине выходного сигнала, например, по величине выходного тока токового выхода 4…20 мА.

У поверяемого датчика давления со шкалой измерения от 0 до 250 mbar основная относительная погрешность измерения во всем диапазоне измерений равна 5%. Датчик имеет токовый выход 4…20 мА. На датчик калибратором подано давление 125 mbar, при этом его выходной сигнал равен 12,62 мА. Необходимо определить укладываются ли показания датчика в допустимые пределы.
Во-первых, необходимо вычислить каким должен быть выходной ток датчика Iвых.т при давлении Рт = 125 mbar.
Iвых.т = Iш.вых.мин + ((Iш.вых.макс – Iш.вых.мин)/(Рш.макс – Рш.мин))*Рт
где Iвых.т – выходной ток датчика при заданном давлении 125 mbar, мА.
Iш.вых.мин – минимальный выходной ток датчика, мА. Для датчика с выходом 4…20 мА Iш.вых.мин = 4 мА, для датчика с выходом 0…5 или 0…20 мА Iш.вых.мин = 0.
Iш.вых.макс - максимальный выходной ток датчика, мА. Для датчика с выходом 0…20 или 4…20 мА Iш.вых.макс = 20 мА, для датчика с выходом 0…5 мА Iш.вых.макс = 5 мА.
Рш.макс – максимум шкалы датчика давления, mbar. Рш.макс = 250 mbar.
Рш.мин – минимум шкалы датчика давления, mbar. Рш.мин = 0 mbar.
Рт – поданное с калибратора на датчик давление, mbar. Рт = 125 mbar.
Подставив известные значения получим:
Iвых.т = 4 + ((20-4)/(250-0))*125 = 12 мА
То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе должно быть 12 мА. Считаем, в каких пределах может изменяться расчетное значение выходного тока, учитывая, что основная относительная погрешность измерения равна ± 5%.
ΔIвых.т =12 ± (12*5%)/100% = (12 ± 0,6) мА
То есть при поданном на датчик давлении равном 125 mbar на его токовом выходе выходной сигнал должен быть в пределах от 11,40 до 12,60 мА. По условию задачи мы имеем выходной сигнал 12,62 мА, значит наш датчик не уложился в определенную производителем погрешность измерения и требует настройки.
Основная относительная погрешность измерения нашего датчика равна:
δ = ((12,62 – 12,00)/12,00)*100% = 5,17%

Поверка и калибровка приборов КИП должна выполнятся при нормальных условиях окружающей среды по атмосферному давлению, влажности и температуре и при номинальном напряжении питания датчика, так как более высокие или низкие температура и напряжение питания могут привезти к появлению дополнительной погрешности измерения. Условия проведения поверки указываются в методике поверки. Приборы, погрешность измерения которых не уложилась в установленные методикой поверки рамки либо заново регулируют и настраивают, после чего они повторно проходят поверку, либо, если настройка не принесла результатов, например, из-за старения или чрезмерной деформации сенсора, ремонтируются. Если ремонт невозможен то приборы бракуются и выводятся из эксплуатации.

Если все же приборы удалось отремонтировать то они подвергаются уже не периодической, а первичной поверке с выполнением всех изложенных в методике поверки пунктов для данного вида поверки. В некоторых случаях прибор специально подвергают незначительному ремонту () так как по методике поверки выполнить первичную поверку оказывается существенно легче и дешевле чем периодическую, из-за различий в наборе образцовых средств измерения, которые используются при периодической и первичной поверках.

Для закрепления и проверки полученных знаний рекомендую выполнить .

Имея дело в вычислениях с бесконечными десятичными дробями, приходится для удобства выполнять приближение этих чисел, т. е. округлять их. Приблизительные числа получаются также при различных измерениях.

Бывает полезно узнать, как сильно приближенное значение числа отличается от его точного значения. Понятно, что чем это различие меньше, тем лучше, тем точнее выполнено измерение или вычисление.

Для определения точности измерений (вычислений) вводят такое понятие как погрешность приближения . По-другому его называют абсолютной погрешностью . Погрешность приближения представляет собой взятую по модулю разность между точным значением числа и его приближенным значением.

Если a - это точное значение числа, а b - его приближенное значение, то погрешность приближения определяется по формуле |a – b|.

Допустим, что в результате измерений было получено число 1,5. Однако в результате вычисления по формуле точное значение этого числа равно 1,552. В таком случае погрешность приближения будет равна |1,552 – 1,5| = 0,052.

В случае с бесконечными дробями погрешность приближения определяется по той же формуле. На месте точного числа записывается сама бесконечная дробь. Например, |π – 3,14| = |3,14159... – 3,14| = 0,00159... . Здесь получается, что погрешность приближения выражена иррациональным числом.

Как известно, приближение может выполняться как по недостатку, так и по избытку. То же число π при приближении по недостатку с точностью до 0,01 равно 3,14, а при приближении по избытку с точностью до 0,01 равно 3,15. Причина, по которой в вычислениях используется его приближение по недостатку, заключается в применении правил округления. Согласно этим правилам, если первая отбрасываемая цифра равна пяти или больше пяти, то выполняется приближение по избытку. Если меньше пяти, то по недостатку. Так как третьей цифрой после запятой у числа π является 1, то поэтому при приближении с точностью до 0,01 оно выполняется по недостатку.

Действительно, если вычислить погрешности приближения до 0,01 числа π по недостатку и по избытку, то получим:

|3,14159... – 3,14| = 0,00159...
|3,14159... – 3,15| = 0,0084...

Так как 0,00159...

Говоря о погрешности приближения, также как и в случае с самим приближением (по избытку или недостатку), указывают его точность. Так в приводимом выше примере с числом π следует сказать, что оно равно числу 3,14 с точностью до 0,01. Ведь модуль разности между самим числом и его приближенным значением не превышает 0,01 (0,00159... ≤ 0,01).

Точно также π равно 3,15 с точностью до 0,01, так как 0,0084... ≤ 0,01. Однако если говорить о большей точности, например до 0,005, то мы можем сказать, что π равно 3,14 с точностью до 0,005 (так как 0,00159... ≤ 0,005). Сказать же это по отношению к приближению 3,15 мы не можем (так как 0,0084... > 0,005).