Вероятность попадания значения случайной величины в интервал. Вероятность попадания случайной величины на заданный интервал

Найдем функцию распределения случайной величины Х , подчиненной нормальному закону распределения:

сделаем в интеграле замену и приведем его к виду:

.

Интеграл не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или . Выразим функцию через функцию Лапласа Ф(х):

.

Вероятность попадания случайной величины Х на участок (α, β) выражается формулой:

.

С помощью последней формулы можно оценить вероятность отклонения нормальной случайной величины от своего математического ожидания на заранее заданную сколь угодно малую положительную величину ε:

.

Пусть , тогда и . При t =3 получим , т.е. событие, заключающееся в том, что отклонение нормально распределенной случайной величины от математического ожидания, будет меньше , является практически достоверным.

В этом состоит правило трех сигм : если случайная величина распределена нормально, то абсолютная величина отклонения ее значений от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Задача. Пусть диаметр изготовляемой цехом детали является случайной величиной, распределенной нормально, m = 4,5 см, см. Найти вероятность того, что размер диаметра наудачу взятой детали отличается от ее математического ожидания не более, чем на 1 мм.

Решение . Данная задача характеризуется следующими значениями параметров, определяющих искомую вероятность: , , Ф(0,2)=0,0793,

Контрольные вопросы

1. Какое распределение вероятностей называется равномерным?

2. Какой вид имеет функция распределения случайной величины, равномерно распределенной на отрезке [а; b ]?

3. Как вычислить вероятность попадания значений равномерно распределенной случайной величины в заданный промежуток?

4. Как определяется показательное распределение случайной величины?

5. Какой вид имеет функция распределения случайной величины, распределенной по показательному закону?

6. Какое распределение вероятностей называется нормальным?

7. Какими свойствами обладает плотность нормального распределения? Как влияют параметры нормального распределения на вид графика плотности нормального распределения?

8. Как вычислить вероятность попадания значений нормально распределенной случайной величины в заданный промежуток?

9. Как вычислить вероятность отклонения значений нормально распределенной случайной величины от ее математического ожидания?

10. Сформулируйте правило «трех сигма»?

11. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по равномерному закону на отрезке [а; b ]?

12. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по показательному закону с параметром λ?

13. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по нормальному закону с параметрами m и ?

Контрольные задания

1. Случайная величина Х распределена равномерно на отрезке [−3, 5]. Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятности и . Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение Х .

2. Автобусы маршрута №21 идут регулярно с интервалом 10 мин. Пассажир выходит на остановку в случайный момент времени. Рассматривается случайная величина Х − время ожидания пассажиром автобуса (в мин.). Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятность того, что пассажиру придется ждать автобуса не более пяти минут. Найти среднее время ожидания автобуса и дисперсию времени ожидания автобуса.

3. Установлено, что время ремонта видеомагнитофона (в днях) есть случайная величина Х , распределенная по показательному закону. Среднее значение времени ремонта видеомагнитофона равно 10 дням. Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятность того, что на ремонт видеомагнитофона потребуется не менее 11 дней.

4. Изобразите графики плотности и функции распределения случайной величины Х , распределенной по нормальному закону с параметрами m = = − 2 и = 0,2.

Страница 1
Тест 7
Нормальный закон распределения. Вероятность попадания нормально распределенной случайной величины (НРСВ) в заданный интервал.
Основные сведения из теории.

Нормальным называют распределение вероятностей случайной величины (СВ) X , если плотность распределения определяется уравнением:

Где a – математическое ожидание СВ X ; - среднее квадратическое отклонение.

График
симметричен относительно вертикальной прямой
. Чем больше , тем больше размах кривой
. Значения функции
имеются в таблицах.

Вероятность того, что СВ X примет значение, принадлежащее интервалу
:
, где
- функция Лапласа. Функция
определяется по таблицам.

При =0 кривая
симметрична относительно оси ОУ- это стандартное (или нормированное) нормальное распределение.

Так как функция плотности вероятности НРСВ симметрична относительно математического ожидания, то можно простроить так называемую шкалу рассеивания:

Видно, что с вероятностью 0,9973 можно утверждать, что НРСВ примет значения в пределах интервала
. Это утверждение получило в теории вероятностей название “правила Трех сигм”.


1. Сравните величины для двух кривых НРСВ.

1)
2)


2. Непрерывная случайная величина Х задана плотностью распределения вероятностей
. Тогда математическое ожидание этой нормально распределенной случайной величины равно:

1) 3 2) 18 3) 4 4)

3. НРСВ Х задана плотностью распределения:
.

Математическое ожидание и дисперсия этой СВ равны:

1) =1 2) =5 3) =5

=25 =1 =25
4. Правило трех сигм означает, что:

1) Вероятность попадания СВ в интервал
, то есть близка к единице;

2) НРСВ не может выйти за пределы
;

3) График плотности НРСВ симметричен относительно математического ожидания

5. СВ Х распределена нормально с математическим ожиданием, равным 5 и СКО, равным 2 единицы. Выражение для плотности распределения этой НРСВ имеет вид:

1)

2)

3)

6. Математическое ожидание и СКО НРСВ Х равны 10 и 2. Вероятность того, что в результате испытания СВ Х примет значение, заключенное в интервале , составляет:

1) 0,1915 2) 0,3830 3) 0,6211


7. Деталь считается годной, если отклонение Х действительного размера от размера на чертеже по абсолютной величине меньше, чем 0,7 мм. Отклонения Х от размера на чертеже являются НРСВ со значением =0,4 мм. Изготовлено 100 деталей; из них годных будет:

1) 92 2) 64 3) 71


8. Математическое ожидание и СКО НРСВ Х равны 10 и 2. Вероятность того, что в результате испытания СВ Х примет значение, заключенное в интервале составляет:

1) 0,1359 2) 0,8641 3) 0,432


9. Погрешность Х изготовления детали является НРСВ со значением a =10 и =0,1. Тогда с вероятностью 0,9973 интервал размеров деталей, симметричный относительно a =10 будет:

1) 9,7; 10,3 2) 9,8; 10,2 3) 9,9; 10,1

10. Взвешивают все изделия без систематических ошибок. Случайные ошибки Х измерения подчинены нормальному закону со значением =10 г. Вероятность того, что взвешивание будет произведено с ошибкой не превосходящей по абсолютной величине 15 г составляет:

1) 0,8664 2) 0,1336 3) 0,4332


11. НРСВ Х имеет математическое ожидание a =10 и СКО =5. С вероятностью 0,9973 величина Х попадет в интервал:

1) (5; 15) 2) (0; 20) 3) (-5; 25)


12. НРСВ Х имеет математическое ожидание a =10. Известно, что вероятность попадания Х в интервал равна 0,3. Тогда вероятность попадания СВ Х в интервал будет равна:

1) 0,1 2) 0,2 3) 0,3


13. НРСВ Х имеет математическое ожидание a =25. Вероятность попадания Х в интервал равна 0,2. Тогда вероятность попадания Х в интервал будет равна:

1) 0,1 2) 0,2 3) 0,3


14. Температура в помещении поддерживается нагревателем и имеет нормальное распределение с
и
. Вероятность того, что температура в этом помещении будет в пределах от
до
составляет:

1) 0,95 2) 0,83 3) 0,67


15. Для стандартизованного нормального распределения величина равна:

1) 1 2) 2 3)

16. Эмпирическое нормальное распределение образуется в том случае, когда:

1) действует большое число независимых случайных причин, имеющих примерно одинаковый статистический вес;

2) действует большое число сильно зависимых между собой случайных величин;

3) объем выборки небольшой.


1

Значение определяет размах кривой плотности распределения относительно математического ожидания. Для кривой 2 размах больше, то есть


(2)

2

В соответствии с уравнением для плотности НРСВ математическое ожидание a =4.

(3)

3

В соответствии с уравнением для плотности НРСВ имеем: =1; =5, то есть
.

(1)

4

Верным является ответ (1).

(1)

5

Выражение для плотности распределении НРСВ имеет вид:
. По условию: =2; a =5, то есть верным является ответ (1).

(1)

6

По условию =10; =2. Интервал равен . Тогда:
;
.

По таблицам функции Лапласа:
; . Тогда искомая вероятность:



(2)

7

По условию: =0;
;=0,4. Значит интервал будет [-0,7; 0,7].


;
.

;

То есть из 100 деталей наиболее вероятно будет годных 92 штуки.


(1)



8

По условию: =10 и =2. Интервал равен . Тогда:
;
. По таблицам функции Лапласа:
;
;

(1)

9

В интервал, симметричный относительно математического ожидания a =10 с вероятностью 0,9973, попадают все детали, имеющие размеры, равные
, то есть ; . Таким образом:

(1)

10

По условию
,то есть =0, а интервал будет [-15;15]

Тогда:
;
.

Как вставить математические формулы на сайт?

Если нужно когда-никогда добавлять одну-две математические формулы на веб-страницу, то проще всего сделать это, как описано в статье : математические формулы легко вставляются на сайт в виде картинок, которые автоматически генерирует Вольфрам Альфа. Кроме простоты, этот универсальный способ поможет улучшить видимость сайта в поисковых системах. Он работает давно (и, думаю, будет работать вечно), но морально уже устарел.

Если же вы постоянно используете математические формулы на своем сайте, то я рекомендую вам использовать MathJax - специальную библиотеку JavaScript, которая отображает математические обозначения в веб-браузерах с использованием разметки MathML, LaTeX или ASCIIMathML.

Есть два способа, как начать использовать MathJax: (1) при помощи простого кода можно быстро подключить к вашему сайту скрипт MathJax, который будет в нужный момент автоматически подгружаться с удаленного сервера (список серверов ); (2) закачать скрипт MathJax с удаленного сервера на свой сервер и подключить ко всем страницам своего сайта. Второй способ - более более сложный и долгий - позволит ускорить загрузку страниц вашего сайта, и если родительский сервер MathJax по каким-то причинам станет временно недоступен, это никак не повлияет на ваш собственный сайт. Несмотря на эти преимущества, я выбрал первый способ, как более простой, быстрый и не требующий технических навыков. Следуйте моему примеру, и уже через 5 минут вы сможете использовать все возможности MathJax на своем сайте.

Подключить скрипт библиотеки MathJax с удаленного сервера можно при помощи двух вариантов кода, взятого на главном сайте MathJax или же на странице документации :

Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

Любой фрактал строится по определенному правилу, которое последовательно применяется неограниченное количество раз. Каждый такой раз называется итерацией.

Итеративный алгоритм построения губки Менгера достаточно простой: исходный куб со стороной 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из него удаляются один центральный куб и 6 прилежащих к нему по граням кубов. Получается множество, состоящее из 20 оставшихся меньших кубов. Поступая так же с каждым из этих кубов, получим множество, состоящее уже из 400 меньших кубов. Продолжая этот процесс бесконечно, получим губку Менгера.

ФОРМЫ ЗАДАНИЯ ЗАКОНА РАСПРЕДЕЛЕНИЯ ДЛЯ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

ФОРМЫ ЗАДАНИЯ ЗАКОНА РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

1). Таблица (ряд)распределения - простейшая форма задания закона распределения дискретных случайных величин.

Так как в таблице перечислены все возможные значения случайной величины.

2). Многоугольник распределения . При графическом изображении ряда распределения в прямоугольной системе координат по оси абсцисс откладывают все возможные значения случайной величины, а по оси ординат - соответствующие им вероятности. Затем наносят точки и соединяют их прямолинейными отрезками. Полученная фигура -многоугольник распределения - также является формой задания закона распределения дискретной случайной величины.

3). Функция распределения - вероятность того, что случайная величина Х примет значение, меньшее некоторого заданного х , т.е

.

С геометрической точки зрения можно рассматривать как вероятность попадания случайной точки Х на участок числовой оси, расположенный левее фиксированной точки х.

2) ; ;

Задача 2.1. Случайная величина Х - число попаданий в мишень при 3‑х выстрелах (см. задачу 1.5). Построить ряд распределения, многоугольник распределения, вычислить значения функции распределения и построить её график.

Решение :

1) Ряд распределения случайной величины Х представлен в таблице

При ,
При ,
При ,
При
при .

Откладывая по оси абсцисс значения х, а по оси ординат - значения и выбрав определённый масштаб, получим график функции распределения (рис. 2.2). Функция распределения дискретной случайной величины имеет скачки (разрывы) в тех точках, в которых случайная величина Х принимает конкретные значения, указанные в таблице распределения. Сумма всех скачков функции распределения равна единице.

Рис. 2.2 - Функция распределения дискретной величины

1). Функция распределения .

Для непрерывной случайной величины график функции распределения (рис. 2.3) имеет форму плавной кривой.



Свойства функции распределения:

в) , если .

Рис. 2.3 - Функция распределения непрерывной величины

2). Плотность распределения определяется как производная от функции распределения, т.е.

.

Кривая, изображающая плотность распределения случайной величины , называется кривой распределения (рис. 2.4).

Свойства плотности:

а) , т.е. плотность есть неотрицательная функция;

б) , т.е. площадь, ограниченная кривой распределения и осью абсцисс, всегда равна 1.

Если все возможные значения случайной величины Х заключены в пределах от a до b , то второе свойство плотности примет вид:

Рис. 2.4 - Кривая распределения

На практике часто оказывается необходимым знать вероятность того, что случайная величина Х примет значение, заключённое в некоторых пределах, например, от a до b. Искомая вероятность для дискретной случайной величины Х определяется по формуле

так как вероятность любого отдельного значения непрерывной случайной величины равна нулю: .

Вероятность попадания непрерывной случайной величины Х на интервал (a,b) определяется также выражением:

Задача 2.3. Случайная величина Х задана функцией распределения

Найти плотность , а также вероятность того, что в результате испытания случайная величина Х примет значение, заключённое в интервале .

Решение :

2. Вероятность попадания случайной величины Х в интервал определяем по формуле. Принимая и , находим

Рис. 4. Плотность нормального распределения.

Пример 6. Определение числовых характеристик случайной величины по её плотности рассматривается на примере. Непрерывная случайная величина задана плотностью

Определить вид распределения, найти математическое ожидание M(X) и дисперсию D(X).

Решение. Сравнивая заданную плотность распределения с (1.16) можно сделать вывод, что задан нормальный закон распределения с m=4. Следовательно, математическое ожидание

M(X)=4, дисперсия D(X)=9.

Среднее квадратическое отклонение σ =3.

Функция нормального распределения (1.17) связана с функцией Лапласа, имеющей вид:

соотношение: Φ (− x ) = −Φ (x ). (Функции Лапласа нечётная). Значения функций f(x) и Ф(х) можно вычислить с помощью таблицы.

Нормальное распределение непрерывной случайной величины играет важную роль в теории вероятностей и при описании реальности, имеет очень широкое распространение в случайных явлениях природы. На практике очень часто встречаются случайные величины, образующиеся именно в результате суммирования многих случайных слагаемых. В частности, анализ ошибок измерения показывает, что они являются суммой разного рода ошибок. Практика показывает, что распределение вероятностей ошибок измерения близко к нормальному закону.

С помощью функции Лапласа можно решать задачи вычисления вероятности попадания в заданный интервал и заданного отклонения нормальной случайной величины.

3.4. Вероятность попадания в заданный интервал нормальной случайной величины

Если случайная величина Х задана плотностью распределения f(x), то вероятность того, что Х примет значение, принадлежащее заданному интервалу, вычисляется по формуле (1.9а). Подставив в формулу (1.9а) значение плотности распределения из (1.16) для нормального распределения N(a, σ ) и сделав ряд преобразований, вероятность того, что Х примет значение, принадлежащее заданному интервалу , будет равна:

P { x 1 ≤ X ≤ x 2 } = Φ(x 2 σ − а )

где: а – математическое ожидание.

−Φ(

x1 − а

Пример 7. Случайная величина Х распределена по нормальному закону. Математическое ожидание a=60, среднеквадратическое отклонение σ =20. Найти вероятность попадания случайной величины Х в заданный интервал (30;90).

Решение. Искомая вероятность вычисляется по формуле (1.18).

Получим: P(30 < X < 90) = Ф((90 – 60) / 20) –Ф((30 – 60)/20) = 2Ф(1,5).

По таблице Приложения 1: Ф(1,5) = 0,4332.. P(30 < X < 90)=2 Ф(1,5) = 2 0,4332 = 0,8664.

Вероятность попадания случайной величины Х в заданный интервал (30; 90) равна: P(30 < X < 90) = 0,8664.

3.5. Вычисление вероятности заданного отклонения нормальной случайной величины

Задачи вычисления вероятности отклонения нормальной случайной величины от заданного значения связаны с различного рода ошибками (измерения, взвешивания). Ошибки разного рода обозначаются переменной ε .

Пусть ε - отклонение нормально распределённой случайной величины Х по модулю. Требуется найти вероятность того, что отклонение случайной величины Х от математического ожидания не превысит заданного значения ε . Данная вероятность записывается в виде: P(|X–a| ≤ ε ). Предполагается, что в формуле (1.18) отрезок [х1 ; х2 ] симметричен относительно математического ожидания а. Таким образом: a–х1 =ε ; х2 –a =ε . Если эти выражения сложить, можно записать: х2 – х1 =2ε . Границы интервала [х1 ; х2 ] будут иметь вид:

х1 =а –ε ; х2 =а + ε .

В правую часть (1.18) подставляются значения х1 , х2 из (1.19), а выражение в фигурных скобках переписывается в виде двух неравенств:

1) х 1 ≤ X и заменяется в нём х1 согласно (1.19), получится: а–ε ≤ X или а–X ≤ ε .

2) X ≤ х 2 , аналогично заменяется х2 , получится: X ≤ а+ε или X–a ≤ ε .

Пример 8. Производится измерение диаметра детали. Случайные ошибки измерения принимаются за случайную величину Х и подчинены нормальному закону с математическим ожиданием а=0, со средним квадратическим отклонение σ =1 мм. Найти вероятность того, что измерение будет сделано с ошибкой, не превышающей по абсолютной величине 2 мм.

Решение. Дано: ε =2, σ =1мм, а=0.

По формуле (5.20): P (|X–0| ≤ 2) = 2Ф(ε /σ ) = 2Ф(2/1) = 2Ф(2,0).

Вероятность того, что измерение будет сделано с ошибкой, не превышающей по абсолютной величине 1мм равна:

P (|X| ≤ ε ) = 2 0,4772 = 0,9544.

Пример 9. Случайная величина, распределенная по нормальному закону с параметрами: а=50 и σ =15. Найти вероятность того, что отклонение случайной величина от своего математического ожидания – а будет меньше 5 ,т.е. P(|X–a|