Что значит на внешнем энергетическом уровне. Внешние энергетические уровни: особенности строения и их роль во взаимодействиях между атомами

Атом - электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Ядро находится в центре атома и состоит из положительно заряженных протонов и незаряженных нейтронов, удерживаемых ядерными силами. Ядерное строение атома экспериментально доказал в 1911 г. английский физик Э.Резерфорд.

Число протонов определяет положительный заряд ядра и равно порядковому номеру элемента. Число нейтронов вычисляется как разность атомной массы и порядкового номера элемента. Элементы, имеющие одинаковый заряд ядра (одинаковое число протонов), но разную атомную массу (разное количество нейтронов) называются изотопами. Масса атома в основном сосредоточена в ядре, т.к. ничтожно малой массой электронов можно пренебречь. Атомная масса равна сумме масс всех протонов и всех нейтронов ядра.
Химический элемент - это вид атомов с одинаковым зарядом ядра. В настоящее время известно 118 различных химических элементов.

Все электроны атома образуют его электронную оболочку. Электронная оболочка имеет отрицательный заряд, равный общему количеству электронов. Число электронов в оболочке атома совпадает с числом протонов в ядре и равно порядковому номеру элемента. Электроны в оболочке распределены по электронным слоям согласно запасам энергии (электроны с близкими значениями энергий образуют один электронный слой): электроны с меньшей энергией находятся ближе к ядру, электроны с большей энергией находятся дальше от ядра. Число электронных слоёв (энергетических уровней) совпадает с номером периода, в котором располагается химический элемент.

Различают завершённые и незавершённые энергетические уровни. Уровень считается завершённым, если содержит максимально возможное количество электронов (первый уровень - 2 электрона, второй уровень - 8 электронов, третий уровень - 18 электронов, четвёртый уровень - 32 электрона и т.д.). Незавершённый уровень содержит меньшее число электронов.
Уровень, максимально удалённый от ядра атома, называется внешним. Электроны, находящиеся на внешнем энергетическом уровне, называются внешними (валентными) электронами. Число электронов на внешнем энергетическом уровне совпадает с номером группы, в которой находится химический элемент. Внешний уровень считается завершённым, если содержит 8 электронов. Завершённым внешним энергетическим уровнем обладают атомы элементов 8А группы (инертные газы гелий, неон, криптон, ксенон, радон).

Область пространства вокруг ядра атома, в которой наиболее вероятно нахождение электрона, называют электронной орбиталью. Орбитали отличаются уровнем энергии и формой. По форме различают s-орбитали (сфера), p-орбитали (объёмная восьмёрка), d-орбитали и f-орбитали. На каждом энергетическом уровне есть свой набор орбиталей: на первом энергетическом уровне - одна s-орбиталь, на втором энергетическом уровне - одна s- и три p-орбитали, на третьем энергетическом уровне - одна s-, три p-, пять d-орбиталей, на четвертом энергетическом уровне одна s-, три p-, пять d-орбиталей и семь f-орбиталей. На каждой орбитале могут располагаться максимально два электрона.
Распределение электронов по орбиталям отражается с помощью электронных формул. Например, для атома магния распределение электронов по энергетическим уровням будет следующим: 2е, 8е, 2е. Данная формула показывает, что 12 электронов атома магния распределены по трём энергетическим уровням: первый уровень завершён и содержит 2 электрона, второй уровень завершён и содержит 8 электронов, третий уровень не завершён, т.к. содержит 2 электрона. Для атома кальция распределение электронов по энергетическим уровням будет следующим: 2е, 8е, 8е, 2е. Данная формула показывает, что 20 электронов кальция распределены по четырём энергетическим уровням: первый уровень завершён и содержит 2 электрона, второй уровень завершён и содержит 8 электронов, третий уровень не завершён, т.к. содержит 8 электронов, четвёртый уровень не завершён, т.к. содержит 2 электрона.

Перейти на... Новостной форум Описание курса Тренировочный тест "Строение атома" Контрольный тест по теме "Строение атома" Периодический закон и Периодическая система химических элементов Д.И.Менделеева. Тренировочный тест по теме "Периодический закон и ПСХЭ" Контрольный тест по теме "Периодический закон и ПСХЭ" Типы химической связи Тренировочный тест по теме "Химическая связь" Контрольный тест по теме "Химическая связь" Степень окисления. Валентность. Тренировочный тест по теме "Степень окисления. Валентность" Контрольный тест по теме "Степень окисления. Валентность" Вещества простые и сложные. Классификация неорганических веществ. Тренировочный тест по теме "Классификация неорганических веществ" Контрольный тест по теме "Классификация веществ" Химические реакции. Признаки, классификация, уравнения. Тренировочный тест по теме "Химические реакции. Признаки. Классификация." Контрольный тест по теме "Химические реакции. Признаки. Классификация" Электролитическая диссоциация Тренировочный тест по теме "Электролитическая диссоциация" Контрольный тест по теме "Электролитическая диссоциация" Реакции ионного обмена и условия их осуществления. Тренировочный тест по теме "Реакции ионного обмена" Контрольный тест по теме "Реакции ионного обмена" Химические свойства простых веществ металлов и неметаллов. Тренировочный тест по теме "Химические свойства простых веществ металлов и неметаллов" Контрольный тест по теме "Химические свойства простых веществ металлов и неметаллов" Химические свойства оксидов: основных, кислотных, амфотерных. Тренировочный тест по теме "Химические свойства оксидов" Контрольный тест по теме "Химические свойства оксидов" Химические свойства гидроксидов: оснований, кислот, амфотерных гидроксидов. Тренировочный тест по теме "Химические свойства гидроксидов" Контрольный тест по теме "Химические свойства гидроксидов" Химические свойства солей. Тренировочный тест по теме "Химические свойства солей" Контрольный тест по теме "Химические свойства солей" Химия и жизнь Тренировочный тест по теме "Химия и жизнь" Контрольный тест по теме "Химия и жизнь" Окислительно-восстановительные реакции. Тренировочный тест по теме "Окислительно-восстановительные реакции" Контрольный тест по теме "Окислительно-восстановительные реакции" Массовая доля элемента в соединении Тренировочный тест по теме "Массовая доля элемента в соединении" Контрольный тест по теме "Массовая доля элемента в соединении" Решение задач на расчёт по уравнению реакции. Тренировочные задачи на расчёт по уравнению реакции. Контрольные задачи на расчёт по уравнению реакции Итоговое тестирование по курсу химии 8-9 классов.

Малюгина 14. Внешний и внутренний энергетический уровни. Завершенность энергетического уровня.

Вспомним вкратце, что мы уже знаем о строении электронной оболочки атомов:

ü число энергетических уровней атома = номеру периода, в котором находится элемент;

ü максимальная емкость каждого энергетического уровня вычисляется по формуле 2n2

ü внешняя энергетическая оболочка не может содержать для элементов 1 периода более 2-х электронов, для элементов других периодов более 8 электронов

Еще раз вернемся к анализу схемы заполнения энергетических уровней у элементов малых периодов:

Таблица1.Заполнение энергетических уровней

у элементов малых периодов

Номер периода

Количество энергетических уровней = номеру периода

Символ элемента, его порядковый номер

Общее количество

электронов

Распределение электронов по энергетическим уровням

Номер группы

Н +1 )1

+1 Н, 1е-

Н e + 2 ) 2

+2 Не, 2е-

Li + 3 ) 2 ) 1

+ 3 Li , 2е-, 1е-

Ве +4 ) 2 )2

+ 4 Be , 2е-, 2 е-

В +5 ) 2 )3

+5 В, 2е-, 3е-

С +6 ) 2 )4

+6 С, 2е-, 4е-

N + 7 ) 2 ) 5

+ 7 N , 2е-, 5 е-

O + 8 ) 2 ) 6

+ 8 O , 2е-, 6 е-

F + 9 ) 2 ) 7

+ 9 F , 2е-, 7 е-

Ne + 10 ) 2 ) 8

+ 10 Ne , 2е-, 8 е -

Na + 11 ) 2 ) 8 )1

+1 1 Na , 2е-, 8е-, 1e-

Mg + 12 ) 2 ) 8 )2

+1 2 Mg , 2е-, 8е-, 2 e-

Al + 13 ) 2 ) 8 )3

+1 3 Al , 2е-, 8е-, 3 e-

Si + 14 ) 2 ) 8 )4

+1 4 Si , 2е-, 8е-, 4 e-

P + 15 ) 2 ) 8 )5

+1 5 P , 2е-, 8е-, 5 e-

S + 16 ) 2 ) 8 )6

+1 5 P , 2е-, 8е-, 6 e-

Cl + 17 ) 2 ) 8 )7

+1 7 Cl , 2е-, 8е-, 7 e-

18 Ar

Ar + 18 ) 2 ) 8 )8

+1 8 Ar , 2е-, 8е-, 8 e-

Проанализируйте таблицу 1. Сравните число электронов на последнем энергетическом уровне и номер группы, в которой находится химический элемент.

Заметили ли Вы, что число электронов на внешнем энергетическом уровне атомов совпадает с номером группы , в которой находится элемент (исключение составляет гелий)?

!!! Это правило справедливо только для элементов главных подгрупп.

Каждый период системы заканчивается инертным элементом (гелий He, неон Ne, аргон Ar). Внешний энергетический уровень этих элементов содержит максимально возможное число электронов: гелий -2, остальные элементы – 8. Это элементы VIII группы главной подгруппы. Энергетический уровень, схожий со строением энергетического уровня инертного газа, называют завершенным . Это своеобразный предел прочности энергетического уровня для каждого элемента Периодической системы. Молекулы простых веществ – инертных газов состоят из одного атома и отличаются химической инертностью, т. е. практически не вступают в химические реакции.

У остальных элементов ПСХЭ энергетический уровень отличается от энергетического уровня инертного элемента, такие уровни называют незавершенными . Атомы этих элементов стремятся к завершению внешнего энергетического уровня, отдавая или принимая электроны.

Вопросы для самоконтроля

1. Какой энергетический уровень называется внешним?

2. Какой энергетический уровень называется внутренним?

3. Какой энергетический уровень называется завершенным?

4. Элементы какой группы и подгруппы имеют завершенный энергетический уровень?

5. Чему равно число электронов на внешнем энергетическом уровне элементов главных подгрупп?

6. Чем схожи по строению электронного уровня элементы одной главной подгруппы

7. Сколько электронов на внешнем уровне содержат элементы а) IIA группы;

б) IVA группы; в) VII A группы

Посмотреть ответ

1. Последний

2. Любой, кроме последнего

3. Тот, который содержит максимальное число электронов. А также внешний уровень, если он содержит 8 электронов для I периода - 2 электрона.

4. Элементы VIIIA группы (инертные элементы)

5. Номеру группы, в которой находится элемент

6. У всех элементов главных подгрупп на внешнем энергетическом уровне содержится столько электронов, каков номер группы

7. а) у элементов IIA группы на внешнем уровне 2 электрона; б) у элементов IVA группы – 4 электрона; в) у элементов VII A группы – 7 электронов.

Задания для самостоятельного решения

1. Определите элемент по следующим признакам: а) имеет 2 электронных уровня, на внешнем – 3 электрона; б) имеет 3 электронных уровня, на внешнем – 5 электронов. Запишите распределение электронов по энергетическим уровням этих атомов.

2. Какие два атома имеют одинаковое число заполненных энергетических уровней?

Посмотреть ответ :

1. а) Установим «координаты» химического элемента: 2 электронных уровня – II период; 3 электрона на внешнем уровне – III А группа. Это бор 5B. Схема распределения электронов по энергетическим уровням: 2е-, 3е-

б) III период, VА группа, элемент фосфор 15Р. Схема распределения электронов по энергетическим уровням: 2е-, 8е-, 5е-

2. г) натрий и хлор.

Пояснение : а) натрий: +11 )2)8 )1 (заполненных 2) ←→ водород: +1)1

б) гелий: +2 )2 (заполненых 1) ←→ водород: водород: +1)1

в) гелий: +2 )2 (заполненных 1) ←→ неон: +10 )2)8 (заполненных 2)

*г) натрий: +11 )2)8 )1 (заполненных 2) ←→ хлор: +17 )2)8 )7 (заполненных 2)

4. Десять. Число электронов = порядковому номеру

5 в) мышьяк и фосфор. Одинаковое число электронов имеют атомы, расположенные в одной подгруппе.

Пояснения:

а) натрий и магний (в разных группах); б) кальций и цинк (в одной группе, но разных подгруппах) ; * в) мышьяк и фосфор (в одной, главной, подгруппе) г) кислород и фтор (в разных группах).

7. г) число электронов на внешнем уровне

8. б) число энергетических уровней

9. а) литий (находится в IA группе II периода)

10. в) кремний (IVA группа, III период)

11. б) бор (2 уровня - II период , 3 электрона на внешнем уровне – IIIA группа )

2. Строение ядер и электронных оболочек атомов

2.6. Энергетические уровни и подуровни

Наиболее важной характеристикой состояния электрона в атоме является энергия электрона, которая согласно законам квантовой механики изменяется не непрерывно, а скачкообразно, т.е. может принимать только вполне определенные значения. Таким образом, можно говорить о наличии в атоме набора энергетических уровней.

Энергетический уровень - совокупность АО с близкими значениями энергии.

Энергетические уровни нумеруют с помощью главного квантового числа n , которое может принимать только целочисленные положительные значения (n = 1, 2, 3, ...). Чем больше значение n , тем выше энергия электрона и данного энергетического уровня. Каждый атом содержит бесконечное число энергетических уровней, часть из которых в основном состоянии атома заселена электронами, а часть - нет (эти энергетические уровни заселяются в возбужденном состоянии атома).

Электронный слой - совокупность электронов, находящихся на данном энергетическом уровне.

Иными словами, электронный слой - это энергетический уровень, содержащий электроны.

Совокупность электронных слоев образует электронную оболочку атома.

В пределах одного и того же электронного слоя электроны могут несколько различаться по энергии, в связи с чем говорят, что энергетические уровни расщепляются на энергетические подуровни (подслои ). Число подуровней, на которые расщепляется данный энергетический уровень, равно номеру главного квантового числа энергетического уровня:

N (подур) = n (уровн) . (2.4)

Подуровни изображаются с помощью цифр и букв: цифра отвечает номеру энергетического уровня (электронного слоя), буква - природе АО, формирующей подуровни (s -, p -, d -, f -), например: 2p -подуровень (2p -АО, 2p -электрон).

Таким образом, первый энергетический уровень (рис. 2.5) состоит из одного подуровня (1s ), второй - из двух (2s и 2p ), третий - из трех (3s , 3p и 3d ), четвертый из четырех (4s , 4p , 4d и 4f ) и т.д. Каждый подуровень содержит определенное число АО:

N (AO) = n 2 . (2.5)

Рис. 2.5. Схема энергетических уровней и подуровней для первых трех электронных слоев

1. АО s -типа имеются на всех энергетических уровнях, p -типа появляются начиная со второго энергетического уровня, d -типа - с третьего, f -типа - с четвертого и т.д.

2. На данном энергетическом уровне может быть одна s -, три p -, пять d -, семь f -орбиталей.

3. Чем больше главное квантовое число, тем больше размеры АО.

Поскольку на одной АО не может находиться более двух электронов, общее (максимальное) число электронов на данном энергетическом уровне в 2 раза больше числа АО и равно:

N (e) = 2n 2 . (2.6)

Таким образом, на данном энергетическом уровне максимально может быть 2 электрона s -типа, 6 электронов р -типа и 10 электронов d -типа. Всего же на первом энергетическом уровне максимальное число электронов равно 2, на втором - 8 (2 s -типа и 6 р -типа), на третьем - 18 (2 s -типа, 6 р -типа и 10 d -типа). Эти выводы удобно обобщить в табл. 2.2.

Таблица 2.2

Связь между главным квантовым числом, числом э

Что происходит с атомами элементов во время химических реакций? От чего зависят свойства элементов? На оба эти вопроса можно дать один ответ: причина лежит в строении внешнего В нашей статье мы рассмотрим электронное металлов и неметаллов и выясним зависимость между структурой внешнего уровня и свойствами элементов.

Особые свойства электронов

При прохождении химической реакции между молекулами двух или более реагентов происходят изменения в строении электронных оболочек атомов, тогда как их ядра остаются неизменными. Сначала ознакомимся с характеристиками электронов, находящихся на наиболее удаленных от ядра уровнях атома. Отрицательно заряженные частицы располагаются слоями на определенном расстоянии от ядра и друг от друга. Пространство вокруг ядра, где нахождение электронов наиболее возможно, называется электронной орбиталью. В ней сконденсировано около 90 % отрицательно заряженного электронного облака. Сам электрон в атоме проявляет свойство дуальности, он одновременно может вести себя и как частица, и как волна.

Правила заполнения электронной оболочки атома

Количество энергетических уровней, на которых находятся частицы, равно номеру периода, где располагается элемент. На что же указывает электронный состав? Оказалось, что количество электронов на внешнем энергетическом уровне для s- и p-элементов главных подгрупп малых и больших периодов соответствует номеру группы. Например, у атомов лития первой группы, имеющих два слоя, на внешней оболочке находится один электрон. Атомы серы содержат на последнем энергетическом уровне шесть электронов, так как элемент расположен в главной подгруппе шестой группы и т. д. Если же речь идет о d-элементах, то для них существует следующее правило: количество внешних отрицательных частиц равно 1 (у хрома и меди) или 2. Объясняется это тем, что по мере увеличения заряда ядра атомов вначале происходит заполнение внутреннего d- подуровня и внешние энергетические уровни остаются без изменений.

Почему изменяются свойства элементов малых периодов?

В малыми считаются 1, 2, 3 и 7 периоды. Плавное изменение свойств элементов по мере возрастания ядерных зарядов, начиная от активных металлов и заканчивая инертными газами, объясняется постепенным увеличением количества электронов на внешнем уровне. Первыми элементами в таких периодах являются те, чьи атомы имеют всего один или два электрона, способные легко отрываться от ядра. В этом случае образуется положительно заряженный ион металла.

Амфотерные элементы, например, алюминий или цинк, свои внешние энергетические уровни заполняют небольшим количеством электронов (1- у цинка, 3 - у алюминия). В зависимости от условий протекания химической реакции они могут проявлять как свойства металлов, так и неметаллов. Неметаллические элементы малых периодов содержат от 4 до 7 отрицательных частиц на внешних оболочках своих атомов и завершают ее до октета, притягивая электроны других атомов. Например, неметалл с наибольшим показателем электроотрицательности - фтор, имеет на последнем слое 7 электронов и всегда забирает один электрон не только у металлов, но и у активных неметаллических элементов: кислорода, хлора, азота. Заканчиваются малые периоды, как и большие, инертными газами, чьи одноатомные молекулы имеют полностью завершенные до 8 электронов внешние энергетические уровни.

Особенности строения атомов больших периодов

Четные ряды 4, 5, и 6 периодов состоят из элементов, внешние оболочки которых вмещают всего один или два электрона. Как мы говорили ранее, у них происходит заполнение электронами d- или f- подуровней предпоследнего слоя. Обычно это - типичные металлы. Физические и химические свойства у них изменяются очень медленно. Нечетные ряды вмещают такие элементы, у которых заполняются электронами внешние энергетические уровни по следующей схеме: металлы - амфотерный элемент - неметаллы - инертный газ. Мы уже наблюдали ее проявление во всех малых периодах. Например, в нечетном ряду 4 периода медь является металлом, цинк - амфотерен, затем от галлия и до брома происходит усиление неметаллических свойств. Заканчивается период криптоном, атомы которого имеют полностью завершенную электронную оболочку.

Как объяснить деление элементов на группы?

Каждая группа - а их в короткой форме таблицы восемь, делится еще и на подгруппы, называемые главными и побочными. Такая классификация отражает различное положение электронов на внешнем энергетическом уровне атомов элементов. Оказалось, что у элементов главных подгрупп, например, лития, натрия, калия, рубидия и цезия последний электрон расположен на s-подуровне. Элементы 7 группы главной подгруппы (галогены) заполняют отрицательными частицами свой p-подуровень.

Для представителей побочных подгрупп, таких, как хром, типичным будет наполнение электронами d-подуровня. А у элементов, входящих в семейства накопление отрицательных зарядов происходит на f-подуровне предпоследнего энергетического уровня. Более того, номер группы, как правило, совпадает с количеством электронов, способных к образованию химических связей.

В нашей статье мы выяснили, какое строение имеют внешние энергетические уровни атомов химических элементов, и определили их роль в межатомных взаимодействиях.

Наименование параметра Значение
Тема статьи: ЭНЕРГЕТИЧЕСКИЕ УРОВНИ
Рубрика (тематическая категория) Образование

СТРОЕНИЕ АТОМА

1. Развитие теории строения атома. С

2. Ядро и электронная оболочка атома. С

3. Строение ядра атома. С

4. Нуклиды, изотопы, массовое число. С

5. Энергетические уровни.

6. Квантово-механическое объяснение строения.

6.1. Орбитальная модель атома.

6.2. Правила заполнения орбиталей.

6.3. Орбитали с s-электронами (атомные s-орбитали).

6.4. Орбитали с p-электронами (атомные p-орбитали).

6.5. Орбитали с d- f-электронами

7. Энергетические подуровни многоэлектронного атома. Квантовые числа.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ

Строение электронной оболочки атома определяется различным запасом энергииотдельных электронов в атоме. В соответствии с моделью атома Бора электроны могут занимать в атоме положения, которым отвечают точно определœенные (квантованные) энергетические состояния. Эти состояния называются энергетическими уровнями.

Число электронов, которые могут находиться на отдельном энергетическом уровне, определяется формулой 2n 2 , где n –номер уровня, который обозначается арабскими цифрами 1 – 7. Максимальное заполнение первых четырех энергетических уровней в. соответствии с формулой 2n 2 составляет: для первого уровня – 2 электрона, для второго – 8, для третьего –18 и для четвертого уровня – 32 электрона. Максимальное заполнение электронами более высоких энергетических уровней в атомах известных элементов не достигнуто.

Рис. 1показывает заполнение электронами энергетических уровней первых двадцати элементов (от водорода Н до кальция Са, черные кружки). Заполняя в указанном порядке энергетические уровни, получают простейшие модели атомов элементов, при этом соблюдают порядок заполнения (снизу вверх и слева направо по рисунку) таким образом, пока последний электрон не укажет на символ соответствующего элементаНа третьем энергетическом уровне М (максимальная емкость равна 18 е - )для элементов Nа – Аr содержится только 8 электронов, затем начинает застраиваться четвертый энергетический уровень N –на нем появляются два электрона для элементов К и Са. Следующие 10 электронов снова занимают уровень М (элементы Sc – Zn (не показаны), а потом продолжается заполнение уровня N еще шестью электронами (элементы Cа-Кr, белые кружки).

Рис. 1 Рис. 2

В случае если атом находится в основном состоянии, то его электроны занимают уровни с минимальной энергией, т. е. каждый последующий электрон занимает энергетически самое выгодное положение, такое, как на рис. 1. При внешнем воздействии на атом, связанном с передачей ему энергии, к примеру путем нагревания, электроны переводятся на более высокие энергетические уровни (рис. 2). Такое состояние атома принято называть возбужденным. Освободившееся на нижнем энергетическом уровне место заполняется (как выгодное положение) электроном с более высокого энергетического уровня. При переходе электрон отдает неĸᴏᴛᴏᴩᴏᴇ количество энергии, ĸᴏᴛᴏᴩᴏᴇ соответствует энергетической разности между уровнями. В результате электронных переходов возникает характерное излучение. по спектральным линиям поглощаемого (излучаемого) света можно сделать количественное заключение об энергетических уровнях атома.

В соответствии с квантовой моделью атома Бора электрон, имеющий определœенное энергетическое состояние, движется в атоме по круговой орбите. Электроны с одинаковым запасом энергии находятся на равных расстояниях от ядра, каждому энергетическому уровню отвечает свой набор электронов, названный Бором электронным слоем. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по Бору электроны одного слоя двигаются по шаровой поверхности, электроны следующего слоя по другой шаровой поверхности. всœе сферы вписаны одна в другую с центром, отвечающим атомному ядру.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ - понятие и виды. Классификация и особенности категории "ЭНЕРГЕТИЧЕСКИЕ УРОВНИ" 2017, 2018.