Экстремумы производной функции. Экстремумы функции: признаки существования, примеры решений

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Пример.

Найти экстремумы функции .

Решение.

Начнем с области определения:

Продифференцируем исходную функцию:

x=1 , то есть, это точка возможного экстремума. Находим вторую производную функции и вычисляем ее значение при x = 1 :

Следовательно, по второму достаточному условию экстремума, x=1 - точка максимума. Тогда - максимум функции.

Графическая иллюстрация.

Ответ:

Третье достаточное условие экстремума функции.

Пусть функция y=f(x) имеет производные до n -ого порядка в -окрестности точки и производные до n+1 -ого порядка в самой точке . Пусть и .

Пример.

Найти точки экстремума функции .

Решение.

Исходная функция является целой рациональной, ее областью определения является все множество действительных чисел.

Продифференцируем функцию:

Производная обращается в ноль при , следовательно, это точки возможного экстремума. Воспользуемся третьим достаточным условием экстремума.

Находим вторую производную и вычисляем ее значение в точках возможного экстремума (промежуточные вычисления опустим):

Следовательно, - точка максимума (для третьего достаточного признака экстремума имеем n=1 и ).

Для выяснения характера точек находим третью производную и вычисляем ее значение в этих точках:

Следовательно, - точка перегиба функции (n=2 и ).

Осталось разобраться с точкой . Находим четвертую производную и вычисляем ее значение в этой точке:

Следовательно, - точка минимума функции.

Графическая иллюстрация.

Ответ:

Точка максимума, - точка минимума функции.

10. Экстремумы функции Определение экстремума

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x)  0

(f " (x)  0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 (<0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Рассмотрим два зубца хорошо всем известного профиля пилы. Направим ось вдоль ровной стороны пилы, а ось - перпендикулярно к ней. Получим график некоторой функции, изображенный на рис. 1.

Совершенно очевидно, что и в точке , и в точке значения функции оказываются наибольшими в сравнении со значениями в соседних точках справа и слева, а в точке - наименьшим в сравнении с соседними точками. Точки называются точками экстремума функции (от латинского extremum - «крайний»), точки и - точками максимума, а точка - точкой минимума (от латинских maximum и minimum - «наибольший» и «наименьший»).

Уточним определение экстремума.

Говорят, что функция в точке имеет максимум, если найдется интервал, содержащий точку и принадлежащий области определения функции, такой, что для всех точек этого интервала оказывается . Соответственно функция в точке имеет минимум, если для всех точек некоторого интервала выполняется условие .

На рис. 2 и 3 приведены графики функций, имеющие в точке экстремум.

Обратим внимание на то, что по определению точка экстремума должна лежать внутри промежутка задания функции, а не на его конце. Поэтому для функции, изображенной на рис. 1, нельзя считать, что в точке она имеет минимум.

Если в данном определении максимума (минимума) функции заменить строгое неравенство на нестрогое , то получим определение нестрогого максимума (нестрогого минимума). Рассмотрим для примера профиль вершины горы (рис. 4). Каждая точка плоской площадки - отрезка является точкой нестрогого максимума.

В дифференциальном исчислении исследование функции на экстремумы очень эффективно и достаточно просто осуществляется с помощью производной. Одна из основных теорем дифференциального исчисления, устанавливающая необходимое условие экстремума дифференцируемой функции, - теорема Ферма (см. Ферма теорема). Пусть функция в точке имеет экстремум. Если в этой точке существует производная , то она равна нулю.

На геометрическом языке теорема Ферма означает, что в точке экстремума касательная к графику функции горизонтальна (рис. 5). Обратное утверждение, разумеется, неверно, что показывает, например, график на рис. 6.

Теорема названа в честь французского математика П. Ферма, который одним из первых решил ряд задач на экстремум. Он еще не располагал понятием производной, но применял при исследовании метод, сущность которого выражена в утверждении теоремы.

Достаточным условием экстремума дифференцируемой функции является смена знака производной. Если в точке производная меняет знак с минуса на плюс, т.е. ее убывание сменяется возрастанием, то точка будет точкой минимума. Напротив, точка будет точкой максимума, если производная меняет знак с плюса на минус, т.е. переходит от возрастания к убыванию.

Точка, где производная функции равна нулю, называется стационарной. Если исследуется на экстремум дифференцируемая функция, то следует найти все ее стационарные точки и рассмотреть знаки производной слева и справа от них.

Исследуем на экстремум функцию .

Найдем ее производную: .

Находим значения функции в точках экстремума: , . График функции показан на рис. 8.

Заметим, что возможны случаи, когда экстремум достигается в точке, в которой производная не существует. Таковы точки экстремума у профиля пилы, пример такой функции дан и на рис. 1.

Задачи на максимум и минимум имеют важнейшее значение в физике, механике, различных приложениях математики. Они были теми задачами, которые привели математику к созданию дифференциального исчисления, а дифференциальное исчисление дало мощный общий метод решения задач на экстремум с помощью производной.

Возрастание, убывание и экстремумы функции

Нахождение интервалов возрастания, убывания и экстремумов функции является как самостоятельной задачей, так и важнейшей частью других заданий, в частности, полного исследования функции . Начальные сведения о возрастании, убывании и экстремумах функции даны в теоретической главе о производной , которую я настоятельно рекомендую к предварительному изучению (либо повторению) – ещё и по той причине, что нижеследующий материал базируется на самой сути производной, являясь гармоничным продолжением указанной статьи. Хотя, если времени в обрез, то возможна и чисто формальная отработка примеров сегодняшнего урока.

А сегодня в воздухе витает дух редкого единодушия, и я прямо чувствую, что все присутствующие горят желанием научиться исследовать функцию с помощью производной . Поэтому на экранах ваших мониторов незамедлительно появляется разумная добрая вечная терминология.

Зачем? Одна из причин самая что ни на есть практическая: чтобы было понятно, что от вас вообще требуется в той или иной задаче !

Монотонность функции. Точки экстремума и экстремумы функции

Рассмотрим некоторую функцию . Упрощённо полагаем, что она непрерывна на всей числовой прямой:

На всякий случай сразу избавимся от возможных иллюзий, особенно это касается тех читателей, кто недавно ознакомился с интервалами знакопостоянства функции . Сейчас нас НЕ ИНТЕРЕСУЕТ , как расположен график функции относительно оси (выше, ниже, где пересекает ось). Для убедительности мысленно сотрите оси и оставьте один график. Потому что интерес именно в нём.

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, бОльшему значению аргумента соответствует бОльшее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале .

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, бОльшему значению аргумента соответствует мЕньшее значение функции, и её график идёт «сверху вниз». Наша функция убывает на интервалах .

Если функция возрастает или убывает на интервале, то её называют строго монотонной на данном интервале. Что такое монотонность? Понимайте в буквальном смысле – однообразие.

Также можно определить неубывающую функцию (смягчённое условие в первом определении) и невозрастающую функцию (смягчённое условие во 2-м определении). Неубывающую или невозрастающую функцию на интервале называют монотонной функцией на данном интервале (строгая монотонность – частный случай «просто» монотонности) .

Теория рассматривает и другие подходы к определению возрастания/убывания функции, в том числе на полуинтервалах, отрезках, но чтобы не выливать на вашу голову масло-масло-масляное, договоримся оперировать открытыми интервалами с категоричными определениями – это чётче, и для решения многих практических задач вполне достаточно.

Таким образом, в моих статьях за формулировкой «монотонность функции» почти всегда будут скрываться интервалы строгой монотонности (строгого возрастания или строгого убывания функции).

Окрестность точки. Слова, после которых студенты разбегаются, кто куда может, и в ужасе прячутся по углам. …Хотя после поста Пределы по Коши уже, наверное, не прячутся, а лишь слегка вздрагивают =) Не беспокойтесь, сейчас не будет доказательств теорем математического анализа – окрестности мне потребовались, чтобы строже сформулировать определения точек экстремума . Вспоминаем:

Окрестностью точки называют интервал, который содержит данную точку, при этом для удобства интервал часто полагают симметричным. Например, точка и её стандартная - окрестность:

Собственно, определения:

Точка называется точкой строгого максимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . В нашем конкретном примере это точка .

Точка называется точкой строгого минимума , если существует её -окрестность, для всех значений которой за исключением самой точки выполнено неравенство . На чертеже – точка «а».

Примечание : требование симметричности окрестности вовсе не обязательно. Кроме того, важен сам факт существования окрестности (хоть малюсенькой, хоть микроскопической), удовлетворяющей указанным условиям

Точки называют точками строго экстремума или просто точками экстремума функции. То есть это обобщенный термин точек максимума и точек минимума.

Как понимать слово «экстремум»? Да так же непосредственно, как и монотонность. Экстремальные точки американских горок.

Как и в случае с монотонностью, в теории имеют место и даже больше распространены нестрогие постулаты (под которые, естественно, подпадают рассмотренные строгие случаи!) :

Точка называется точкой максимума , если существует её окрестность, такая, что для всех
Точка называется точкой минимума , если существует её окрестность, такая, что для всех значений данной окрестности выполнено неравенство .

Заметьте, что согласно последним двум определениям, любая точка функции-константы (либо «ровного участка» какой-нибудь функции) считается как точкой максимума, так и точкой минимума! Функция , к слову, одновременно является и невозрастающей и неубывающей, то есть монотонной. Однако оставим сии рассуждения теоретикам, поскольку на практике мы почти всегда созерцаем традиционные «холмы» и «впадины» (см. чертёж) с уникальным «царём горы» или «принцессой болота» . Как разновидность, встречается остриё , направленное вверх либо вниз, например, минимум функции в точке .

Да, кстати, о королевских особах:
– значение называют максимумом функции;
– значение называют минимумом функции.

Общее название – экстремумы функции.

Пожалуйста, будьте аккуратны в словах!

Точки экстремума – это «иксовые» значения.
Экстремумы – «игрековые» значения.

! Примечание : иногда перечисленными терминами называют точки «икс-игрек», лежащие непосредственно на САМОМ ГРАФИКЕ функции.

Сколько может быть экстремумов у функции?

Ни одного, 1, 2, 3, … и т.д. до бесконечности. Например, у синуса бесконечно много минимумов и максимумов.

ВАЖНО! Термин «максимум функции» не тождественен термину «максимальное значение функции». Легко заметить, что значение максимально лишь в локальной окрестности, а слева вверху есть и «покруче товарищи». Аналогично, «минимум функции» – не то же самое, что «минимальное значение функции», и на чертеже мы видим, что значение минимально только на определённом участке. В этой связи точки экстремума также называют точками локального экстремума , а экстремумы – локальными экстремумами . Ходят-бродят неподалёку и глобальные собратья. Так, любая парабола имеет в своей вершине глобальный минимум или глобальный максимум . Далее я не буду различать типы экстремумов, и пояснение озвучено больше в общеобразовательных целях – добавочные прилагательные «локальный»/«глобальный» не должны заставать врасплох.

Подытожим наш небольшой экскурс в теорию контрольным выстрелом: что подразумевает задание «найдите промежутки монотонности и точки экстремума функции»?

Формулировка побуждает найти:

– интервалы возрастания/убывания функции (намного реже фигурирует неубывание, невозрастание);

– точки максимума и/или точки минимума (если таковые существуют). Ну и от незачёта подальше лучше найти сами минимумы/максимумы;-)

Как всё это определить? С помощью производной функции!

Как найти интервалы возрастания, убывания,
точки экстремума и экстремумы функции?

Многие правила, по сути, уже известны и понятны из урока о смысле производной .

Производная тангенса несёт бодрую весть о том, что функция возрастает на всей области определения .

С котангенсом и его производной ситуация ровно противоположная.

Арксинус на интервале растёт – производная здесь положительна: .
При функция определена, но не дифференцируема. Однако в критической точке существует правосторонняя производная и правостороння касательная, а на другом краю – их левосторонние визави.

Думаю, вам не составит особого труда провести похожие рассуждения для арккосинуса и его производной.

Все перечисленные случаи, многие из которых представляют собой табличные производные , напоминаю, следуют непосредственно из определения производной .

Зачем исследовать функцию с помощью производной?

Чтобы лучше узнать, как выглядит график этой функции : где он идёт «снизу вверх», где «сверху вниз», где достигает минимумов максимумов (если вообще достигает). Не все функции такие простые – в большинстве случаев у нас вообще нет ни малейшего представления о графике той или иной функции.

Настала пора перейти к более содержательным примерам и рассмотреть алгоритм нахождения интервалов монотонности и экстремумов функции :

Пример 1

Найти интервалы возрастания/убывания и экстремумы функции

Решение :

1) На первом шаге нужно найти область определения функции , а также взять на заметку точки разрыва (если они существуют). В данном случае функция непрерывна на всей числовой прямой, и данное действие в известной степени формально. Но в ряде случаев здесь разгораются нешуточные страсти, поэтому отнесёмся к абзацу без пренебрежения.

2) Второй пункт алгоритма обусловлен

необходимым условием экстремума:

Если в точке есть экстремум, то либо значения не существует .

Смущает концовка? Экстремум функции «модуль икс».

Условие необходимо, но не достаточно , и обратное утверждение справедливо далеко не всегда. Так, из равенства ещё не следует, что функция достигает максимума или минимума в точке . Классический пример уже засветился выше – это кубическая парабола и её критическая точка .

Но как бы там ни было, необходимое условие экстремума диктует надобность в отыскании подозрительных точек. Для этого следует найти производную и решить уравнение :

В начале первой статьи о графиках функции я рассказывал, как быстро построить параболу на примере : «…берём первую производную и приравниваем ее к нулю: …Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы…». Теперь, думаю, всем понятно, почему вершина параболы находится именно в этой точке =) Вообще, следовало бы начать с похожего примера и здесь, но он уж слишком прост (даже для чайника). К тому же, аналог есть в самом конце урока о производной функции . Поэтому повысим степень:

Пример 2

Найти промежутки монотонности и экстремумы функции

Это пример для самостоятельного решения. Полное решение и примерный чистовой образец оформления задачи в конце урока.

Наступил долгожданный момент встречи с дробно-рациональными функциями:

Пример 3

Исследовать функцию с помощью первой производной

Обратите внимание, как вариативно можно переформулировать фактически одно и то же задание.

Решение :

1) Функция терпит бесконечные разрывы в точках .

2) Детектируем критические точки. Найдём первую производную и приравняем её к нулю:

Решим уравнение . Дробь равна нулю, когда её числитель равен нулю:

Таким образом, получаем три критические точки:

3) Откладываем на числовой прямой ВСЕ обнаруженные точки и методом интервалов определяем знаки ПРОИЗВОДНОЙ:

Напоминаю, что необходимо взять какую-нибудь точку интервала, вычислить в ней значение производной и определить её знак. Выгоднее даже не считать, а «прикинуть» устно. Возьмём, например, точку , принадлежащую интервалу , и выполним подстановку: .

Два «плюса» и один «минус» дают «минус», поэтому , а значит, производная отрицательна и на всём интервале .

Действие, как вы понимаете, нужно провести для каждого из шести интервалов. Кстати, обратите внимание, что множитель числителя и знаменатель строго положительны для любой точки любого интервала, что существенно облегчает задачу.

Итак, производная сообщила нам, что САМА ФУНКЦИЯ возрастает на и убывает на . Однотипные интервалы удобно скреплять значком объединения .

В точке функция достигает максимума:
В точке функция достигает минимума:

Подумайте, почему можно заново не пересчитывать второе значение;-)

При переходе через точку производная не меняет знак, поэтому у функции там НЕТ ЭКСТРЕМУМА – она как убывала, так и осталась убывающей.

! Повторим важный момент : точки не считаются критическими – в них функция не определена . Соответственно, здесь экстремумов не может быть в принципе (даже если производная меняет знак).

Ответ : функция возрастает на и убывает на В точке достигается максимум функции: , а в точке – минимум: .

Знание интервалов монотонности и экстремумов вкупе с установленными асимптотами даёт уже очень хорошее представление о внешнем виде графика функции. Человек среднего уровня подготовки способен устно определить, что у графика функции есть две вертикальные асимптоты и наклонная асимптота . Вот наш герой:

Постарайтесь ещё раз соотнести результаты исследования с графиком данной функции.
В критической точке экстремума нет, но существует перегиб графика (что, как правило, и бывает в похожих случаях).

Пример 4

Найти экстремумы функции

Пример 5

Найти интервалы монотонности, максимумы и минимумы функции

…прямо какой-то Праздник «икса в кубе» сегодня получается....
Тааак, кто там на галёрке предложил за это выпить? =)

В каждой задаче есть свои содержательные нюансы и технические тонкости, которые закомментированы в конце урока.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ - точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y)< f(x_0,y_0)$. Если же для всех точек этой окрестности выполнено условие $f(x,y)> f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином - точки экстремума.

Если $(x_0,y_0)$ - точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином - экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$. Составить и решить систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $\frac{\partial^2z}{\partial x^2}$, $\frac{\partial^2z}{\partial x\partial y}$, $\frac{\partial^2z}{\partial y^2}$ и вычислить значение $\Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} > 0$ (или $\frac{\partial^2z}{\partial y^2} > 0$), то в исследуемая точка есть точкой минимума.
    2. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} < 0$ (или $\frac{\partial^2z}{\partial y^2} < 0$), то в исследуемая точка есть точкой максимума.
    3. Если $\Delta < 0$, то в расматриваемой стационарной точке экстремума нет.
    4. Если $\Delta = 0$, то ничего определённого про наличие экстремума сказать нельзя; требуется дополнительное исследование.

Примечание (желательное для более полного понимания текста): показать\скрыть

Если $\Delta > 0$, то $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2 > 0$. А отсюда следует, что $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > \left(\frac{\partial^2z}{\partial x\partial y} \right)^2 ≥ 0$. Т.е. $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $\frac{\partial^2z}{\partial x^2} > 0$, то и $\frac{\partial^2z}{\partial y^2} > 0$. Короче говоря, если $\Delta > 0$ то знаки $\frac{\partial^2z}{\partial x^2}$ и $\frac{\partial^2z}{\partial y^2}$ совпадают.

Пример №1

Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

$$ \frac{\partial z}{\partial x}=8x-6y-34; \frac{\partial z}{\partial y}=-6x+10y+42. $$

$$ \left \{ \begin{aligned} & 8x-6y-34=0;\\ & -6x+10y+42=0. \end{aligned} \right. $$

Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

$$ \left \{ \begin{aligned} & 4x-3y=17;\\ & -3x+5y=-21. \end{aligned} \right. $$

Мы получили систему линейных алгебраических уравнений . Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

$$ \begin{aligned} & \Delta=\left| \begin{array} {cc} 4 & -3\\ -3 & 5 \end{array}\right|=4\cdot 5-(-3)\cdot (-3)=20-9=11;\\ & \Delta_x=\left| \begin{array} {cc} 17 & -3\\ -21 & 5 \end{array}\right|=17\cdot 5-(-3)\cdot (-21)=85-63=22;\\ & \Delta_y=\left| \begin{array} {cc} 4 & 17\\ -3 & -21 \end{array}\right|=4\cdot (-21)-17\cdot (-3)=-84+51=-33.\end{aligned} \\ x=\frac{\Delta_{x}}{\Delta}=\frac{22}{11}=2; \; y=\frac{\Delta_{y}}{\Delta}=\frac{-33}{11}=-3. $$

Значения $x=2$, $y=-3$ - это координаты стационарной точки $(2;-3)$.

$$ \frac{\partial^2 z}{\partial x^2}=8; \frac{\partial^2 z}{\partial y^2}=10; \frac{\partial^2 z}{\partial x \partial y}=-6. $$

Вычислим значение $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 8\cdot 10-(-6)^2=80-36=44. $$

Так как $\Delta > 0$ и $\frac{\partial^2 z}{\partial x^2} > 0$, то согласно точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

$$ z_{min}=z(2;-3)=4\cdot 2^2-6\cdot 2 \cdot (-3)-34\cdot 2+5\cdot (-3)^2+42\cdot (-3)+7=-90. $$

Ответ : $(2;-3)$ - точка минимума; $z_{min}=-90$.

Пример №2

Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

Будем следовать указанному выше . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=3x^2+3y^2-15; \frac{\partial z}{\partial y}=6xy-12. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 3x^2+3y^2-15=0;\\ & 6xy-12=0. \end{aligned} \right. $$

Сократим первое уравнение на 3, а второе - на 6.

$$ \left \{ \begin{aligned} & x^2+y^2-5=0;\\ & xy-2=0. \end{aligned} \right. $$

Если $x=0$, то второе уравнение приведёт нас к противоречию: $0\cdot y-2=0$, $-2=0$. Отсюда вывод: $x\neq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=\frac{2}{x}$. Подставляя $y=\frac{2}{x}$ в первое уравнение, будем иметь:

$$ x^2+\left(\frac{2}{x} \right)^2-5=0;\\ x^2+\frac{4}{x^2}-5=0;\\ x^4-5x^2+4=0. $$

Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

$$ t^2-5t+4=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 1 \cdot 4=9;\\ & t_1=\frac{-(-5)-\sqrt{9}}{2}=\frac{5-3}{2}=1;\\ & t_2=\frac{-(-5)+\sqrt{9}}{2}=\frac{5+3}{2}=4.\end{aligned} $$

Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=\frac{2}{x}$, получим:

\begin{aligned} & y_1=\frac{2}{x_1}=\frac{2}{1}=2;\\ & y_2=\frac{2}{x_2}=\frac{2}{-1}=-2;\\ & y_3=\frac{2}{x_3}=\frac{2}{2}=1;\\ & y_4=\frac{2}{x_4}=\frac{2}{-2}=-1. \end{aligned}

Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=6x; \frac{\partial^2 z}{\partial y^2}=6x; \frac{\partial^2 z}{\partial x \partial y}=6y. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 6x\cdot 6x-(6y)^2=36x^2-36y^2=36(x^2-y^2). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем: $\Delta(M_1)=36(1^2-2^2)=-108$. Так как $\Delta(M_1) < 0$, то согласно в точке $M_1$ экстремума нет.

Исследуем точку $M_2(-1;-2)$. В этой точке имеем: $\Delta(M_2)=36((-1)^2-(-2)^2)=-108$. Так как $\Delta(M_2) < 0$, то согласно в точке $M_2$ экстремума нет.

Исследуем точку $M_3(2;1)$. В этой точке получим:

$$ \Delta(M_3)=36(2^2-1^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=6\cdot 2=12. $$

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(2;1)=2^3+3\cdot 2\cdot 1^2-15\cdot 2-12\cdot 1+1=-27. $$

Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

$$ \Delta(M_4)=36((-2)^2-(-1)^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4}=6\cdot (-2)=-12. $$

Так как $\Delta(M_4) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4} < 0$, то согласно $M_4(-2;-1)$ есть точкой максимума функции $z$. Максимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_4$:

$$ z_{max}=z(-2;-1)=(-2)^3+3\cdot (-2)\cdot (-1)^2-15\cdot (-2)-12\cdot (-1)+1=29. $$

Исследование на экстремум завершено. Осталось лишь записать ответ.

Ответ :

  • $(2;1)$ - точка минимума, $z_{min}=-27$;
  • $(-2;-1)$ - точка максимума, $z_{max}=29$.

Примечание

Вычислять значение $\Delta$ в общем случае нет необходимости, потому что нас интересует лишь знак, а не конкретное значение данного параметра. Например, для рассмотренного выше примера №2 в точке $M_3(2;1)$ имеем $\Delta=36\cdot(2^2-1^2)$. Здесь очевидно, что $\Delta > 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $\Delta$. Правда, для типовых расчётов это замечание бесполезно, - там требуют довести вычисления до числа:)

Пример №3

Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

Будем следовать . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=4x^3-4x+4y; \frac{\partial z}{\partial y}=4y^3+4x-4y. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 4x^3-4x+4y=0;\\ & 4y^3+4x-4y=0. \end{aligned} \right. $$

Сократим оба уравнения на $4$:

$$ \left \{ \begin{aligned} & x^3-x+y=0;\\ & y^3+x-y=0. \end{aligned} \right. $$

Добавим к второму уравнению первое и выразим $y$ через $x$:

$$ y^3+x-y+(x^3-x+y)=0;\\ y^3+x^3=0; y^3=-x^3; y=-x. $$

Подставляя $y=-x$ в первое уравнение системы, будем иметь:

$$ x^3-x-x=0;\\ x^3-2x=0;\\ x(x^2-2)=0. $$

Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-\sqrt{2}$ или $x=\sqrt{2}$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-\sqrt{2}$, $x_3=\sqrt{2}$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=\sqrt{2}$, $y_3=-x_3=-\sqrt{2}$.

Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-\sqrt{2},\sqrt{2})$, $M_3(\sqrt{2},-\sqrt{2})$.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=12x^2-4; \frac{\partial^2 z}{\partial y^2}=12y^2-4; \frac{\partial^2 z}{\partial x \partial y}=4. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= (12x^2-4)(12y^2-4)-4^2=\\ =4(3x^2-1)\cdot 4(3y^2-1)-16=16(3x^2-1)(3y^2-1)-16=16\cdot((3x^2-1)(3y^2-1)-1). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем: $\Delta(M_1)=16\cdot((3\cdot 0^2-1)(3\cdot 0^2-1)-1)=16\cdot 0=0$. Так как $\Delta(M_1) = 0$, то согласно требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

Исследуем точку $M_2(-\sqrt{2},\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_2)=16\cdot((3\cdot (-\sqrt{2})^2-1)(3\cdot (\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2}=12\cdot (-\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_2) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2} > 0$, то согласно $M_2(-\sqrt{2},\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

$$ z_{min}=z(-\sqrt{2},\sqrt{2})=(-\sqrt{2})^4+(\sqrt{2})^4-2(-\sqrt{2})^2+4\cdot (-\sqrt{2})\sqrt{2}-2(\sqrt{2})^2+3=-5. $$

Аналогично предыдущему пункту исследуем точку $M_3(\sqrt{2},-\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_3)=16\cdot((3\cdot (\sqrt{2})^2-1)(3\cdot (-\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=12\cdot (\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(\sqrt{2},-\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(\sqrt{2},-\sqrt{2})=(\sqrt{2})^4+(-\sqrt{2})^4-2(\sqrt{2})^2+4\cdot \sqrt{2}(-\sqrt{2})-2(-\sqrt{2})^2+3=-5. $$

Настал черёд вернуться к точке $M_1(0;0)$, в которой $\Delta(M_1) = 0$. Согласно требуется дополнительное исследование. Под этой уклончивой фразой подразумевается "делайте, что хотите" :). Общего способа разрешения таких ситуаций нет, - и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $\Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ - точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) < 3$? Тогда в точке $M_1$ уж точно не будет минимума.

Рассмотрим точки, у которых $y=0$, т.е. точки вида $(x,0)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,0)=x^4+0^4-2x^2+4x\cdot 0-2\cdot 0^2+3=x^4-2x^2+3=x^2(x^2-2)+3. $$

В всех достаточно малых окрестностях $M_1(0;0)$ имеем $x^2-2 < 0$, посему $x^2(x^2-2) < 0$, откуда следует $x^2(x^2-2)+3 < 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z < 3$, посему точка $M_1(0;0)$ не может быть точкой минимума.

Но, может быть, точка $M_1(0;0)$ - точка максимума? Если это так, то для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) < z(M_1) $, т.е. $z(M) < 3$. А вдруг любая окрестность содержит точки, в которых $z(M) > 3$? Тогда в точке $M_1$ точно не будет максимума.

Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,x)=x^4+x^4-2x^2+4x\cdot x-2\cdot x^2+3=2x^4+3. $$

Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

Ответ : $(-\sqrt{2},\sqrt{2})$, $(\sqrt{2},-\sqrt{2})$ - точки минимума функции $z$. В обеих точках $z_{min}=-5$.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



Какой официальный сайт певицы Мики Ньютон и её группы
Новое украинское чудо - Мика Ньютон! Это группа из 5 человек, играющая поп-рок, наслаждающаяся жизнью, дарящая драйв и позитивно смотрящая на эту жизнь. Собрались ребята в Киеве, где в настоящий момент и обитают. Ребята ни в какую не соглашаются со стандартными устоями в музыке и жизни, открывая своё новое звучание и ломая всевозможные стандарты. Лидер коллектива -

Как перевести миллилитры в кубические метры
Основной единицей длины в системе СИ является метр. Исходя из этого, основной единицей объёма следует считать кубический метр, или, как его ещё называют, кубометр или куб. Это — объём куба с ребрами, равными одному метру. Однако, на практике выражать объём именно в кубометрах удобно не всегда. Например, объём комнаты в кубических метрах выражать удобно: умножили длину ко

Какая калорийность манной крупы
Калорийность продуктов питания, таблица калорийности. Потребность человека в энергии измеряется в килокалориях (ккал). Слово «калория» пришло из латинского языка и означает «тепло». В физике калориями измеряется энергия. Одна килокалория - это такое количество энергии,

Какие есть этапы развития реализма в литературе
Реализм (лат. вещественный, действительный) — направление в литературе и искусстве, ставящее целью правдивое воспроизведение действительности в её типических чертах. Общие признаки: Художественное изображение жизни в образах, соответствующее сути явлений самой жизни. Реальность является средством познания человеком себя и окружающего мира. Типизация

Какова связь между берклием и 117-м элементом таблицы Менделеева
Берклий, Berkelium, Bk — 97-й элемент таблицы Менделеева.Открыт в декабре 1949 г. Томпсоном, Гиорсо и Сиборгом в Калифорнийском университете в Беркли. При облучении 241Am альфа-частицами они получили изотоп беркелия 243Вk. Поскольку Bk обладает структурным сходством с тербием, получившим свое название от имени г. Иттерби в

Чем прославился Ярослав Мудрый
Ярослав Мудрый (980-1054), великий князь киевский (1019). Сын Владимира I Святославовича. Изгнал Святополка I Окаянного, боролся с братом Мстиславом, разделил с ним государство (1025), в 1035 г. вновь объединил его. Рядом побед обезопасил южные и западные границы Руси. Установил династические связи с многими странами Ев

Как появилась традиция кричать на свадьбе "Горько!"
Давным-давно появилась традиция кричать во время свадебного застолья: «Горько!», вынуждая молодоженов встать со своих мест и поцеловаться. Сегодня многие даже не догадываются, в чем же заключается смысл этого обряда.В старину на свадьбах кричали «Горько!», давая понять, что вино в чашах якобы несладкое. А

Каковы симптомы ларингита
Ларингит (от др.-греч. λ?ρυγξ — гортань) — воспаление гортани, связанное, как правило, с простудным заболеванием либо с такими инфекционными заболеваниями, как корь, скарлатина, коклюш. Развитию заболевания способствуют переохлаждение, дыхание через рот, запылённый

Определяется ли род и склонение у существительных, имеющих только форму множественного числа
Число — это грамматическая категория, выражающая количественную характеристику предмета. 1. Большинство имён существительных изменяется по числам, т.е. имеет две формы — единственного и множественного числа. В форме единственного числа существительное обозначает один предмет, в форме множественного числа — несколько предметов:

Чем полезна русская каша
Гречневая каша Гречка - крупа особенная. Из нее, получается, пожалуй, одна из самых полезных каш. Недаром мы называем ее первой. Гречка содержит клетчатку, целый спектр витаминов — Е, РР, В1, В2, фолиевые и органические кислоты, а так же большой процент крахмала, способствующего попаданию в организм нужного количества нео


Интерактивную карту города Архангельска можно посмотреть на следующих сайтах: Карта1 - спутниковая и стандартная карта;Карта2 - стандартная карта (1:350 000); Карта3 - есть названия улиц, номера домов, возможен поиск по улице;Карта4 - карта с названиями улицКарта5 - интерактивная карта города;Карта6 - интерактивная карта города.