Как определить возможные валентности элемента. Валентность

Различные химические элементы отличаются по своей способности создавать химические связи, то есть соединяться с другими атомами. Поэтому в сложных веществах они могут находиться только в определенных соотношениях. Разберемся, как определить валентность по таблице Менделеева.

Существует такое определение валентности: это способность атома к образованию определенного числа химических связей. В отличие от , эта величина всегда только положительная и обозначается римскими цифрами.

В качестве единицы используется эта характеристика для водорода, которая принята равной I. Это свойство показывает, с каким числом одновалентных атомов может соединиться данный элемент. Для кислорода эта величина всегда равна II.

Знать эту характеристику необходимо, чтобы верно записывать химические формулы веществ и уравнения . Знание этой величины поможет установить соотношение между числом атомов различных типов в молекуле.

Данное понятие возникло в химии в XIX веке. Начало теории, объясняющей соединение атомов в различных соотношениях, положил Франкленд, но его идеи о «связывающей силе» не были очень распространены. Решающая роль в развитии теории принадлежала Кекуле. Он называл свойство образовывать некоторое количество связей основностью. Кекуле считал, что это фундаментальное и неизменное свойство каждого вида атомов. Важные дополнения к теории сделал Бутлеров. С развитием этой теории стало возможным наглядно изображать молекулы. Это очень помогло в изучении строения различных веществ.

Чем поможет периодическая таблица?

Находить валентность можно, посмотрев на номер группы в короткопериодном варианте. Для большинства элементов, у которых эта характеристика постоянная (принимает только одно значение), она совпадает с номером группы.

Такие свойства имеют главных подгрупп. Почему? Номер группы соответствует числу электронов на внешней оболочке. Эти электроны называются валентными. Именно они отвечают за возможность соединяться с другими атомами.

Группу составляют элементы с похожим устройством электронной оболочки, а сверху вниз возрастает заряд ядра. В короткопериодной форме каждая группа делится на главную и побочную подгруппы. Представители главных подгрупп - это s и p-элементы, представители побочных подгрупп имеют электроны на d и f-орбиталях.

Как определить валентность химических элементов, если она меняется? Она может совпадать с номером группы или равняться номеру группы минус восемь, а также принимать другие значения.

Важно! Чем выше и правее элемент, тем его свойство образовывать взаимосвязи меньше. Чем он более смещен вниз и влево, тем она больше.

То, как изменяется валентность в таблице Менделеева для конкретного вида атома, зависит от структуры его электронной оболочки. Сера, например, может быть двух-, четырех- и шестивалентной.

В основном (невозбужденном) состоянии у серы два неспаренных электрона находятся на подуровне 3р. В таком состоянии она может соединиться с двумя атомами водорода и образовать сероводород. Если сера перейдет в более возбужденное состояние, то один электрон перейдет на свободный 3d-подуровень, и неспаренных электронов станет 4.

Сера станет четырехвалентной. Если сообщить ей еще больше энергии, то еще один электрон перейдет с подуровня 3s на 3d. Сера перейдет в еще более возбужденное состояние и станет шестивалентной.

Постоянная и переменная

Иногда способность к образованию химических связей может меняться. Она зависит от того, в какое соединение входит элемент. Например, сера в составе H2S двухвалентна, в составе SO2 — четырехвалентна, а в SO3 - шестивалентна. Наибольшее из этих значений называется высшим, а наименьшая - низшим. Высшую и низшую валентности по таблице Менделеева можно установить так: высшая совпадает с номером группы, а низшая равняется 8 минус номер группы.

Как определить валентность химических элементов и то, изменяется ли она? Нужно установить, имеем мы дело с металлом или неметаллом. Если это металл, нужно установить, относится он к главной или побочной подгруппе.

  • У металлов главных подгрупп способность к образованию химических взаимосвязей постоянная.
  • У металлов побочных подгрупп - переменная.
  • У неметаллов - также переменная. В большинстве случаев она принимает два значения - высшее и низшее, но иногда может быть и большее число вариантов. Примеры - сера, хлор, бром, йод, хром и другие.

В соединениях низшую валентность проявляет тот элемент, который находится выше и правее в периодической таблице, соответственно, высшую - тот, который левее и ниже.

Часто способность образовывать химические связи принимает больше двух значений. Тогда по таблице узнать их не получится, а нужно будет выучить. Примеры таких веществ:

  • углерод;
  • сера;
  • хлор;
  • бром.

Как определить валентность элемента в формуле соединения? Если она известна для других составляющих вещества, это несложно. Например, требуется рассчитать это свойство для хлора в NaCl. Натрий - элемент главной подгруппы первой группы, поэтому он одновалентен. Следовательно, хлор в этом веществе тоже может создать только одну связь и тоже одновалентен.

Важно! Однако так не всегда можно узнать это свойство для всех атомов в сложном веществе. Для примера возьмем HClO4. Зная свойства водорода, можно только установить, что ClO4 - одновалентный остаток.

Как еще узнать эту величину?

Способность образовывать определенное количество связей не всегда совпадает с номером группы, и в некоторых случаях ее придется просто заучить . Здесь на помощь придет таблица валентности химических элементов, где приведены значения этой величины. В учебнике химии за 8 класс приведены значения способности соединяться с другими атомами наиболее распространенных видов атомов.

Н, F, Li, Na, K 1
O, Mg, Ca, Ba, Sr, Zn 2
B, Al 3
C, Si 4
Cu 1, 2
Fe 2, 3
Cr 2, 3, 6
S 2, 4, 6
N 3, 4
P 3, 5
Sn, Pb 2, 4
Cl, Br, I 1, 3, 5, 7

Применение

Стоит сказать, что ученые-химики в настоящее время понятие валентности по таблице Менделеева почти не используют. Вместо него для способности вещества образовывать определенное число взаимосвязей применяют понятие степени окисления, для веществ с структурой - ковалентность, а для веществ ионного строения - заряд иона.

Однако рассматриваемое понятие применяют в методических целях. С его помощью легко объяснить, почему атомы разных видов соединяются в тех соотношениях, которые мы наблюдаем, и почему эти соотношения для разных соединений различны.

На данный момент подход, согласно которому соединение элементов в новые вещества всегда объяснялось с помощью валентности по таблице Менделеева независимо от типа связи в соединении, устарел. Сейчас мы знаем, что для ионной, ковалентной, металлической связей существуют разные механизмы объединения атомов в молекулы.

Полезное видео

Подведем итоги

По таблице Менделеева определить способность к образованию химических связей возможно не для всех элементов. Для тех, которые проявляют одну валентность по таблице Менделеева, она в большинстве случаев равна номеру группы. Если есть два варианта этой величины, то она может быть равна номеру группы или восемь минус номер группы. Существуют также специальные таблицы, по которым можно узнать эту характеристику.

Вконтакте

Как определить валентность:

Заметьте, что количество атомов кислорода отличается в разных соединениях.

Например, CO 2 и H 2 O. В углекислом газе на 1 молекулу углерода, 2 молекулы кислорода, а в воде наоборот 2 водорода и только один кислород.

Дело в том, что разные вещества могут присоединить к себе разное количество атомов (образовывать определенное количество связей ): водород - 1 атом (1 связь), кислород - 2 атома (2 связи) и т.д. Это свойство атомов называют валентность (от лат. "имеющий силу" - тот же корень, что и у имени «Валентин», который тоже "имеющий силу").

Есть также определенная последовательность этой связи, которая выражается в структурных формулах , где связи показаны черточками.

Вот структурная формула для воды (H 2 O):

Водород здесь связан только с кислородом, но не между собой. Значит у каждого атома водорода по одной связи, он одновалентен.

У кислорода две связи - он двухвалентный.

Еще одна структурная (графическая) формула для углекислого газа (CO 2):

Здесь кислород двухвалентен, его атомы связаны только с четырехвалентным углеродом.

Трехвалентный азот в аммиаке и четырехвалентный углерод в метане будут выглядеть так:

Валентность можно обозначать и римскими цифрами сверху:

Зная валентность одного вещества, можно легко понять валентность второго:

Например, Fe 2 O 3 - 3 атома кислорода имеют валентность 2, значит 3*2 = 6, а железа у нас 2 атома, значит его валентность 6:2 = 3.

Однако, валентность некоторых элементов может быть переменной , т.е. отличаться. в зависимости от вещества, с которым вступает в связь. Переменную валентность указывают в скобках: CO 2 (IV), CO (II).

В простых веществах нет смысла указывать валентность . Валентность может быть интересна только в молекулярных веществах, куда входят 2 и более элементов.

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Атомы химических элементов могут образовывать различное число связей. Эта способность имеет специальное название – валентность. Давайте разберемся, как определить валентность по таблице Менделеева, узнаем, в чем заключается ее отличие от степени окисления, увидим закономерности, характерные для , углерода, фосфора, цинка, научимся находить валентность химических элементов.

Вконтакте

Основные сведения

Валентность – это возможность атомов различных химических элементов образовывать связи между собой. Другими словами можно сказать, что это способность атома присоединить к себе определенное количество других атомов.

Важно! Это не всегда постоянное число для одного и того же элемента. В разных соединениях элемент может обладать различными значениями.

Определение по таблице Д.И. Менделеева

Для определения этой способности атома по необходимо знать, что такое группы и подгруппы периодической таблицы .

Это вертикальные столбцы, которые делят все элементы по определенному признаку. В зависимости от признака, выделяют подразделения элементов.

Этими столбцами элементы делятся на тяжелые и легкие элементы, а также подгруппы — галогены, инертные газы и тому подобное.

Итак, для определения способности элемента образовывать связи нужно руководствоваться двумя правилами:

  • Высшая валентность элемента равна номеру его группы.
  • Низшая валентность находится как разница между числом 8 и номером группы, в которой расположен данный элемент.

Например, фосфор проявляет высшую валентность V – P 2 O 5 и низшую (8-5)=3– PF 3 .

Стоит также отметить несколько основных характеристик и особенностей при определении этого показателя:

  • Валентность водорода всегда I – H 2 O, HNO 3 , H 3 PO 4 .
  • Валентность всегда равна II – CO 2 , SO 3 .
  • У металлов, которые расположены в главной подгруппе, этот показатель всегда равен номеру группы – Al 2 O 3 , NaOH, KH.
  • Для неметаллов чаще всего проявляются только две валентности – высшая и низшая.

Также существуют элементы, у которых может быть 3 или 4 разных значений этого показателя. К ним относятся хлор, бор, йод, хром, сера и другие. Например, хлор обладает валентностью I, III, V, VII – HCl, ClF 3 ,ClF 5 ,HClO 4 соответственно.

Определение по формуле

Для определения по формуле можно воспользоваться несколькими правилами:

  1. Если известна валентность (V) одного из элементов в двойном соединении: допустим, есть соединение углерода и кислорода СО 2 , при этом мы знаем, что валентность кислорода всегда равна II, тогда можем воспользоваться таким правилом: произведение числа атомов на его V одного элемента должно равняться произведению числа атомов другого элемента на его V. Таким образом, валентность можно найти так – 2×2 (в молекуле 2 атома кислорода с V= 2), то есть валентность углерода равняется 4 . Рассмотрим еще несколько примеров: P 2 O 5 – тут валентность фосфора = (5*2)/2 = 5. HCl – валентность хлора будет равна I, так как в этой молекуле 1 атом водорода, и V= 1.
  2. Если известна валентность нескольких элементов, которые составляют группу: в молекуле гидроксида натрия NaOH валентность кислорода равняется II, а валентность водорода – I, таким образом группа -OH обладает одной свободной валентностью, так как кислород присоединил только один атом водорода и еще одна связь свободна. К ней и присоединится натрий. Можно сделать вывод, что натрий – одновалентный элемент.

Разница между степенью окисления и валентностью

Очень важно понимать принципиальную разницу между этими понятиями. Степень окисления – это условный электрический заряд , которым обладает ядро атома, в то время как валентность – это количество связей, которые может установить ядро элемента.

Рассмотрим подробнее, что такое степень окисления. Согласно современной теории о строении атома, ядро элемента состоит из положительно заряженных протонов и нейтронов без заряда, а вокруг него находятся электроны с отрицательным зарядом, которые уравновешивают заряд ядра и делают элемент электрически нейтральным.

В случае, если атом устанавливает связь с другим элементом, он отдает или принимает электроны , то есть выходит из состоянии баланса и начинает обладать электрическим зарядом. При этом если атом отдает электрон, он становится положительно заряженным, а если принимает – отрицательным.

Внимание! В соединении хлора и водорода HCl водород отдает один электрон и приобретает заряд +1, а хлор принимает электрон и становится отрицательным -1. В сложных соединениях, HNO 3 и H 2 SO 4 , степени окисления будут такими – H +1 N +5 O 3 -2 и H 2 +1 S +6 O 4 -2 .

Сравнивая два этих определения, можно сделать вывод, что валентность и степень окисления часто совпадают: валентность водорода +1 и валентность I, степень окисления кислорода -2 и V II, но очень важно помнить, что это правило выполняется не всегда !

В органическом соединении углерода под названием формальдегид и формулой HCOH у углерода степень окисления 0, но он обладает V, равной 4. В перекиси водорода H 2 O 2 у кислорода степень окисления +1, но V остается равной 2. Поэтому не следует отождествлять два этих понятия, так как в ряде случаев это может привести к ошибке.

Валентности распространенных элементов

Водород

Один из самых распространенных элементов во вселенной, встречается во многих соединениях и всегда обладает V=1 . Это связано со строением его внешней электронной орбитали, на которой у водорода находится 1 электрон.

На первом уровне может находиться не более двух электронов одновременно, таким образом, водород может либо отдать свой электрон и образовать связь (электронная оболочка останется пустой), либо принять 1 электрон, также образовав новую связь (электронная оболочка полностью заполнится).

Пример: H 2 O – 2 атома водорода с V=1 связаны с двухвалентным кислородом; HCl – одновалентные хлор и водород; HCN – синильная кислота, где водород также проявляет V, равную 1.

Углерод

Углерод может обладать либо валентностью II, либо IV. Связано это со строением внешнего электронного уровня, на котором находится 2 электрона, в случае если он их отдаст, его V будет II. То есть 2 электрона установили 2 новые связи, например, соединение CO – угарный газ, где и кислород, и водород двухвалентные. Однако бывают ситуации, когда один электрон с первого уровня переходит на второй, тогда у углерода образуется 4 свободных электрона , которые могут образовывать связи: СО 2 , НСООН, Н 2 СО 3 .

Фосфор

Данный элемент может обладать валентностью III и V. Как и в предыдущих случаях, связанно это со строением внешнего электронного уровня, на котором у него 3 электрона, то есть возможность образовать 3 связи, но, как и углерод, у него возможен переход 1 электрона с s-орбитали на d-орбиталь, тогда неспаренных электронов станет 5, а значит, и валентность тоже будет равна V. Например: РН 3 , Р 2 О 5 , Н 3 РО 4 .

Цинк

Как элемент главной подгруппы и металл, цинк может обладать только валентностью, которая равна номеру его группы , то есть 2. Во всех своих соединениях валентность цинка равна II и не зависит от типа элемента и вида связи с ним. Пример: ZnCl 2 , ZnO, ZnH 2 , ZnSO 4 .

Определение валентности химических элементов

Изучение валентности по периодической таблице Менделеева

Вывод

Теперь вы знаете, что такое валентность, чем она отличается от степени окисления, и легко определите валентность элементов по формулам или таблице Менделеева.

Одного химического элемента присоединять или замещать определённое количество атомов другого.

За единицу валентности принята валентность атома водорода , равная 1, то есть водород одновалентен. Поэтому валентность элемента указывает на то, со сколькими атомами водорода соединён один атом рассматриваемого элемента. Например, HCl , где хлор - одновалентен; H 2O , где кислород - двухвалентен; NH 3 , где азот - трёхвалентен.

Таблица элементов с постоянной валентностью.

Формулы веществ можно составлять по валентностям входящих в них элементов. И наоборот, зная валентности элементов, можно составить из них химическую формулу.

Алгоритм составления формул веществ по валентности.

1. Записать символы элементов.

2. Определить валентности входящих в формулу элементов.

3. Найти наименьшее общее кратное численных значений валентности.

4. Найти соотношения между атомами элементов путём деления найденного наименьшего общего кратного на соответствующие валентности элементов.

5. Записать индексы элементов в химической формуле.

Пример: составим химическую формулу оксида фосфора.

1. Запишем символы:

2. Определим валентности:

4. Найдём соотношения между атомами:

5. Запишем индексы:

Алгоритм определения валентности по формулам химических элементов.

1. Записать формулу химического соединения.

2. Обозначить известную валентность элементов.

3. Найти наименьшее общее кратное валентности и индекса.

4. Найти соотношение наименьшего общего кратного к количеству атомов второго элемента. Это и есть искомая валентность.

5. Сделать проверку путём перемножения валентности и индекса каждого элемента. Их произведения должны быть равны.

Пример: определим валентность элементов сульфида водорода.

1. Запишем формулу:

H 2 S

2. Обозначим известную валентность:

H 2 S

3. Найдём наименьшее общее кратное:

H 2 S

4. Найдём соотношение наименьшего общего кратного к количеству атомов серы :

H 2 S

5. Сделаем проверку.

Понятие «валентность» формировалось в химии с начала XIX века. Английский ученый Э. Франкленд обратил внимание, что все элементы могут образовывать с атомами других элементов только определенное количество связей. Он назвал это «соединительной силой». Позже немецкий ученый Ф. А. Кекуле изучал метан и пришел к выводу, что один атом углерода может присоединить в нормальных условиях только четыре атома водорода.

Он назвал это основностью. Основность углерода равна четырем. То есть углерод может образовать четыре связи с другими элементами.

Вконтакте


Дальнейшее развитие понятие получило в работах Д. И. Менделеева. Дмитрий Иванович развивал учение о периодическом изменении свойств простых веществ. Соединительную силу он определял как способность элемента присоединять определенное количество атомов другого элемента.

Определение по таблице Менделеева

Таблица Менделеева позволяет с легкостью определять основность элементов. Для этого нужно уметь читать периодическую таблицу . Таблица по вертикали имеет восемь групп, а по горизонтали располагаются периоды. Если период состоит из двух рядов, то его называют большим, а если из одной - малым. Элементы по вертикали в столбцах, в группах распределены неравномерно. Валентность всегда обозначается римскими цифрами.

Чтобы определить валентность, нужно знать, какая она бывает. У металлов главных подгрупп она всегда постоянная, а у неметаллов и металлов побочных подгрупп может быть переменной.

Постоянная равна номеру группы. Переменная может быть высшей и низшей. Высшая переменная равна номеру группы, а низкая высчитывается по формуле: восемь минус номер группы. При определении нужно помнить:

  • у водорода она равна I;
  • у кислорода - II.

Если соединение имеет атом водорода или кислорода, то определить его валентность не составляет труда, особенно если перед нами гидрид или оксид.

Формула и алгоритм

Самая меньшая валентность у тех элементов, которые расположены правее и выше в таблице. И, наоборот, если элемент ниже и левее, то она будет выше. Чтобы определить ее, необходимо следовать универсальному алгоритму:

Пример: возьмем соединение аммиака - NH3. Нам известно, что у атома водорода валентность постоянная и равна I. Умножаем I на 3 (количество атомов) - наименьшее кратное - 3. У азота в этой формуле индекс равен единице. Отсюда вывод: 3 делим на 1 и получаем, что у азота она равна IIII.

Величину по водороду и кислороду всегда определять легко. Сложнее, когда ее необходимо определять без них. Например, соединение SiCl4 . Как определить валентность элементов в этом случае? Хлор находится в 7 группе. Значит, его валентность либо 7, либо 1 (восемь минус номер группы). Кремний находится в четвертой группе, значит, его потенциал для образования связей равен четырем. Становится логично, что хлор проявляет в этой ситуации наименьшую валентность и она равна I.

В современных учебниках химии всегда есть таблица валентности химических элементов. Это существенно облегчает задачу учащимся. Тему изучают в восьмом классе - в курсе неорганической химии.

Современные представления

Современные представления о валентности базируются на строении атомов. Атом состоит из ядра и вращающихся на орбиталях электронах.

Само ядро состоит из протонов и нейтронов, которые определяют атомный вес. Для того чтобы вещество было стабильным, его энергетические уровни должны быть заполнены и иметь восемь электронов.

При взаимодействии элементы стремятся к стабильности и либо отдают свои неспаренные электроны, либо принимают их. Взаимодействие происходит по принципу «что легче» - отдать или принять электроны. От этого также зависит то, как изменяется валентность в таблице Менделеева. Количество неспаренных электронов на внешней энергетической орбитали равно номеру группы.

В качестве примера

Щелочной металл натрий находится в первой группе периодической системы Менделеева. Это значит, что у него один неспаренный электрон на внешнем энергетическом уровне. Хлор находится в седьмой группе. Это значит, что у хлора есть семь неспаренных электронов. Для завершения энергетического уровня хлору не хватает ровно одного электрона. Натрий отдает ему свой электрон и становится стабильным в соединении. Хлор же получает дополнительный электрон и тоже становится стабильным. В итоге появляется связь и прочное соединение - NaCl - знаменитая поваренная соль. Валентность хлора и натрия в этом случае будет равна 1.