Комплексная форма ряда фурье примеры. Ряды фурье с примерами решений

Транскрипт

1 ядерный университет «МИФИ» Утверждаю зав. кафедрой ХиТМСЭ д р. техн. наук, профессор Гузеев В.В г. А.В. Конькова СТРУКТУРНО МЕХАНИЧЕСКИЕ СВОЙСТВА ДИСПЕРСНЫХ СИСТЕМ Руководство к лабораторной работе Северск 2010

2 УДК ББК К Конькова А. В. Структурно механические свойства дисперсных систем: руководство к лабораторной работе. / А.В. Конькова Северск: Изд во СТИ НИЯУ МИФИ, с. Руководство содержит план коллоквиума, теоретическую часть, экспериментальную часть и список рекомендуемой литературы. Предназначено для студентов специальности СТИ НИЯУ МИФИ при выполнении лабораторных работ по курсу «Поверхностные явления и дисперсные системы». Руководство одобрено на заседании кафедры ХиТМСЭ (протокол 25 от 22 июня 2009 г.). Печатается в соответствии с планом выпуска учебно методической литературы на 2010 г., утверждённым Ученым советом СТИ НИЯУ МИФИ. Рег. 65/09 от «15» Рецензент О.А. Ожерельев доцент кафедры ХиТМСЭ СТИ НИЯУ МИФИ, канд. техн. наук Редактор Р.В. Фирсова Подписано к печати Формат 60х84/32 Гарнитура Times New Roman. Бумага писчая 2 Плоская печать. Усл. печ. л. 0,35 Уч. изд. л. 0,63 Тираж 50 экз. Заказ 2 Отпечатано в ИПО СТИ НИЯУ МИФИ, г. Северск Томской обл., пр. Коммунистический, 65

3 Содержание 1 План коллоквиума Теоретическая часть Экспериментальная часть Рекомендуемая литература

4 4 1 План коллоквиума 1.1 Структурированные системы, причины и условия иx образования. 1.2 Явления тиксотропии, синерезиса и набухания. 1.3 Вязкость истинных и коллоидных растворов. Закон вязкости Ньютона. Размерность вязкости. 1.4 Уравнение Пуазейля, условия его применимости. 1.5 Ньютоновы и неньютоновы жидкости. Структурная или аномальная вязкость, причины ее возникновения. 1.6 Зависимость вязкости от концентрации раствора. 1.7 Капиллярный метод определения вязкости. 2 Теоретическая часть Коллоидные и микрогетерогенные системы с жидкой и твердой дисперсионной средой обладают определенными механическими свойствами вязкостью, пластичностью. Эти свойства связаны со структурой этих систем, поэтому их называют структурно механическими свойствами. По взаимодействию между частицами дисперсные системы разделяются на свободнодисперсные и связнодисперсные. К свободнодисперсным системам относятся бесструктурные системы, в которых частицы дисперсной фазы не связаны друг с другом в одну сплошную сетку и способны независимо перемещаться в дисперсионной среде под влиянием броуновского движения или силы тяжести. Такие системы не оказывают сопротивления усилию сдвига, обладают текучестью и всеми остальными свойствами, характерными для обычных жидкостей (золи свободнодисперсные системы). В связнодисперсных системах частицы связаны друг с другом межмолекулярными силами, образуя в дисперсионной среде своеобразные пространственные сетки или каркасы (структуры). Частицы, образующие структуру, не способны к свободному перемещению и могут совершать лишь колебательные движения. К таким системам относятся гели (студни), концентрированные суспензии (пасты) и концентрированные эмульсии и пены, а также порошки. Гелями и студнями называют твердообразные нетекучие структурированные системы, образовавшиеся в результате действия молекулярных сил сцепления между коллоидными частицами или макромолекулами полимеров. Ячейки пространственных сеток гелей и студней заполнены растворителем. В зависимости от природы веществ получаются либо хрупкие гели структурированные двухфазные системы, либо эластичные гели, т.е. студни структурированные однофазные системы. Хрупкие гели получаются из жестких коллоидных частиц в результате коагуляции золей. Эластичные гели, называемые студнями, образуются благодаря сцеплению макромолекул органических полимеров (каучука, желатина и др.).

5 Связнодисперсные системы в определенной степени обладают свойствами твердых тел способностью сохранять форму, некоторой прочностью, упругостью, эластичностью. Однако из за непрочных связей сетки структуры сравнительно легко разрушаются и эти системы приобретают способность течь. Промежуточное положение между свободнодисперсными и связнодисперсными системами занимают переходные системы (структурированные жидкости). Частицы этих систем связаны друг с другом в рыхлые агрегаты, но не образуют сплошной структуры. Такие агрегаты можно рассматривать как обрывки пространственной сетки, которая по тем или иным причинам не получилась сплошной. Структурированные жидкости обладают структурно механическими свойствами, промежуточными между свойствами свободно и связнодисперсных систем. Эти системы способны течь, но они не подчиняются при этом законам течения обычных жидкостей. Примерами структурированной жидкости могут служить разбавленные суспензии глин, плазма крови. Структуры, образующиеся в высокодисперсных системах, делят на коагуляционные и конденсационно кристаллизационные. Первые образуются путем сцепления частиц межмолекулярными силами в звенья, цепочки, пространственные сетки, в петлях которых находится дисперсионная среда. Прослойки дисперсионной среды между частицами в местах их сцепления могут иметь разную толщину или совсем отсутствовать. При отсутствии прослоек образуются наиболее прочные, но и наиболее хрупкие коагуляционные структуры. Наличие тонкой жидкостной прослойки между частицами обусловливает меньшую прочность структуры, но зато придает ей пластичность. Чем толще прослойка среды, тем меньше прочность структуры и тем жидкообразней система. Если коагуляционные структуры образуются под действием межмолекулярных сил, то конденсационно кристаллизационные структуры образуются за счет химических сил. Эти структуры возникают либо в результате образования прочных химических связей между частицами (конденсационные структуры), либо вследствие сращивания кристалликов в процессе кристаллизации новой фазы (кристаллизационные структуры). Структуры с такими прочными связями проявляют упруго хрупкие свойства. Кристаллизационное структурообразование имеет большое значение для твердения минеральных вяжущих средств в строительных материалах на основе цементов, гипса и др. Коагуляционные структуры (гели) способны постепенно упрочняться во времени; они сжимаются, выделяя часть жидкости, заключенной в сетке или каркасе. Это явление называется синерезисом. Причина синерезиса заключается в том, что в результате теплового движения происходит перегруппировка частиц в пространстве. При этом увеличивается число и прочность контактов между частицами, что неизбежно ведет к сжатию геля и вы- 5

6 теснению из него дисперсионной среды. Синерезису способствуют все факторы, вызывающие коагуляцию (добавление электролита, изменение температуры и др.). Системы с коагуляционной структурой, из которых высушиванием удалена жидкость, способны поглощать эту жидкость вновь. При соприкосновении с жидкостью элементы структуры сухого геля раздвигаются и образовавшиеся промежутки снова заполняются дисперсионной средой. Это явление называется набуханием. Набухание приводит к резкому снижению прочности структуры и к возрастанию пластических и эластических свойств данного тела. Многие гели и студни под влиянием механических воздействий при перемешивании, встряхивании и т. д., способны разжижаться и переходить в золи и растворы полимеров, а затем, при хранении в покое, вновь застудневать. Способность структур самопроизвольно восстанавливаться во времени после их разрушения в результате механического воздействия называется тиксотропией. Тиксотропию можно рассматривать как обратимый изотермический процесс гель золь; студень раствор. Явление тиксотропии объясняется тем, что нарушенные связи со временем восстанавливаются в результате случайных удачных соударений частиц, находящихся в броуновском движений. Коагуляционные структуры тиксотропны, т.е. способны обратимо восстанавливаться после механического разрушения; структуры же конденсационно кристаллизационные при механическом воздействии разрушаются необратимо. Многие структурированные системы, характеризующиеся малой прочностью, обладают вязкостью, близкой к вязкости чистых жидкостей. Вязкость жидкостей, называемая иногда внутренним трением, представляет собой сопротивляемость жидкости ее движению под действием внешних сил. Внутреннее трение в жидкостях обусловлено силами сцепления между молекулами. Ярче всего внутреннее трение проявляется в жидкости, текущей под действием внешней силы по трубке. 6

7 Постулат Ньютона: сила F, дин, вязкого сопротивления жидкости, равная по величине и обратная по направлению внешней силе, равна: dυ F = η S, (1) dx где η (эта) коэффициент вязкости или вязкость жидкости, П; S площадь контакта движущихся слоев жидкости, см 2 ; dυ градиент скорости. dx Когда по трубке течет жидкость, ее масса разделяется на параллельные слои. Слой жидкости, прилигающий к стенкам, прилипает к ним и остается неподвижным, следующие же слои перемещаются с тем большей скоростью, чем ближе они к оси трубки. Каждый слой, таким образом, движется со своей скоростью υ, причем скорость слоев уменьшается от оси трубки к её краям. Если обозначить разность скоростей между двумя соседними слоями через υ, а расстояние между слоями через x, то υ/ x (или при очень малой разности скоростей и тонких слоях жидкости dυ/dx) будет называться градиентом скорости. [ η ] = [ F] [ x] [ S υ]. Единицу вязкости в честь французского ученого Пуазейля называют пуазом (П). 1 пуаз соответствует вязкости жидкости при которой сила в 1 дину, действующая на площадь в 1 см 2 в направлении движения жидкости, вызывает течение с градиентом скорости, равным единице. Вязкость в 1 пуаз очень большая величина, поэтому чаще пользуются величиной в 100 раз меньшей сантипуазом. Величина 1/η обратная вязкости, называется текучестью. Она характеризует подвижность жидкости под влиянием внешних воздействий. Постулат Ньютона справедлив, и вязкость является константой вещества лишь в том случае, когда жидкость течет послойно. Такой поток называется ламинарным. Но ламинарный поток с повышением скорости может перейти в турбулентный слои начнут перемешиваться и образуют завихрения. В этих условиях постулат Ньютона уже не применим. 7

8 Ламинарное течение по трубкам описывается также вторым законом вязкого течения уравнением Пуазейля: 4 π r P τ V =, (2) 8η l где V объем жидкости, протекающей через трубку за время τ; r и l радиус и длина трубки; P разность давлений на rонцах трубки; η вязкость жидкости. Уравнение Пуазейля используется в капиллярном методе определения вязкости. Метод основан на измерении времени вытекания определенного объема жидкости V через капилляр, радиус и длина которого постоянны. В обычном капиллярном вискозиметре постоянен и объем V. Поэтому вязкость пропорциональна произведению Рτ, где τ время, за которое жидкость объемом V протекла через капилляр. Постулат Ньютона и уравнение Пуазейля применимы лишь для чистых жидкостей, растворов низкомолекулярных веществ и некоторых коллоидов. В условиях капиллярного потока вязкость сохраняет постоянное значение, т.е. не зависит от внешней силы или давления, под действием которого происходит течение, как показано на рисунке 1. Однако при некотором давлении скорость течения приобретает величину, превышающую критическое значение, и поток становится турбулентным. В этих условиях вязкость уже не является константой вещества и начинает увеличиваться с ростом давления, так как в условиях турбулентности законы вязкого течения (Ньютона и Пуазейля) неприменимы. Такой характер зависимости изображен кривой 1 (см. рисунок 1). 1 истинная жидкость; 2 аномальная жидкость Рисунок 1 Зависимость вязкости от давления 8

9 Чистые жидкости, растворы низкомолекулярных веществ и коллоиды, для которых применимы законы Ньютона и Пуазейля, называются ньютоновыми (истинными) жидкостями. Растворы высокомолекулярных веществ и коллоиды с анизодиаметрическими частицами (несферическими, палочкообразными, игольчатыми или листочкоподобными), а также структурированные коллоидные системы не подчиняются основным законам вязкости, обнаруживая так называемую аномальную вязкость. Прежде всего, вязкость таких систем (даже весьма разбавленных) всегда очень велика и зависит от давления (см. рисунок 1, кривая 2). В области ламинарного потока вязкость аномальных (неньютоновых) жидкостей сначала падает с ростом давления, затем, достигнув некоторого значения, остается постоянной и, наконец, в области турбулентного потока снова увеличивается. Для разбавленных систем это связано с формой частиц. Палочкообразные частицы по мере увеличения давления ориентируются длинной осью по направлению потока, оказывают меньшее сопротивление; вязкость раствора уменьшается. Аналогичная зависимость наблюдается у систем с деформирующимися частицами (например, у эмульсий). Капельки дисперсной фазы при увеличении давления и скорости течения удлиняются, превращаясь из шариков в эллипсоиды, что, конечно, увеличивает текучесть и понижает вязкость. То же самое происходит и при течении растворов высокомолекулярных веществ с гибкими, свернутыми в клубок макромолекулами. Здесь падение вязкости обусловлено распрямлением молекул и их ориентацией в направлении потока. В концентрированных системах растворы сильно загущаются из за образования структур (сеток, каркасов). При течении под давлением такие структуры разрушаются тем сильнее, чем выше давление. Высвобождающийся растворитель разжижает раствор, вязкость уменьшается. После полного разрушения структуры раствор течет, подчиняясь законам Ньютона и Пуазейля. Аномальную вязкость растворов в таких случаях называют структурной. Вязкость растворов и коллоидных систем зависит от концентрации растворенного или диспергированного вещества, так как молекулы растворенного вещества или частицы дисперсной фазы оказывают дополнительное сопротивление течению. С ростом концентрации вязкость линейно растет, если частицы дисперсной фазы удалены друг от друга на достаточно большие расстояния, исключающие межмолекулярное взаимодействие, и представляют собой жесткие недеформируемые шарики. Для растворов высокомолекулярных соединений такая зависимость не наблюдается, так как макромолекулы имеют не шарообразную форму, и даже в разбавленных растворах взаимодействуют, образуя агрегаты, захватывающие жидкость. 9

10 3 Экспериментальная часть Цель работы: изучение зависимости вязкости растворов глюкозы от концентрации. Заранее готовятся водные растворы глюкозы следующих концентраций: 5 %, 10 %, 15 %, 20 %, 25 %, 30 %. Определение вязкости проводится с помощью капиллярного стеклянного вискозиметра, установленного вертикально с помощью штатива. Вискозиметр, показанный на рисунке 2, представляет собой U образную трубку, в колено которой впаян капилляр 1. а, b метки Рисунок 2 Капиллярный стеклянный вискозиметр При измерении вязкости жидкость из резервуара 2 течет по капилляру 1 в резервуар 3. Вискозиметр заполняется через трубку 4 исследуемой жидкостью. При работе с одним и тем же вискозиметром объем заливаемой жидкости должен быть постоянным (20 мл). Далее с помощью резиновой груши жидкость засасывается в расширение 5 немного выше метки «а». Затем жидкости дают возможность свободно вытекать и определяют по секундомеру время истечения жидкости между меткими «а» и «b». Опыт повторяется 4 5 раз с каждым раствором. 10

11 Определение вязкости раствора производится путем сравнения с вязкостью чистого растворителя, которая берется из справочника. Измерения следует начинать с чистого растворителя, а далее с растворами от малой концентрации к более высокой. При засасывании раствора необходимо следить за тем, чтобы раствор не пенился и чтобы в капилляре не было пузырьков воздуха. Необходимо также тщательно следить за тем, чтобы в сужении трубки около метки «а» не застаивалась капля раствора, так как это может привести к значительным погрешностям. Время истечения для одной и той же концентрации при многочисленных измерениях не должно различаться более, чем на 0,5 с. Вязкость раствор вычисляется по формуле: τ d η = η0, (3) τ d где η 0 вязкость воды при данной температуре; τ и τ 0 соответственно время истечения раствора и чистой воды; d и d 0 плотность раствора и воды. Плотность раствора определяется с помощью пикнометра. При температуре опыта взвешивается сначала пустой пикнометр, а затем заполненный. Плотность d рассчитывается по уравнению: 0 0 (gi g) (g g), где d 0 плотность воды; g масса пустого пикнометра; g 0 масса пикнометра с водой; g i масса пикнометра с раствором. d = d (4) Результаты измерений и расчетов заносятся в таблицу. 0 Таблица 1 Результаты измерения и расчетов С, % t, сек. g i, г m = (g i g), г d, г/см 3 h, сп Построить график зависимости вязкости раствора от концентрации и сделать соответствующий вывод. 0 11


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Национальный исследовательский

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Национальный исследовательский

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Национальный исследовательский

Тема 5. Основы реологии. Вязкость растворов полимеров. Теоретическая часть. Вязкие жидкости и растворы высокомолекулярных веществ (ВМС) по характеру течения делятся на ньютоновские и неньютоновские. Ньютоновские

Министерство образования Российской Федерации Государственное образовательное учреждение ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ С ПОМОЩЬЮ КАПИЛЛЯРНОГО ВИСКОЗИМЕТРА Методические

Лабораторная работа по теме «Вязкость» Реологические свойства коллоидных систем. Вязкость Проявление молекулярно-кинетических свойств коллоидных систем неразрывно связано с их реологическими (вязкостными)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Национальный исследовательский

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Национальный исследовательский

1 Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра

3. ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ВЯЗКОСТИ ЖИДКОСТИ ОТ ТЕМПЕРАТУРЫ И КОНЦЕНТРАЦИИ НА ШАРИКОВОМ ВИСКОЗИМЕТРЕ Введение Рассмотрим протекание жидкости по трубе. В том случае, когда соседние слои жидкости (или газа)

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет ИЗУЧЕНИЕ КОЭФФИЦИЕНТОВ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА Методические указания для выполнения лабораторной работы Томск 2014 Рассмотрено и утверждено

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

Ярославский государственный педагогический университет им. К. Д. Ушинского Кафедра общей физики Лаборатория молекулярной физики Лабораторная работа 8 Определение вязкости жидкости капиллярным вискозиметром

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА Методические указания для

4.1. Необходимы математические понятия Опр. Градиентом физической величины называют - вектор, показывающий направление наибольшего возрастания скалярной функции, значение которой изменяется от одной точки

Работа.8 Исследование зависимости вязкости жидкости от температуры и определение энергии активации ее молекул Оборудование: исследуемая жидкость, капиллярный вискозиметр, секундомер, термостат с контрольным

Министерство образования и науки РФ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Утверждаю зав. кафедрой общей и экспериментальной физики В. П. Демкин 2015 г. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СЕВЕРСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Национальный исследовательский

КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов специальностей 903, 90, 907, 908, 90 Лабораторная работа

Лекция 18. ОСНОВЫ ФИЗИКО-ХИМИЧЕСКОЙ МЕХАНИКИ Структурообразование в дисперсных системах Контакты между частицами: Коагуляционные (в первичном и вторичном минимуме) и фазовые контакты (как в поликристаллах).

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ

1 Лабораторная работа 61 ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТЕЙ МЕТОДОМ СТОКСА Теоретическое введение Вязкость (внутреннее трение) это свойство жидкостей и газов оказывать сопротивление перемещению одной части

Лабораторная работа ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ДЛИНЫ СВОБОДНОГО ПРОБЕГА И ЭФФЕКТИВНОГО ДИАМЕТРА МОЛЕКУЛ ВОЗДУХА ПО КОЭФФИЦИЕНТУ ВНУТРЕННЕГО ТРЕНИЯ ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ Прибор для определения средней длины

Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра

38 ТЕЧЕНИЕ И СВОЙСТВА ЖИДКОСТЕЙ Задание 1. Выберите правильный ответ: 1. Внутреннее трение является следствием переноса... а) электрического заряда; б) механического импульса; в) массы; г) количества теплоты;

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

1 - МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра физики ЛАБОРАТОРНАЯ РАБОТА.5 OПPEДEЛEНИE КOЭФФИЦИEНТA ВЯЗКOCТИ ЖИДКOCТИ МEТOДOМ CТOКCA.5 ФИО студента Выполнил(а) Защитил(а) Шифр группы МОСКВА 0_ г. Лaбopaтopнaя

Методические указания к выполнению лабораторной работы 2.5. ИЗУЧЕНИЕ ЗАВИСИМОСТИ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ ОТ ТЕМПЕРАТУРЫ * * Аникин А.И. Свойства газов. Свойства конденсированных систем: лабораторный

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА Методические указания для проведения лабораторных работ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ

Федеральное агентство по образованию РФ Ухтинский государственный технический университет 14 ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКОЙ ВЯЗКОСТИ ЖИДКОСТИ ПО МЕТОДУ ПАДАЮЩЕГО ШАРИКА Методические указания к лабораторной работе

Ярославский государственный педагогический университет им. К. Д. Ушинского Кафедра общей физики Лаборатория механики Лабораторная работа 11. Определение вязкости жидкости методом Стокса Ярославль 2009

ГОУ ВПО ИГМУ Росздрава Кафедра общей химии Физическая и коллоидная химия ОПРЕДЕЛЕНИЕ НАБУХАНИЯ ЖЕЛАТИНЫ В ЗАВИСИМОСТИ ОТ рн СРЕДЫ ЛАБОРАТОРНАЯ РАБОТА Методическое пособие Иркутск, 2008 Пособие подготовлено

Министерство общего и профессионального образования Российской Федерации ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Лабораторная работа 2-5 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ВОЗДУХА Методические рекомендации

Цель работы: познакомиться с одним из методов определения коэффициента внутреннего трения. Задача: с помощью измерительного микроскопа измерить диаметр шариков, измерить время падения их и высоту падения.

Работа.5 Определение вязкости газов Введение Газы, как и жидкости, обладают вязкостью, хотя величина коэффициента вязкости в них значительно меньшая, чем в жидкостях. Физические причины возникновения вязкости

Иркутский государственный технический университет Кафедра общеобразовательных дисциплин ФИЗИКА Лабораторная работа.1. «Определение коэффициента динамической вязкости жидкости методом Стокса» доц. Щепин

1 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ДИЗАЙНА И ТЕХНОЛОГИИ НОВОСИБИРСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Лекция 2. Структурообразование и размерный эффект Наноструктуры могут быть: Равновесные и неравновесные наноструктуры. Квазиравновесные структуры. Равновесные наноструктуры характеризуются физико-химическими

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ М.А. Бутюгин, Т.М. Ильясова ФИЗИКА Учебно-методическое пособие по выполнению лабораторной работы М-14 «Определение коэффициента вязкой

Лабораторная работа 16 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ДИНАМИЧЕСКОЙ ВЯЗКОСТИ ЖИДКОСТИ ПО МЕТОДУ СТОКСА Цель работы изучение явления внутреннего трения в газах и жидкостях, экспериментальное определение коэффициента

ОПРЕДЕЛЕНИЕ МОЛЕКУЛЯРНОЙ МАССЫ ЖЕЛАТИНА ВИСКОЗИМЕТРИЧЕСКИМ МЕТОДОМ И.Шиян, Я.Припаньковская Кубанский государственный технологический университет Краснодар, Россия DETERMINATION OF MOLECULAR MASS OF VISKOZIMETRICHESKY

Вязкоупругость полимерных жидкостей. Оснвные свойства полимерных жидкостей. К полимерным жидкостям с сильно переплетенными цепями относятся полимерные расплавы, концентрированные растворы и полуразбавленные

1 Тема 11: Основы гидродинамики Гидростатика. Законы Паскаля и Архимеда Плотностью тела называется величина равная отношению массы этого тела к его объёму: m V Размерность плотности: [ ρ] = кг/м 3. Если

ЛАБОРАТОРНАЯ РАБОТА.3 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕГО ТРЕНИЯ ВОЗДУХА; ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ДЛИНЫ СВОБОДНОГО ПРОБЕГА МОЛЕКУЛ ВОЗДУХА. ЦЕЛЬ РАБОТЫ Целью работы является экспериментальное

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ МОЛЕКУЛЯРНАЯ ФИЗИКА: ЧАСТЬ 4. СТАТИСТИЧЕСКИЙ ХАРАКТЕР ТЕРМОДИНАМИЧЕСКИХ ЗАКОНОВ Практикум для вузов Составители: В.И. Кукуев, В.В. Чернышев, И.А.Попова. ВОРОНЕЖ 009

Министерство образования Российской Федерации Томский политехнический Университет Кафедра теоретической и экспериментальной физики ИЗМЕРЕНИЕ ЭЛЕМЕНТАРНОГО ЗАРЯДА. ОПЫТ МИЛЛИКЕНА Методические указания к

Лекция 7 (9.05.05) ПРОЦЕССЫ ПЕРЕНОСА В ГАЗАХ Всякая термодинамическая система, под которой мы понимаем совокупность большого числа молекул, при неизменных внешних условиях приходит в состояние термодинамического

Гидроаэромеханика Составитель асс. каф БНГС СамГТУ, магистр Никитин В.И. Занятие 3. 3. РЕОЛОГИЧЕСКИЕ МОДЕЛИ Реология это наука о поведении различных текучих и пластичных тел при механическом нагружении.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра химии и инженерной экологии в строительстве Громаков Н.С. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Лабораторная работа ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВНУТРЕННЕГО ТРЕНИЯ ЖИДКОСТИ ПО МЕТОДУ СТОКСА 1. Цель и задачи лабораторной работы Цель работы заключается в определении вязкости, или внутреннего трения, различных

М И Н И С Т Е Р С Т В О О Б Р А З О В А Н И Я И Н А У К И Р О С С И Й С К О Й Ф Е Д Е Р А Ц И И ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Национальный

Федеральное агентство по образованию Российской Федерации Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

222. ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА Введение На шарик, падающий в вязкой среде, действует сила тяжести mg, сила Архимеда F A и сила сопротивления среды сила Стокса F C. mg= s Vg, (1) F A

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) 14 ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКОЙ

Тест Систему с жидкой дисперсионной средой и дисперсной фазой в виде коллоидных частиц называют: Суспензия.. Эмульсия 3. Пена.Лиозоль 5. Раствор ВМВ. Система гидрозоль As S 3 является: Лиофильной свободнодисперсной.

ЛЕКЦИЯ ОСНОВНЫЕ ПОНЯТИЯ ГИДРОДИНАМИКИ РАСПРЕДЕЛЕНИЕ СКОРОСТЕЙ ПО РАДИУСУ ТРУБЫ УРАВНЕНИЕ ПУАЗЕЙЛЯ Гидравлический радиус и эквивалентный диаметр При движении жидкостей по каналам произвольной формы, сечение

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет

Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет» ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ А.Н. Тимошенко, А.Н. Козлов Ю.В. Тихомиров, А.А. Куколева СЕРТИФИКАЦИЯ ОРГАНИЗАЦИЙ ФИЗИКА АВИАТОПЛИВООБЕСПЕЧЕНИЯ Учебно-методическое

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики «УТВЕРЖДАЮ» Декан ЕНМФ И.П. Чернов «14» мая 2002 г. ИЗУЧЕНИЕ РАСПРЕДЕЛЕНИЯ

Государственное высшее учебное заведение «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра физики ОТЧЁТ по лабораторной работе 17 ОПРЕДЕЛЕНИЕ ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ ПАДАЮЩЕГО ШАРИКА Выполнил студент

50 А. Механика ни. Исторически они были получены на основе законов динамики Ньютона, но представляют собой значительно более общие принципы, областью применения которых является вся физика в целом, а не

ЛЕКЦИЯ 4 МЕХАНИКА ЖИДКОСТЕЙ, ОСНОВЫ БИОРЕОЛОГИИ И НЕКОТОРЫЕ ВОПРОСЫ ГЕМОДИНАМИКИ I. Идеальная и реальная жидкости II.Ньютоновские и неньютоновские жидкости III.Течение вязкой жидкости по трубам IV.Предмет

Спектральное разложение периодического сигнала можно выполнить, используя систему базисных функций, состоящую из экспонент с мнимыми показателями:

Легко видеть, что функции этой системы периодичны с периодом Т и ортонормированы на отрезке времени [-Т/2, Т/2], так как

Ряд Фурье произвольного периодического сигнала в дан­ном случае принимает вид

(1)

Выражение (1) представляет собой ряд Фурье в комплекс­ной форме.

Спектральный анализ непер-х сигналов. Преобразование Фурье. Понятие спектральной плотности. Обратное преобразование Фурье. Условие существования спектральной плотности сигнала. Спектральная плотность прямоугольного видеоимпульса. Спектральная плотность дельта функции. Связь между длительностью импульса и шириной его спектра.

Дан s (t) - одиночный импульсный сигнал конечной длительности. Дополняем его такими же сигналами, периодически следую­щими через некоторый интервал времени T, получим периодическую последовательность S пер (t), которая может быть представлена в виде комплексного ряда Фурье (1)

с коэффициентами (2)

Для того чтобы вернуться к одиночному импульсному сигналу, устремим к бесконечности период повторения Т. При этом, очевидно:

1. Частоты соседних гармоник nω 1 и (n + l)ω 1 окажутся сколь угодно близкими, так что в формулах (1) и (2) дискретную переменную nω 1 можно заменить непрерывной переменной ω - текущей частотой.

2. Амплитудные коэффициенты С n станут неограниченными малыми из-за наличия величины Т в знаменателе формулы (2).

Задача состоит в нахождении предельного вида формулы (1) при T→∞.

Воспользуемся тем, что коэффициенты ряда Фурье образуют комплексно-сопряженные пары. Каждой такой паре отвечает гармоническое колебание с комплексной амплитудой (3)

Рассмотрим малый интервал частот Δω, образующий окрестность некоторого выбранного значения частоты ω 0 . В пределах этого интервала будет содержаться N=Δω/ω 1 =ΔωT/(2π) отдельных пар спектральных составляющих, частоты которых отличаются мало.Поэтому составляющие можно складывать так, как будто все они имеют одну и ту же частоту и характеризуются одинаковыми комплексными амплитудами

В результате находим комплексную амплитуду эквивалентного гармонического сигнала, отображающего вклад всех спектральных составляющих, содержащихся внутри интервала Δω:

. (4)

Функция (5)

носит название спектральной плотности сигнала s (t). Формула (5) осуществляет преобразование Фурье данного сигнала.

Решим обратную задачу спектральной теории сигналов: найдем сигнал по его спектральной плотности, которую будем считать заданной.

Поскольку в пределе частотные интервалы между соседними гармониками неограниченно сокращаются, последнюю сумму следует заменить интегралом Эта важная формула называется обратным преобразованием Фурье для сигнала s(t).

Сформулируем окончательно фундаментальный результат: сигнал s(t) и его спектральная плотность S(ω) взаимно однозначно связаны прямым и обратным преобразованиями Фурье^

Спектральное представление сигналов открывает прямой путь к анализу прохождения сигналов через широкий класс радиотехнических цепей, устройств и систем. Сигналу s(t) можно сопоставить его спектральную плотность s(ω) в том случае, если этот сигнал абсолютно интегрируем , т. е. существует интеграл .

Подобное условие значительно сужает класс допустимых сигналов. Так, в указанном классическом смысле невозможно говорить о спектральной плотности гармонического сигнала и (t) =U m cosω 0 t , существующего на всей бесконечной оси времени.

ПЕРИОДИЧЕСКИЕ НЕСИНУСОИДАЛЬНЫЕ ТОКИ

В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Причины отклонения переменных токов

От синусоидальной формы

Во многих практических случаях токи и напряжения в электрических цепях отличаются от синусоидальной формы. Причины отклонения токов от синусоидальной формы могут быть различные. Например, в радиотехнике, связи, вычислительной технике и т.д. используют импульсы различной формы (рис. 7.1,а, б), получаемые с помощью специальных устройств – импульсных генераторов. Простейший принцип получения прямоугольных импульсов с помощью периодического замыкания и размыкания ключа К показан на рис. 7.1,в.


Рис 7.1 в)
На рис. 7.1,г показано последовательное соединение двух синусоидальных источников различной частоты: и . Выходное напряжение имеет несинусоидальную форму (рис. 7.1,е). При этом, если менять соотношения амплитуд, фаз и частоты источников, то соответственно будет изменяться каждый раз форма выходного напряжения.

Наличие нелинейных элементов также искажает синусоидальную форму сигналов. Пусть вольт-амперная характеристика нелинейного элемента . Тогда при воздействии на цепь синусоидального напряжения ток в цепи будет содержать первую и третью грамоники .

Различные формы сигналов используются в электронных устройствах. Так, для передачи сообщений по линиям связи осуществляют модуляцию гармонического сигнала по амплитуде (АМ), частоте (ЧМ), фазе (ФМ) или передаваемые импульсные сигналы, модулируют по амплитуде (АИМ), ширине (ШИМ), временному положению (ВИМ). Такие сигналы имеют сложную негармоническую форму. Электрические генераторы промышленной частоты генерируют э.д.с., строго говоря, несинусоидальной формы, так как зависимость индукции от напряженности поля, нелинейная. Кроме того, на форму э.д.с. влияют наличие пазов и зубцов, размещение обмоток и т. д. В силовой энергетике искажение формы напряжений и токов является вредным, так как увеличиваются потери в устройствах, например за счет гистерезиса и вихревых токов, и тем самым ухудшаются экономические показатели устройства.

Представление периодических несинусоидальных токов

В виде рядов Фурье

Для анализа явлений, происходящих в линейных электрических цепях при воздействии несинусоидальных э.д.с. используют представление воздействий в виде сумм синусоидальных э.д.с. различной частоты. Другими словами, периодические колебания , удовлетворяющие условиям Дирихле (т.е. имеющие конечное число разрывов первого рода и конечное число максимумов и минимумов) могут быть представлены в виде ряда Фурье. Заметим, что колебания, используемые в элнктротехнических устройствах, всегда удовлетворяют условиям Дирихле. Периодическая функция f (wt ) может быть представлена в виде тригонометрического ряда Фурье:

, (7.1)

где k – номер (порядок) гармоники; , – амплитуда и начальная фаза k -й гармоники; – постоянная составляющая или нулевая гармоника. Здесь и далее индекс в скобках (k ) будет обозначать номер гармоники. Если k =1, гармоника называется основной (первой). При k =2, 3,…, n составляющие ряда носят название высших гармоник, период которых равен .

Используя соотношение

и, вводя обозначения: , , w t= a, записываем ряд (7.1) в виде:

Как видно из (7.5), постоянная составляющая равна среднему значению функции f (t ) за период основной гармоники . Иногда в рядах (7.1) и (7.2) постоянную составляющую обозначают , тогда (7.5) перепишется в виде

.

Коэффициенты и начальные фазы ряда (7.1) связаны с коэффициентами ряда (7.2) соотношениями:

. (7.6)

При определении начальной фазы следует учитывать, в каком квадранте находится .

Разложение в ряд Фурье (7.2) различных периодических функций имеется во многих справочниках по математике. Для облегчения разложения следует учитывать свойства периодических функций. В табл. 7.1 показана связь условий симметрии периодической функции с содержанием гармонического ряда. Наличие коэффициентов разложения помечено знаком (+), отсутствие – знаком (0).

Разложение в ряд Фурье также зависит от выбора начала отсчета времени. При смещении начала отсчета изменяются начальные фазы и зависящие от них коэффициенты и , однако амплитуды гармоник и их взаимное расположение сохраняются.

Таблица 7.1

При графическом изображении отдельных гармоник следует иметь ввиду, что масштабы углов по оси абсцисс для разных гармоник различ ны. Для k –й гармоники масштаб углов в k раз больше, чем для пер вой гармоники.Соответственно период k –й гармоники (угол ) занимает



Рис. 7.2

отрезок, в k раз меньший, чем для первой гармоники. Проиллюстрируем это на примере.

Пример 7.1

На рис. 7.2,а изображена несинусоидальная функция тока i, которая представлена суммой первой i (1) и третьей i (3) гармоник. Пользуясь шкалами, указанными на осях, требуется записать аналитическое выражение тока .

Решение

На рис. 7.2,б показан порядок вычисления начальных фаз гармоник. С учетом найденных по рис. 7.2,б амплитуд и фаз гармоник исходная функция будет записана в виде

Необходимо заметить, что для увеличения точности расчетов следует учитывать возможно большее количество членов ряда Фурье. Так как искомую функцию представить в виде бесконечного ряда Фурье невозможно, то ограничиваются понятием "практически точное" разложение, например, когда действующее значение всех высших гармоник не превышает 1% от действующего значения основной гармоники. Понятие "практически точное" разложение вводится не только для сокращения объема расчетов. Как уже отмечалось в главе 1 (часть I) схема замещения электротехнического устройства зависит от диапазона частот. Поэтому, увеличивая точность расчетов, мы все равно выйдем за рамки рассматриваемой модели электротехнического устройства. Следует также учесть, что функции, имеющие разрывы (скачки), при представлении их тригонометрическим рядом делают скачок вблизи разрыва, примерно на 18% больший, чем исходная функция (явление Гиббса).

Пример 7.2

Рассмотрим разложение в ряд Фурье кривой выпрямленного напряжения (жирная линия) для случая m -фазного выпрямления, когда период функции в m раз меньше периода синусоиды питающего напряжения (рис. 7.3,а).

Решение

В этом специфическом случае номера гармоник k кратны числу фаз m и ряд Фурье содержит гармоники порядка k =n m , где n =1, 2, 3, 4,…, то есть k =m , 2m , 3m , 4m и так далее.

Определим коэффициенты ряда:

; (7.7)
а)
б) в)
Рис. 7.3

В частном случае двухполупериодного выпрямления m =2 (рис. 7.3,б) разложение в ряд Фурье имеет вид

Представление функций в виде ряда (7.1) или (7.2) не всегда удобно. Например, при символическом методе расчета предпочтительнее использовать разложение в ряд Фурье в комплексной форме. При такой форме разложения также упрощаются операции интегрирования и дифференцирования.

Ряд Фурье в комплексной форме

Комплексная форма записи ряда Фурье является более удобной и полезной в практических расчетах электрических цепей при несинусоидальных воздействиях. Так, символическая запись комплекса мгновенного значения при синусоидальном воздействии вида будет

Зная комплексную амплитуду (7.13), ряд Фурье (7.1) записываем, используя известные нам правила перехода от комплексных значений к мгновенным:

можно рассматривать как частный случай формулы (7.13) при и , тогда выражение (7.14) можно записать как

. (7.16)

Совокупность комплексных амплитуд всех гармоник исходной несинусоидальной функции можно рассматривать, как дискретные частотные характеристики (спектры) этой функции: F m (k ) (k w) – амплитудно-частотная характеристика (АЧХ); y (k ) (k w) – фазо-частотная характеристика (ФЧХ). Эти характеристики принято изображать на графике в виде линейчатых спектров, в которых расстояние между спектральными линиями . С увеличением периода плотность спектральных линий возрастает.

Теоретически ряд Фурье содержит бесконечно большое число членов, однако ряд быстро сходится и при расчете можно ограничиться небольшим числом гармоник. По амплитудному спектру можно судить о соотношениях между амплитудами гармоник и определить полосу частот, в пределах которой

Коэффициенты комплексного ряда Фурье для функции

имеют вид

Если , то и (7.20) получается в виде

. (7.21)

Результаты расчета амплитудно-частотной характеристики при приведены в табл. 7.2.