Конфигурация полимерной цепи ее типы. Конфигурация макромолекул и стереоизомеры

Молчать! Вам кол по истории, товарищ кандидат наук! Царь Иван разорвал Россию надвое и развратил всех: одних сделал палачами, других жертвами… Ах, да что говорить! Когда напал Девлет-Гирей и надо было… надо было… - Тут Руслан вдруг поник, опустился на стул и слабым, задушенным голосом закончил: - Опричники, сволочи, и воевать-то не умели… Откуда им?.. И сам сбежал, царь называется… Отдал нас на поругание, спалили Москву поганые… - Еще что-то бубнил невнятное, вытирая ладонью щеки, бороду. Ну, конечно, слезы. Когда выпивал, становился безобразно слезлив.

Павел Евграфович смотрел на сына с тоской и тайной брезгливостью. Одно хорошо: Галя не видит. Пять лет назад, когда Галя еще была с ними, он этак не выкамаривал. Вдруг Руслан вскочил и опрометью, будто его срочно позвали, бросился в комнаты. Внутри дома что-то грохнуло с треском. Это он дверью лупанул Вера вздрогнула. Гарик, игравший в шахматы, сказал: «Во папа дает!» А Валентина спокойно продолжала убирать посуду, будто ничего не слышала. И Павел Евграфович подумал о ней с горечью и сердито, это была не его горечь, а Галина, которую он вдруг почувствовал… нет, подумал, не бережет, не любит, и значит, не годится. Ей главное - удержать. Хоть пьяного, инвалида, какого угодно развалюху, лишь бы с ней. Вот и допускает до такого свинства, еще и сама способствует, потому что человек, лишенный воли, никуда не уйдет Это она понимает, хитрая женщина. А что можно сделать? Галя могла бы, а он нет, не умеет. Никогда не умел. Теперь уже все на излете. Уже и детей жизнь на излете Но за этим привычным и грустным, что было тенью его мыслей в последние годы, невнятно теплилось что-то, какой-то нечаянный, издалека, согрев. Не сразу догадался, что это письмо от Аси. Захотелось тихо уйти, чтобы подумать наедине, вспомнить подробно и хорошо, и он сделал движение - наклонился корпусом вперед, чтобы встать со стула, - но Вера остановила:

Папа, я тебя забыла познакомить с моей приятельницей, Инной Александровной. Она юрист, работает в юридической консультации. Кстати, может дать ряд полезных советов… без очереди и бесплатно…

Нет, буду брать гонорар вашим чудесным воздухом! - Коротышка в сарафанчике улыбалась и глубоко вздыхала, глаза прикрыв, изображая необыкновенное удовольствие. - Воздух у вас совершенно божественный!

Павел Евграфович безо всякой задней мысли, просто так, из любви отмечать смешное подумал: воздух воздухом, а торта третий кусок ломает. Да, конечно. Воздух что надо. Очень рады. Юридическая наука шагнула вперед, а он, между тем, стоял у ее истоков, участвовал в судебном процессе пятьдесят лет назад. Хотел было начать рассказывать о процессе над Мигулиным, очень драматичном и бурном, для молодежи поучительно, но почувствовал после первой же фразы: «Осенью девятнадцатого года, когда Мамонтов прорвал наш фронт на юге…» - что особого интереса ни у кого нет, Валентина ушла, Вера и Николай Эрастович стали о чем-то шептаться, а воротившийся было Руслан смотрел пустым взором, и умолк внезапно. Ни к чему все это. Метать бисер. Обойдутся без рассказа о Мигулине. А ведь интереснейшая фигура! Дураки, ей-богу, что не хотят о нем ничего знать. И он опять задумался о письме, об Асе и представил себе, с каким страстным вниманием - даже увидел мысленно, с каким лицом, - стала бы его слушать Галя.

Коротышка в сарафанчике что-то объясняла Вере про дом Аграфены Лукиничны. И как не надоест? Слушать скука. Павел Евграфович опять наладился встать и пойти, но Руслан остановил его и даже рукой нажал на плечо, заставляя сесть.

Ты послушай, послушай, тебе полезно. - И, обращаясь к юристке: - Понимаете, на что напирают? На то, что восемь лет снимали у Аграфены, ремонтировали… А те раньше всех подали заявление…

Но и у вас свои плюсы. Во-первых, вы самые старые жители кооператива… Во-вторых, разрослась семья…

Теперь все говорили разом. Юристка, важно хмуря чело, чеканила очень громко и авторитетно. Голос у нее обнаружился - как рожок. Павел Евграфович заметил, что нынче в старости - глупость, конечно! - стал бояться людей с громкими голосами. Сначала хотел было вступить в разговор и объяснить юристке суть. Почему он против затеи с домом? Потому что Полина Карловна - друг Гали и Галя сюда их всех заманила восемь лет назад. Была б жива Галя, о таком споре и помыслить нельзя. Но дети считают: раз мамы нет, значит, можно. Да и Полине недалеко до мамы. Обо всем этом говорено было до крика.

Поэтому ну их к богу в рай.

Я сказал, ни с кем разговаривать не стану! - Павел Евграфович, угрюмо супясь, стал выползать из-за стола, опираясь о палку и клоня туловище вперед.

Да ради бога, папа! Как хочешь… Обойдемся…

Кстати, насчет царя Ивана Васильевича… Вот вы, Руслан Палыч, на царя кидаетесь, а сами что ж? Тоже стремитесь расширять территорию и не считаете зазорным…

Шум, смех, звон посуды - никто не заметил ухода Павла Евграфовича, вечное с утра до ночи чаепитие продолжалось. Гнусливая дробь Эрастовича, голосок Веры и буханье Русланова баса остались за спиной. И чуть только Павел Евграфович спустился с крыльца на землю - крыльцо высокое, для Павла Евграфовича это всегда задача, - тут же стал думать о письме Аси. Перечитывать его решил позже, после похода в санаторий. Когда сделает дело. После обеда. Пройти надо было немалый путь, километра полтора по асфальтовой дороге через весь поселок; можно идти и речкой, там дольше, зато есть скамейки и возможны краткие остановки с отдыхом. День затевался такой же, как предыдущие, жара несусветная. Черный пес Арапка, обычно сопровождавший Павла Евграфовича в путешествии, сегодня идти отказался: разморенный жарой, лежал в тени веранды и не двигался, хотя услышал знакомое звяканье.

Не пойдешь? - спросил Павел Евграфович. Пес едва шевельнул хвостом, но даже морды, опущенной на лапы, не поднял. Тысячи молодых с музыкой, с шарами, в купальниках валили навстречу с троллейбусного круга на пляжи. Никого и ничего не замечал Павел Евграфович, думал о письме, и что-то вдруг недодуманное, недочитанное до конца неприятно стало свербить. Чепуха какая-то. Чушь ничтожная, фразочка: «Не понимаю, почему написал именно ты». Отчего же не понимает? Глупо не понимать. Да и все письмо какое-то, прости господи, немного, что ли, старушечье, глуповатое.

В пределах заданной конфигурации в макромолекуле имеется большое количество внутренних степеней свободы, связанных с вращением вокруг оси одинарных связей основной цепи. Как следствие, макромолекула способна принимать различные формы (конформации ), т.е. для полимеров характерна конформационная изомерия.

Конформация - это пространственное расположение атомов и атомных групп, которое может быть изменено без разрыва химических связей основной цени в результате теплового движения и (или) внешних воздействий.

Ниже схематически изображен механизм изменения конформации изотактической триады винилового полимера в результате поворота на 180° вокруг С-С-связи. Очевидно, что подобные конформационные переходы не сопровождаются изменением заданной конфигурации и разрывом химических связей.

Таким образом, конформационная изомерия макромолекул определяется внутренним вращением вокруг одинарных химических связей полимерной цепной конструкции.

Основные положения конформационной изомерии макромолекул

Рассмотрим основные закономерности внутреннего вращения вокруг химических связей па примере низкомолекулярной модели - 1,2-дихлорэтана.

Вследствие взаимодействия боковых заместителей (Ни С1) при полном повороте вокруг оси -С-С- связи на 360° в молекуле 1,2-дихлорэтана последовательно реализуется ряд различных поворотных изомеров, или кон- формеров, с определенной потенциальной энергией. Графически это можно представить в виде энергетической карты - зависимости потенциальной энергии конформера от угла поворота. Для 1,2-дихлорэтана подобная карта схематически изображена на рис. 1.3.


Рис. 1.3. Зависимость потенциальной энергии U валентно не связанных атомов молекулы 1,2-дихлорэтана от угла поворота

У молекул подобного типа различают три стабильные конформации: одна транс- и две гош-конформации (от фр. gauche - косой, перекошенный), соответствующие минимумам потенциальной кривой. Максимумы отвечают нестабильным заслоненным конформациям, в частности г^ис-конформеру.

В полимерах внутреннее вращение вокруг одинарных связей имеет ряд специфических особенностей по сравнению с низкомолекулярными соединениями. Рассмотрим фрагмент цепи поливинилхлорида в конфигурации «голова - голова».

В отличие от 1,2-дихлорэтана, в выделенном фрагменте вместо двух атомов II заместителями у углеродных атомов являются продолжения полимерной цепи -СН 2 -. Иными словами, при вращении вокруг связи между г-м и (г + 1)-м углеродными атомами (г + 2)-й атом углерода с последующим продолжением цепи играет роль заместителя (рис. 1.4).

Рис. 1.4.

Положение (г + 2)-го атома относительно предшествующей связи задано основанием конуса с учетом валентного угла 0. Однако поворот па 360° возможен лишь при перемещении в пространстве протяженного продолжения цепи, что требует огромной тепловой энергии, превышающей, как правило, энергию диссоциации химических связей. В результате внутреннее вращение в полимерах является заторможенным и реализуется в пределах определенной дуги окружности. Размер этой дуги определяет угол заторможенного внутреннего вращения ф. Величина угла заторможенного внутреннего вращения зависит от температуры, природы химической связи, полярности и объема заместителей, конфигурационного состава полимера и т.п.

Таким образом, в первом приближении, внутреннее вращение в полимерных цепях сводится к поворотам каждой последующей связи относительно предшествующей. В реальности эти события имеют ярко выраженный кооперативный характер, так как вращение двух соседних связей относительно друг друга во многом определяется как аналогичными процессами в ближнем окружении, так и взаимодействиями дальнего порядка. В связи с этим в случае полимера угол заторможенного внутреннего вращения является усредненной величиной. Количественные оценки этой характеристики будут приведены ниже.

Классификация полимеров по химическому строению основной цепи и макромолекулы в целом. Межмолекулярное взаимодействие в полимерах. Понятия плотности энергии когезии и параметра растворимости.

Структура макромолекул включает их химическое строение и длину, распределение по длинам и молекулярным массам, форму и пространственное расположение звеньев. По химическому строению основной цепи различают гомоцепные (с цепью из атомов углерода - карбоцепные ) и гетероцепные полимеры, а по химическому строению макромолекул в целом – полимеры:

· органические - цепь состоит из атомов углерода, кислорода, азота и серы;

· элементоорганические - цепь состоит из кремния, фосфора и других атомов, к которым присоединены углеродные атомы или группы, или наоборот;

· неорганические - полностью отсутствуют атомы углерода или карбоцепные с кратными (двойными или тройными) связями без боковых групп.

Наиболее распространены органические карбоцепные полимеры, включающие и различные их производные (галогенсодержащие, эфиры, спирты, кислоты и др.), название которых образуется названием мономера с приставкой «поли». К предельным алифатическим карбоцепным полимерам относятся полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, политрифторхлорэтилен, поливиниловый спирт, поливинилацетат, полиакриламид, полиакрилонитрил, полиметилметакрилат и другие. Непредельными являются полибутадиен, полиизопрен и полихлоропрен, примером жирноароматических полимеров - полиэтиленфенилен, а ароматических – полифенилен. Число неорганических гомоцепных полимеров ограничено - карбоцепные карбин (~C≡C-C≡C~) и кумулен (=С=С=С=), а также полисера (~S-S-S~), полисилан (~SiH 2 -SiH 2 ~), полигерман (~GeH 2 -GeH 2 ~) и др. Более распространены элементоорганические гомоцепные полимеры из органических цепей (карбоцепные) с элементоорганическими боковыми группами или из неорганических цепей с органическими радикалами: поливинилалкилсиланы, полиоргансиланы, борсодержащие полимеры. Органические гетероцепные полимеры делят на классы в зависимости от природы функциональных групп в основной цепи. Они могут быть алифатическими или ароматическими в зависимости от строения углеводородных группировок между функциональными группами (табл.1.1).

Таблица 1.1.

Гетероцепные полимеры различных классов:

Функциональная группа Полимер
Название класса Представители
К и с л о р о д с о д е р ж а щ и е
Простая эфирная Простые полиэфиры Полиметиленоксид (~CH 2 -O~)
Полиэтиленоксид (~CH 2 -CH 2 -O~)
Сложноэфирная Сложные полиэфиры Полиэтилентерефталат ([-СН 2 -СН 2 -О-ОС-Ar-СО-О-] n)
Полиарилаты ([-ОС-R-СОО-R`-О-] n)
Поликарбонаты ([-О-Ar-СН 2 -Ar-O-CO-O-Ar-CH 2 -Ar-] n)
А з о т с о д е р ж а щ и е
Ацетальная Ацетали Целлюлоза (C 6 Н 1 0 О 5) n
Амидная Полиамиды (-СО-NН-) Полигексаметиленадипамид
Имидная Полиимиды Полипиромеллитимид
Мочевиновая Полимочевина Полинонаметиленмочевина
Уретановая Полиуретаны (–HN-CO-O) ~(CH 2) 4 -O-CO-NH-(CH 2) 2 ~
С е р у с о д е р ж а щ и е
Тиоэфирная Полисульфиды Полиэтиленсульфид (~CH 2 -CH 2 -S~)
Сульфоновая Полисульфоны Поли-n ,n `-оксидифенилсульфон


Неорганические гетероцепные полимеры представляют полиборазол, поликремниевая кислота, полифосфонитрилхлорид. Элементоорганические гетероцепные полимеры включают большую группу наиболее востребованных соединений из неорганических цепей с органическими боковыми группами. К ним относятся кремнийсодержащие полимеры, цепи которых состоят из чередующихся атомов кремния и кислорода (полиорганосилоксаны ) или азота (полиорганосилазаны ). Полимеры с третьим гетероатомом в основной цепи – металлом называются полиметаллорганосилоксанами (полиалюмоорганосил-оксаны, полиборорганосилоксаны и полититанорганосилоксаны). Существуют также полимеры с органонеорганическими цепями из атомов углерода, кремния, кислорода (поликарбосилоксаны, поликарбосиланы, поликарбораны), которые могут содержать алифатические или ароматические звенья. Все атомы в звеньях рассмотренных полимеров соединены химическими ковалентными связями . Существуют также координационные (хелатные, внутрикомплексные) гетероцепные полимеры, в которых звенья соединены донорно-акцепторным взаимодействием с ионом металла, образующим координационную связь (побочная валентность) и ионную связь (главная валентность). Химические и металлические связи при длине 0,1-0,2 нм значительно превышают по величине энергии физические связи и даже водородную связь (длина 0,24-0,32 нм ), которая занимает промежуточное положение между физическими и химическими связями. От химического строения и состава звеньев зависит и полярность связей, которую количественно оценивают величиной дипольного момента μ о , равного произведению заряда на расстояние между зарядами (табл.1.3), а также уровень межмолекулярного взаимодействия в полимере. В зависимости от полярности связей полимер может быть полярным и неполярным . Дипольный момент всех органических карбоцепных алифатических (неполярных) полимеров близок к нулю. В зависимости от строения макромолекул между ними могут проявляться дисперсионные, ориентационные и индукционные связи. Дисперсионные связи обусловлены возникновением мгновенных диполей в атомах при вращении электронов вокруг ядер. Для полярных макромолекул характерны ориентационные (диполь-дипольные) связи. В поле диполей полярных макромолекул могут поляризоваться и неполярные макромолекулы. Между постоянным и наведенным диполями возникают индукционные связи.



Межмолекулярное взаимодействие определяет способность полимера к растворению в низкомолекулярных жидкостях, поведение при низких температурах, эластические и другие свойства. Уровень его измеряют параметром растворимости – отношением произведения плотности полимера на сумму констант притяжения отдельных групп атомов в составном звене к молекулярной массе звена. Для этого используют также плотность энергии когезии (кДж/моль ), которая эквивалентна работе удаления взаимодействующих макромолекул или групп атомов друг от друга на бесконечно большие расстояния. При температуре стеклования Т с энергия межмолекулярного взаимодействия становится выше энергии теплового движения, и полимер переходит в твердое застеклованное состояние . Полимеры с Т с выше комнатной называют пластмассами , а ниже комнатной и параметром растворимости 14-19 (М . Дж/м 3 ) 1/2 эластомерами (каучуками).

Молекулярная масса полимеров и методы ее определения. Молекулярно-массовое распределение и форма макромолекул. Классификация полимеров по количеству и порядку расположения составных звеньев.

Молекулярная масса (ММ) – важная характеристика структуры полимеров, определяющая уровень механических свойств и принадлежность к определенной их группе: олигомеры (реактопласты) – 10 3 -10 4 , кристаллические термопласты – 10 4 -5 . 10 4 , аморфные термопласты - 5 . 10 4 -2 . 10 5 , каучуки – 10 5 -10 6 . Чем меньше ММ полимеров, тем ниже вязкость их расплавов и легче они формуются. Механические же свойства определяются больше степенью отверждения (олигомеры) и кристалличности (полиамиды, полиэфиры) или переходом в стеклообразное состояние. Наибольшую ММ имеют каучуки, которые трудно формуются, но изделия из них имеют высокую эластичность. Поскольку при большой ММ не получается одинаковая степень полимеризации, макромолекулы различаются по размерам. Полидисперсность (полимолекулярность) - одно из основных понятий в физикохимии полимеров, а тип молекулярно-массового распределения (ММР) – важный показатель, влияющий на физико-механические свойства полимеров не меньше, чем ММ.

Поскольку ММ - среднестатистическая величина, различные методы ее определения дают разные значения. Среднечисловые методы основаны на определении числа макромолекул в разбавленных растворах полимеров, например, путем измерения их осмотического давления, а среднемассовые - на определении массы макромолекул, например, путем измерения светорассеяния. Среднечисловую ММ (M n ) получают простым делением массы образца полимера на число макромолекул в нем, а среднемассовую ММ: M w =M 1 w 1 +M 2 w 2 +…+M i w i , где w 1 , w 2 , w i – массовые доли фракций; M 1 , M 2 , M i – среднемассовые ММ фракций. Средневязкостная ММ, приближающаяся к среднемассовой ММ, определяется по вязкости разбавленных растворов. Полимер называется монодисперсным , если состоит из одной фракции с очень близкими друг к другу размерами макромолекул, и для него отношение M w /M n =1,02-1,05. В остальных случаях среднемассовая ММ больше среднечисловой ММ, а их отношение (M w /M n =2,0-5,0) является мерой полидисперсности полимера. Чем больше M w /M n , тем шире ММР. На кривой ММР полимера значение M n приходится на максимум, т.е. на фракцию, доля которой в составе полимера наибольшая, а M w сдвинуто вправо по оси абсцисс.

Большие размеры макромолекул полимеров обусловили еще одну особенность их структуры. Они могут быть линейными или разветвленными (с боковыми ответвлениями от основной цепи или звездообразной формы). При близких значениях ММ они становятся изомерами . Свойства полимеров, состоящих из макромолекул линейных и разветвленных, сильно различаются. Разветвленность - нежелательный показатель структурымакромолекул, снижающий их регулярность и затрудняющий кристаллизацию полимера. Соединение макромолекул химическими связями приводит к формированию сетчатых структур , еще больше изменяющих свойства полимеров. В соответствии с такими различиями по строению макромолекул (рис.1.1) и полимеры называют линейными , разветвленными и сетчатыми (сшитыми ).

В последнем случае понятие «макромолекула» утрачивает смысл, так как весь образец сшитого полимера становится одной гигантской молекулой. Поэтому в сшитых полимерах определяют среднее значение ММ отрезка цепи между химическими связями (узлами сетки), соединяющими макромолекулы.

Сополимеры содержат в основной цепи звенья двух и более разных мономеров (например, бутадиен-стирольный каучук) и имеют более сложное строение, чем гомополимеры , состоящие из звеньев одного мономера. Сополимер с беспорядочным соединением звеньев мономеров в макромолекуле называют статистическим , с правильным их чередованием – чередующимся , а с большой протяженностью участков (блоков) из звеньев одного мономера - блок-сополимером . Если блоки одного из мономеров присоединены к основной цепи макромолекулы, составленной из звеньев другого мономера, в виде больших боковых ответвлений, то сополимер называют привитым . Структура сополимера характеризуется химическим составом и длиной блоков или привитых цепей и числом блоков или прививок в макромолекуле. Звенья одинаковых или разных мономеров могут соединяться регулярно (конец одного - начало другого) или нерегулярно (конец одного – конец другого, начало другого – начало третьего звена, и др.), а заместители в боковых группах могут иметь регулярное или нерегулярное пространственное расположение. Структуру макромолекулы определяют также ее конфигурация и конформация.

Конфигурация макромолекул и стереоизомеры. Конформация и гибкость макромолекул. Гибкоцепные и жесткоцепные полимеры и форма их макромолекул.

Конфигурация макромолекулы – это определенное пространственное расположение ее атомов, не изменяющееся при тепловом движении, вследствие чего разные ее виды являются стабильными изомерами. Цис-изомеры характеризуются расположением разных заместителей по разные стороны от двойной связи в каждом повторяющемся звене, а транс-изомеры - наличием разных заместителей по одну сторону от двойной связи. Примером таких изомеров являются НК и гуттаперча – идентичные по химическому строению природные полиизопрены. Гуттаперча является пластмассой с кристаллической структурой, плавящейся при 50-70 О С, а НК – эластомером в интервале температур от +100 о С до -72 о С, так как их макромолекулы имеют разные периоды идентичности . В цис -полиизопрене (НК) ориентированные в одном направлении метильные группы встречаются через одно составное звено, что равно 0,82 нм , а в его транс -изомере (гуттаперче) – через 0,48 нм :

цис- 1,4-полиизопрен (НК)

транс -1.4-полиизопрен

Из макромолекул оптических полимеров с асимметрическим атомом углерода специальными методами синтеза получают стереорегулярные изомеры - изотактические (заместители - по одну сторону плоскости макромолекулы) и синдиотактические (заместители - по разные стороны):

Они отличаются по свойствам от атактических полимеров с нерегулярным расположением заместителей. Взаимное отталкивание заместителей приводит к их смещению относительно друг друга в пространстве, и поэтому плоскость симметрии изгибается в виде спирали. Структура спиралей характерна и для биологически активных полимеров (например, двойная спираль ДНК). Структура макромолекул стереоизомеров является носителем информации о способах их синтеза, а в белках двойные спирали ДНК несут огромную информацию о их биологической наследственности.

Конформация макромолекулы - это пространственное расположение атомов или групп атомов, которое может изменяться под действием теплового движения без разрушения химических связей между ними. Большая длина макромолекулы при возможности вращения ее частей вокруг постых химических связей обуславливает поворотную изомерию , выражающуюся в возникновении различных конформаций. Чем ближе друг к другу находятся атомы водорода (цис -положение), тем больше их отталкивание и соответственно потенциальная энергия макромолекулы. Взаимодействие усиливают полярные заместители, например атомы хлора. В транс -изомерах потенциальная энергия макромолекулы меньше, расположение атомов выгоднее, чем в цис -изомерах. Энергетический барьер вращения частей макромолекулы, который делает его заторможенным , складывающимся из ряда колебаний, помогают преодолеть флуктуации тепловой энергии . Совокупность колебаний и перемещений вокруг простых связей приводит к искривлению макромолекулы в пространстве, которое может идти в разных направлениях и меняться во времени. Иными словами, макромолекула обладает гибкостью - способностью к изменению своей конформации в результате теплового движения или действия внешних сил. При большом числе атомов цепь может не просто искривляться, а даже сворачиваться в очень рыхлый макромолекулярный клубок , размер которого можно охарактеризовать среднеквадратичным расстоянием между ее концами и рассчитать математически, зная число составных звеньев в ней. Из-за цепной структуры макромолекул перемещение одного атома или группировки приведет к перемещению и других, в результате чего возникает движение, подобное перемещению гусеницы или червя, которое называется рептационным (рис.1.2). Отрезок цепи, перемещающийся как единое целое в элементарном акте движения, называется сегментом цепи . Термодинамическая гибкость характеризует способность цепи изменять свою конформацию под действием теплового движения и может быть оценена параметром жесткости, длиной термодинамического сегмента или параметром гибкости Флори. Чем меньше эти показатели, тем выше вероятность перехода макромолекулы из одной конформации в другую (табл.1.4). Параметр жесткости оценивают отношением среднеквадратичных расстояний между концами реальной и свободно-сочлененной цепей в разбавленных растворах полимера. Длина термодинамического сегмента А (сегмента Куна) характеризует такую последовательность звеньев, при которой каждое звено ведет себя независимо от других, и также связана со среднеквадратичным расстоянием между концами цепи. Она равна гидродинамической длине макромолекулы для предельно жестких и длине повторяющегося звена для предельно гибких цепей. Полимеры диенового ряда и со связями ~Si-O~ или ~C-O~ в основной цепи характеризуются большей гибкостью по сравнению с полимерами винилового ряда, так как у них из-за уменьшения обменных взаимодействий между СН 2 -группами в 100 раз ниже энергия поворотных изомеров. Природа заместителей мало влияет на гибкость макромолекул. Параметр гибкости Флори f о показывает содержание гибких связей в макромолекуле и служит критерием гибкости, по которому полимеры делят на гибкоцепные (f о >0,63; А <10нм ) и жесткоцепные (f о <0,63; А >35нм ). Последние не бывают в конформации макромолекулярного клубка и имеют вытянутую форму макромолекул – упругой струны (полиалкилизоцианат, А =100), коленча-того вала (поли-п -бензамид, А =210) или спирали (биополимеры, А =240). Кинетическая гибкость макромолекулы отражает скорость ее перехода в силовом поле из одной конформации в другую и определяется величиной кинетического сегмента , т.е. той части макромолекулы, которая отзывается на внешнее воздействие как единое целое. В отличие от термодинамического сегмента, он определяется температурой и скоростью внешнего воздействия. С повышением температуры растут кинетическая энергия и гибкость макромолекулы и уменьшается величина кинетического сегмента. В условиях, когда время действия силы больше, чем время перехода из одной конформации в другую, кинетическая гибкость высока, а кинетический сегмент по величине приближается к термодинамическому сегменту. При быстрой деформации кинетический сегмент близок к гидродинамической длине макромолекулы, и даже термодинамически гибкая цепь ведет себя как жесткая. Кинетическая гибкость изолированной макромолекулы определяется по вязкоупругим свойствам сильно разбавленных растворов с последующей их экстраполяцией к нулевой коцентрации. Макромолекулы гибкоцепного аморфного полимера имеют клубкообразную форму как в изолированном виде, так и в массе. При этом структура полимера не похожа на структуру «молекулярного войлока», в котором макромолекулы перепутаны хаотически, как считали ранее. Идея об упорядоченных областях в аморфных полимерах высказана в 1948 г. Алфреем.

конфигурация макромолекулы иначе первичная структура (англ. ) — пространственное расположение атомов в . Определяется значениями валентных углов и длинами соответствующих связей.

Описание

Конфигурация макромолекулы определяется взаимным расположением входящих в нее мономерных звеньев, а также их структурой. В настоящее время для описания конфигурации макромолекул, как правило, используют термин «структура» или «первичная структура».

Различают ближний (конфигурация присоединения соседних звеньев) и дальний конфигурационный порядок, характеризующий структуру достаточно протяженных участков макромолекул. Количественной мерой тактичности (порядка) является степень стереорегулярности. Помимо этого, тактичность может описываться количеством различных типов пар ближайших соседей (ди-, три-, тетрад), распределение которых определяется экспериментально. Количественной характеристикой конфигурации статистических сетчатых макромолекул, например, является плотность сшивки, т. е. средняя участка цепи между узлами сетки.

Конфигурацию макромолекул определяют методами рентгеноструктурного анализа, двойного лучепреломления и др. Как правило, каждый метод наиболее «чувствителен» к какой-либо конфигурационной характеристике; так, ЯМР во многих случаях позволяет количественно характеризовать ближний конфигурационный порядок в

Конфигурация - это относительное пространственное расположение в макромолекуле атомов или атомных групп, которое задается в процессе синтеза и не может быть изменено без разрыва химических связей основной цепи.

Различают три типа конфигурационной изомерии: локальную изомерию, цис-транс -изомерию и стереоизомерию.

Локальная изомерия характерна для полимеров с асимметричным повторяющимся звеном (виниловые и винилиденовые полимеры, (метакрилаты и т.и.). Так, у молекулы винилового мономера

заместители при атомах С (1) (голова) и (2) (хвост) различаются, и, следовательно, возможны три типа присоединения (в диаде, т.е. в двух последовательно расположенных мономерных звеньях):


Присоединение по типу «голова - голова» менее вероятно, чем присоединение по типу «голова - хвост», прежде всего из-за возникающих стериче- ских затруднений. Так, например, в поливинилиденфториде (-СН 2 -CF 2 -)„ и полиметилметакрилате доля звеньев, присоединенных по типу «голова - голова», не превышает 5-6%.

Возможно присоединение мономеров и по типу «хвост - хвост», однако этот тип изомерии можно выделить лишь для диад повторяющихся звеньев, а в макромолекуле разница между присоединением «хвост - хвост» и «голова - голова» нивелируется.

Цис-транс-изомерия характерна для полимеров, содержащих в основной цепи двойные связи (полидиены, полиацетилены), и заключается в возможности расположения заместителей по одну (цис-изомер) или по разные стороны (транс- изомер) плоскости двойной связи:


Стереоизомерия ярко выражена для синтетических полимеров, имеющих в основной цепи асимметрические атомы углерода, а также для широкого круга природных полимеров, таких как белки, полисахариды и нуклеиновые кислоты.

При этом возможны два варианта:

  • 1) макромолекулы содержат в основной цепи истинно асимметрический атом углерода и проявляют оптическую активность (полипропиленоксид, природные полимеры);
  • 2) макромолекулы с псевдоасимметрическим атомом углерода , не проявляющие оптической активности.

У биополимеров асимметрические атомы углерода (обозначены?) входят в молекулы исходных мономерных соединений - аминокислот, углеводов (рибозы, глюкозы и др.):


и остаются в каждом звене макромолекул после их синтеза, как, например, у полипептидов (поли-/_-аланина) и полисахаридов (амилоза):

поли-1,4-а, D-глюкопиранозид (амилоза)

Как результат биополимеры обладают высокой оптической активностью. В классе синтетических полимеров стереоизомерия в первую очередь характерна для карбоцепных виниловых и винилиденовых полимеров, строение которых схематически показано ниже.


В этом случае наблюдаемая изомерия обусловлена различием в конфигурации тетраэдрического атома углерода, содержащего отличный от водорода заместитель X или заместители X и Z.

Строго говоря, указанные атомы углерода являются асимметрическими, поскольку связаны с четырьмя различными группами (X, Н или X, Z) и двумя отрезками цепи, различающимися длиной и концевыми группами. Однако эти полимеры не проявляют оптических свойств, обусловленных асимметрией ближайшего окружения атомов углерода, поскольку к асимметрическому атому углерода с обеих сторон примыкают одинаковые группировки СН 2 -СНХ или СН 2 -CXZ, в связи с чем эти атомы называют псев- доасимметрическими. Регулярность и характер расположения подобных центров стереоизомерии описывают понятием «тактичность». Рассмотрим этот тип изомерии более подробно на примере винилового полимера.


Будучи максимально распрямленной без нарушения валентных углов, скелетная цепь подобного карбоцепного полимера принимает форму плоского зигзага и может быть размещена в плоскость рисунка. При этом заместители у атома углерода, связи которых обозначены толстыми линиями, направлены к читателю, а заместители, связи которых обозначены тонкими линиями, направлены от читателя.

Применим предложенный в 1891 г. немецким химиком-органиком Э. Фишером упрощенный способ определения и изображения стереоизомеров. Спроецируем изображенную выше полимерную цепь на плоскость, перпендикулярную плоскости листа. В результате получим фишеровскую проекцию, для которой все отличные от водорода заместители X расположены но одну сторону от перпендикулярной листу плоскости. Такой стереоизомер называют изотактическим.


Очевиден и другой вариант расположения заместителей X, а именно строгое чередование заместителей X по разные стороны плоскости. Этот стереоизомер называют синдиотактическим.


Иными словами, изотактический полимер - это полимер, каждое мономерное звено которого содержит один центр стереоизомерии и конфигурация этих центров одинакова, а синдиотактический полимер - это полимер, каждое мономерное звено которого содержит один центр стереоизомерии и соседние звенья имеют противоположные конфигурации. Если же расположение заместителя X хаотично, то стереорегулярность отсутствует, и подобный конфигурационный изомер обозначают как атактический.

Приведенные данные относятся к полимерам, для которых в повторяющемся звене имеется один исевдоасимметрический атом углерода. Отметим, что такие макромолекулы называют монотактическими. У дитактических полимеров повторяющееся звено содержит два псевдоасимметрических атома.

Диизотактические полимеры получают на основе 1,2-дизамещенных ал- кенов общего строения (CHR=CHR"). В этом случае строение полимерного продукта зависит не только от чередования L- и D-изомеров в молекуле мономера, но и от его геометрической изомерии. Например, для 14мг:-изомера образуется эрмтро-диизотактический полимер:


Дисиндиотактические полимеры также образуют две синдиотактические структуры (эритро - и трео-), для которых строение основной цепи идентично.


Известны синтетические полимеры, включающие истинно асимметрические атомы углерода и, как результат, обладающие оптической активностью. Типичный представитель таких соединений - полипропилеиоксид , фишеровская проекция которого представлена ниже (асимметрические атомы углерода обозначены *).


Другими примерами оптически активных полимеров служат полиамид на основе (+)-2,2"-диаминобинафтила-1,Г и терефталоилхлорида


а также полиамид, полученный поликонденсацией /.-лизина и дихлорангид- рида адипиновой кислоты в присутствии ионов меди:

Синтетические оптически активные полимеры получают:

  • 1) неактивного полимера, приводящими к введению в его боковые заместители оптически активных групп или к созданию асимметрических центров путем асимметричного синтеза;
  • 2) полимеризацией или поликонденсацией оптически активных мономеров, которая происходит в условиях, исключающих рацемизацию;
  • 3) полимераналогичными превращениями оптически активных полимеров;
  • 4)стереоселективной полимеризацией одного из двух оптических изомеров, содержащихся в рацемической смеси мономера;
  • 5) асимметрическим синтезом - стереоспецифической полимеризацией или полиприсоединением симметричных мономеров.

Сложный конфигурационный состав характерен для диеновых полимеров. При полимеризации симметричного бутадиена возможно присоединение за счет раскрытия связей 1,2- или одновременного раскрытия связей 1,2- и 3,4- (1,4-присоединение). В результате получают смесь двух различных полимерных продуктов: 1,4-полибутадиена и 1,2-полибутадиена:


Для первого возможна м,ис-транс-конфигурационная изомерия, а для второго - локальная изомерия и стереоизомерия.

Ситуация усложняется при полимеризации несимметричных диенов (например, изопрена), для которых наблюдается 1,4-, 1,2- и 3,4-присоединение:


При любом варианте полимеризации происходит образование локальных изомеров. Аналогично рассмотренному выше случаю 1,4-полиизопрен дополнительно характеризуется г^г/с-отраис-изомерией, а 1,2- и 3,4-поли- изопрен - стереоизомерией.

Формирование заданной конфигурации в процессе синтеза полимера, а также исследование конфигурационного состава макромолекул являются одной из наиболее важных задач синтетической и физической химии полимеров. С конфигурацией тесным образом связаны структура полимеров в целом и их физико-механические свойства. Стереорегулярные полимеры, как правило, легко кристаллизуются, в то время как атактические полимеры могут существовать лишь в аморфном фазовом состоянии. Так, например, изотактический поливинилхлорид - кристаллический полимер с температурой плавления 240°С, атактический поливинилхлорид - аморфный полимер с температурой стеклования 90°С. Температура стеклования изотак- тического полиметилметакрилата составляет 40°С, а синдиотактического - 160°С. Натуральный каучук (1,4-гщс-полиизопрен) является мягким и податливым материалом с температурой стеклования минус 73°С, гуттаперча

(1,4-7ирянс-полиизопрен) - кристаллический полимер с температурой плавления 43°С.

Оптически активные полимеры обладают более высокими механическими свойствами, повышенной теплостойкостью но сравнению с рацемическими продуктами; они пригодны для изготовления стекол и пленок, способных вращать плоскость поляризации проходящего света (оптические приборы и светофильтры). Наиболее важная область использования оптически активных полимеров - разделение оптических изомеров хроматографическими методами и применение в качестве катализаторов в асимметрическом органическом синтезе и в качестве матрицы в асимметрическом синтезе полимеров.

Локальную конфигурацию присоединения «голова - хвост» и «голова - голова» определяют, используя метод ядерного магнитного резонанса (ЯМР). Характеристики сигнала атомов боковых заместителей, идентифицируемых этим методом (1 Н, 13 С, 15 N, 19 F), связанные со взаимодействием спинов этих ядер, зависят от их взаимного расстояния вдоль полимерной цепи, что позволяет оценить долю присоединений «голова - хвост». Этот же принцип лежит в основе определения стереоизомерии макромолекул: в изотактической конфигурации боковые группы находятся на меньшем расстоянии друг от друга, чем в синдиотактической. С использованием метода ЯМР высокого разрешения, идентифицирующего боковые группы, удается зафиксировать сигналы от мономерных звеньев, образующих изо-, синдио- и гетеротриады, и рассчитать долю этих триад и их распределение в полимерных цепях.