Способы преодоления сверхсветовой скорости. Возможна ли сверхсветовая скорость? Простые примеры сверхсветового перемещения

Тема «Двигателя, позволяющего летать со сверхсветовой скоростью», «Путешествия в многомерном пространстве» и всего, что имеет отношение к теме полета со скоростью, превышающей световую, пока что не выходит за рамки домыслов, хотя в каких-то аспектах и соприкасается с миром науки. Сегодня мы находимся на стадии, когда знаем, что мы кое-что знаем, а чего-то не знаем, но уж точно не знаем, можно ли перемещаться со скоростью, превышающей скорость света.

Плохая новость заключается в том, что основы современных научных знаний, накопленных к данному моменту, свидетельствуют о том, что движение со скоростью, превышающей световую, невозможно. Это артефакт Специальной теории относительности Эйнштейна. Да, существуют иные концепции - сверхсветовых частиц, кротовых нор (туннели в пространстве - прим. перев. ), инфляционной вселенной, деформации пространства и времени, квантовых парадоксов... Все эти идеи обсуждаются в серьезной научной литературе, но пока еще рано говорить об их реальности.

Один из вопросов, появляющихся в связи с движением со сверхсветовой скоростью, это временные парадоксы: нарушение причинно-следственных связей и что подразумевается под путешествием во времени. Как будто темы полета со сверхсветовой скоростью мало, так еще и реальна ли разработка сценария, при котором сверхсветовая скорость даст возможность путешествия во времени. Путешествие во времени считается гораздо более невозможным, чем световой полет.

В чем основное отличие?

Едва преодолев звуковой барьер, люди задались вопросом: «А почему бы нам теперь еще и не преодолеть световой барьер, так ли уж сильно это отличается?» Слишком рано говорить о преодолении светового барьера, но кое-что уже известно наверняка - это совершенно иная проблема, нежели преодоление звукового барьера. Звуковой барьер был преодолен объектом, сделанным из материала, а не звука. Атомы и молекулы материала соединены электромагнитными полями, из чего состоит и свет. В случае с преодолением барьера скорости света, предмет, пытающийся преодолеть этот барьер, состоит из того же, что и сам барьер. Как объект может двигаться быстрее того, что связывает его атомы? Как мы уже отмечали, это уже совсем другая проблема, нежели преодоление звукового барьера.

Можно очень кратко изложить «Специальную теорию относительности». На самом деле она очень проста по своей конструкции… Начните с двух простых правил.

Правило №1: пройденное вами расстояние (d) зависит от скорости вашего движения (v) и времени движения (t). Если вы едете со скоростью 55 миль в час, вы проедете за час 55 миль. Просто.

Правило №2: Это потрясающая вещь - как бы быстро вы не двигались, вы постоянно будете отмечать, что скорость света остается неизменной.

Соедините их вместе и сравните, что «видит» один путешественник по сравнению с тем, кто движется с другой скоростью - вот тут и появляются проблемы. Давайте попробуем иную картину. Закройте глаза. Представьте, что из всех органов чувств у вас задействован лишь слух. Вы воспринимаете только звуки. Вы определяет предметы только по тому, какой звук они издают. Итак, если проехал паровоз, его гудок хоть как-то изменился? Мы знаем, что он звучит на определенной ноте, но из-за движения поезда она меняется вследствие действия так называемого эффекта Доплера. То же самое происходит и со светом. Все вокруг себя мы знаем благодаря присутствию света или, если обобщить, электромагнетизму. То, что мы видим, чувствуем (молекулы воздуха отскакивают от нашей кожи), слышим (молекулы ударяются между собой под давлением волн), даже течение времени - все это управляется электромагнитными силами. Так что если мы начинаем двигаться на скоростях, приближающихся к скорости, через которую мы получаем всю информацию, наша информация искажается. В общем, это вот так просто. Понимания этого достаточно, если с этим пытаешься что-то делать. Но это уже другой вопрос.

Барьер скорости света является одним из следствий Специальной теории относительности. На это можно взглянуть иначе. Чтобы двигаться быстрее, нужно добавить энергии. Но когда вы начинаете приближаться к скорости света, необходимый для движения объем энергии взлетает до бесконечности. Для перемещения массы со скоростью света требуется бесконечная энергия. Оказывается, здесь вы сталкиваетесь с реальным барьером.

Можно ли обойти Специальную теорию относительности? Вероятно.

Проводятся ли какие-то исследования в этом направлении? Да, но в небольшом объеме.

В дополнение к индивидуальной теоретической работе таких физиков, как Мэт Виссер (Matt Visser), Майкл Моррис (Michael Morris), Мигель Алькубьерре (Miguel Alcubierre) и других существует качественно новая программа НАСА в области физики реактивного движения.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.

Американские астрофизики разработали математическую модель гиперпространственного привода, позволяющего преодолевать космические расстояния со скоростью выше скорости света в 10³² раз, что позволяет в течение пары часов слетать в соседнюю галактику и вернуться обратно.

При полёте люди не будут ощущать перегрузок, которые ощущаются в современных авиалайнерах, правда в металле такой двигатель сможет появиться разве что через несколько сотен лет.

Механизм действия привода основан на принципе двигателя деформации пространства (Warp Drive), который предложил в 1994 г. мексиканский физик Мигель Алькубиерре. Американцам осталось лишь доработать модель и произвести более детальные подсчеты.
"Если перед кораблём сжимать пространство, а позади него, наоборот, расширять, то вокруг корабля появится пространственно-временной пузырь, - говорит один из авторов исследования, Ричард Обоуси. - Он окутывает корабль и вырывает его из обычного мира в свою систему координат. За счет разницы давления пространства-времени этот пузырь способен двигаться в любом направлении, преодолевая световой порог на тысячи порядков."

Предположительно, деформироваться пространство вокруг корабля сможет за счет малоизученного потока темной энергии. "Тёмная энергия - очень плохо изученная субстанция, открытая сравнительно недавно и объясняющая, почему галактики как бы разлетаются друг от друга, - рассказал старший научный сотрудник отдела релятивистской астрофизики Государственного астрономического института им. Штернберга МГУ Сергей Попов. - Существует несколько её моделей, но какой-то общепринятой нет. Американцы взяли за основу модель, основанную на дополнительных измерениях, и говорят, что можно локально менять свойства этих измерений. Тогда получится, что в разных направлениях могут быть разные космологические константы. И тогда корабль в пузыре начнёт двигаться".

Объяснить такое "поведение" Вселенной может "теория струн", согласно которой все наше пространство пронизано множеством других измерений. Их взаимодействие между собой порождает отталкивающую силу, которая способна расширять не только вещество, как, например, галактики, но и само тело пространства. Этот эффект получил название "инфляция Вселенной".

"С первых секунд своего существования Вселенная растягивается, - поясняет доктор физико-математических наук, сотрудник Астро-космического центра Физического института им. Лебедева Руслан Мецаев. - И этот процес продолжается до сих пор". Зная всё это, можно попытаться расширять или сужать пространство искуственно. Для этого предлагается воздействовать на иные измерения, тем самым кусок пространства нашего мира начнёт движение в нужном направлении.

При этом законы теории относительности не нарушаются. Внутри пузыря останутся те же самые законы физического мира, а скорость света будет предельной. На эту ситуацию не распространяется и так называемый эффект близнецов, повествующий о том, что при космических путешествиях со световыми скоростями время внутри корабля значительно замедляется и космонавт, вернувшись на землю, встретит своего брата-близнеца уже глубоким стариком. Двигатель Warp Dreve избавляет от этой неприятности, потому как толкает пространство, а не корабль.


Американцы уже подыскали и цель для будущего полёта. Это планета Gliese 581 (Глизе 581), на которой климатические условия и сила тяжести приближается к земным. Расстояние до неё составляет 20 световых лет, и даже при условии, что Warp Drive будет работать в триллионы раз слабее максимальной мощности, время пути до неё составит всего несколько секунд.

Редакция rian.ru
http://ria.ru/science/20080823/150618337.html

Комментарии: 1

    Как известно, человек живет в 3х измерениях - длина, ширина и высота. Исходя из "теории струн", во Вселенной существует 10 измерений, первые шесть из которых между собой связаны. На данном видео рассказывается про все эти измерения, включая 4 последних, в рамках представлений о Вселенной.

    Мичио Каку

    Эта книга, конечно же, не развлекательное чтение. Это то, что называется «интеллектуальный бестселлер». Чем, собственно, занимается современная физика? Какова нынешняя модель Вселенной? Как понимать «многомерность» пространства и времени? Что такое параллельные миры? Насколько эти понятия как объект исследования науки отличаются от религиозно-эзотерических идей?

    Эндрю Понтцен, Том Винти

    Понятие пространства отвечает на вопрос «где?». Понятие времени отвечает на вопрос «когда?». Порой, для того чтобы увидеть правильную картину вселенной, надо взять эти два понятия и соединить.

    Мичио Каку

    Еще совсем недавно нам трудно было даже вообразить сегодняшний мир привычных вещей. Какие смелые прогнозы писателей-фантастов и авторов фильмов о будущем имеют шанс сбыться у нас на глазах? На этот вопрос пытается ответить Митио Каку, американский физик японского происхождения и один из авторов теории струн. Рассказывая простым языком о самых сложных явлениях и новейших достижениях современной науки и техники, он стремится объяснить основные законы Вселенной.

    Плеча этого застенчивого человека в 1994 году сама королева коснулась шпагой, производя его в рыцари. В парадоксальную логику Роджера Пенроуза мало кто верит - настолько она невероятна. С ней мало кто спорит - настолько она безупречна. В этой заметке рыцарь физики расскажет о Вселенной, боге и человеческом разуме. И все наконец стало на свои места.

    Тысячи лет астрономы полагались в своих исследованиях только на видимый свет. В XX веке их зрение охватило весь электромагнитный спектр - от радиоволн до гамма-лучей. Космические аппараты, добравшись до других небесных тел, наделили астрономов осязанием. Наконец, наблюдения заряженных частиц и нейтрино, испускаемых далекими космическими объектами, дали астрономам аналог обоняния. Но до сих пор у них нет слуха. Звук не проходит через космический вакуум. Зато он не является препятствием для волн иного рода - гравитационных, которые тоже приводят к колебанию предметов. Вот только зарегистрировать эти призрачные волны пока не удалось. Но астрономы уверены, что обретут «слух» в ближайшее десятилетие.

    Шон Кэрролл, Уильям Крейг

    «Телеологический аргумент о тонкой настройке фундаментальных констант - лучший аргумент, который есть у теистов, когда речь заходит о космологии. Потому что здесь идёт игра по правилам: есть феномен, есть параметры физики элементарных частиц и космологии, и у вас есть две различные модели: теизм и натурализм, и вы хотите сравнить, какая модель лучше соответствует данным». Шон Кэрролл в дебатах с философом Уильямом Крейгом показывает, что аргумент о тонкой настройке совсем не убедителен, и приводит пять причин, почему теизм не предлагает решения для предполагаемой проблемы тонкой настройки.

    Для возникновения жизни необходима основа. Наша Вселенная синтезировала атомные ядра на начальном этапе своей истории. Ядра поймали электроны, чтобы сформировать атомы. Скопления атомов образовали галактики, звезды и планеты. Наконец, у живых существ появилось место, которое они могли назвать домом. Мы воспринимаем как данность, что законы физики допускают появление таких структур, но все могло быть иначе.

Тени, могут перемещаться быстрее света, но не могут переносить вещество или информацию

Возможен ли сверхсветовой полёт?

Разделы этой статьи имеют подзаголовки и можно ссылаться на каждый раздел отдельно.

Простые примеры сверхсветового перемещения

1. Эффект Черенкова

Когда мы говорим о движении со сверхсветовой скоростью, то имеем в виду скорость света в вакууме c (299 792 458 м/с). Поэтому эффект Черенкова не может рассматриваться как пример движения со сверхсветовой скоростью.

2. Третий наблюдатель

Если ракета A улетает от меня со скоростью 0.6c на запад, а ракета B улетает от меня со скоростью 0.6c на восток, то я вижу, что расстояние между A и B увеличивается со скоростью 1.2c . Наблюдая полёт ракет A и B со стороны, третий наблюдатель видит, что суммарная скорость удаления ракет больше, чем c .

Однако относительная скорость не равна сумме скоростей. Скорость ракеты A относительно ракеты B - это скорость увеличения расстояния до ракеты A , которую видит наблюдатель, летящий на ракете B . Относительную скорость нужно рассчитывать по релятивистской формуле сложения скоростей. (см. How do You Add Velocities in Special Relativity?) В данном примере относительная скорость примерно равна 0.88c . Так что в этом примере мы не получили сверхсветовой скорости.

3. Свет и тень

Подумайте, как быстро может перемещаться тень. Если лампа близко, то тень твоего пальца на дальней стене движется гораздо быстрее, чем движется палец. При движении пальца параллельно стене, скорость тени в D/d раз больше, чем скорость пальца. Здесь d - расстояние от лампы до пальца, а D - от лампы до стены. Скорость будет ещё больше, если стена расположена под углом. Если стена очень далеко, то движение тени будет отставать по времени от движения пальца, так как свету нужно время, чтобы достичь стены, но скорость перемещения тени по стене увеличится ещё больше. Скорость тени не ограничена скоростью света.

Другой объект, который может перемещаться быстрее света - световое пятно от лазера, направленного на Луну. Расстояние до Луны 385000 км. Вы можете сами рассчитать скорость перемещения светового пятна по поверхности Луны при небольших колебаниях лазерной указки в вашей руке. Вам также может понравиться пример с волной, набегающей на прямую линию пляжа под небольшим углом. С какой скоростью может перемещаться вдоль пляжа точка пересечения волны и берега?

Все эти вещи могут происходить в природе. Например, луч света от пульсара может пробежать вдоль пылевого облака. Мощный взрыв может создать сферические волны света или радиации. Когда эти волны пересекаются с какой-либо поверхностью, на этой поверхности возникают световые круги, которые расширяются быстрее света. Такое явление наблюдается, например, когда электромагнитный импульс от вспышки молнии проходит через верхние слои атмосферы.

4. Твёрдое тело

Если у вас есть длинный жёсткий стержень, и вы ударите по одному концу стержня, то разве другой конец не придёт в движение немедленно? Разве это не способ сверхсветовой передачи информации?

Это было бы верно, если бы существовали идеально жёсткие тела. Практически, удар передаётся вдоль стержня со скоростью звука, которая зависит от упругости и плотности материала стержня. Кроме того теория относительности ограничивает возможные скорости звука в материале величиной c .

Этот же принцип действует, если вы держите вертикально струну или стержень, отпускаете его, и он начинает падать под действием силы тяжести. Верхний конец, который вы отпустили, начинает падать немедленно, но нижний конец начнёт движение только через некоторое время, так как исчезновение удерживающей силы передаётся вниз по стержню со скоростью звука в материале.

Формулировка релятивистской теории упругости довольно сложна, но общую идею можно иллюстрировать с использованием ньютоновской механики. Уравнение продольного движения идеально-упругого тела можно вывести из закона Гука. Обозначим линейную плотность стержня ρ , модуль упругости Юнга Y . Продольное смещение X удовлетворяет волновому уравнению

ρ·d 2 X/dt 2 - Y·d 2 X/dx 2 = 0

Решение в виде плоских волн перемещается со скоростью звука s , которая определяется из формулы s 2 = Y/ρ . Волновое уравнение не позволяет возмущениям среды перемещаться быстрее, чем со скоростью s . Кроме того, теория относительности даёт предел величине упругости: Y < ρc 2 . Практически, ни один известный материал не приближается к этому пределу. Учтите также, что если даже скорость звука близка к c , то само вещество не обязательно движется с релятивистской скоростью.

Хотя в природе нет твёрдых тел, существует движение твёрдых тел , которое можно использовать для преодоления скорости света. Эта тема относится к уже описанному разделу теней и световых пятен. (См. The Superluminal Scissors, The Rigid Rotating Disk in Relativity).

5. Фазовая скорость

Волновое уравнение
d 2 u/dt 2 - c 2 ·d 2 u/dx 2 + w 2 ·u = 0

имеет решение в виде
u = A·cos(ax - bt), c 2 ·a 2 - b 2 + w 2 = 0

Это синусоидальные волны, распространяющиеся со скоростью v
v = b/a = sqrt(c 2 + w 2 /a 2)

Но это больше, чем c. Может это уравнение для тахионов? (см. далее раздел ). Нет, это обычное релятивистское уравнение для частицы с массой.

Чтобы устранить парадокс нужно различать "фазовую скорость" v ph , и "групповую скорость" v gr , причём
v ph ·v gr = c 2

Решение в виде волны может иметь дисперсию по частоте. При этом волновой пакет движется с групповой скоростью, которая меньше, чем c . При помощи волнового пакета можно передавать информацию только с групповой скоростью. Волны в волновом пакете движутся с фазовой скоростью. Фазовая скорость - ещё один пример сверхсветового движения, которое нельзя использовать для передачи сообщений.

6. Сверхсветовые галактики

7. Релятивистская ракета

Пусть наблюдатель на Земле видит космический корабль, удаляющийся со скоростью 0.8c В соответствии с теорией относительности, он увидит, что часы на космическом корабле идут медленнее в 5/3 раза. Если разделить расстояние до корабля на время полёта по бортовым часам, то получим скорость 4/3c . Наблюдатель делает вывод, что, используя свои бортовые часы, пилот корабля тоже определит, что летит со сверхсветовой скоростью. С точки зрения пилота его часы идут нормально, а межзвёздное пространство сжалось в 5/3 раза. Поэтому он пролетает известные расстояния между звёздами быстрее, со скоростью 4/3c .

Но это всё же не сверхсветовой полёт. Нельзя рассчитывать скорость, используя расстояние и время, определённые в разных системах отсчёта.

8. Скорость гравитации

Некоторые настаивают, что скорость гравитации гораздо больше c или даже бесконечна. Посмотрите Does Gravity Travel at the Speed of Light? и What is Gravitational Radiation? Гравитационные возмущения и гравитационные волны распространяются со скоростью c .

9. Парадокс ЭПР

10. Виртуальные фотоны

11. Квантовый туннельный эффект

В квантовой механике туннельный эффект позволяет частице преодолеть барьер, даже если её энергии для этого не хватает. Можно рассчитать время туннелирования через такой барьер. И оно может оказаться меньше, чем требуется свету для преодоления такого же расстояния со скоростью c . Можно ли это использовать для передачи сообщений быстрее света?

Квантовая электродинамика говорит "Нет!" Тем не менее, выполнен эксперимент, продемонстрировавший сверхсветовую передачу информации при помощи туннельного эффекта. Через барьер шириной 11.4 см со скоростью 4.7 c передана Сороковая симфония Моцарта. Объяснение этого эксперимента очень противоречиво. Большинство физиков считают, что при помощи туннельного эффекта нельзя передать информацию быстрее света. Если бы это было возможно, то почему не передать сигнал в прошлое, поместив оборудование в быстро перемещающуюся систему отсчета.

17. Квантовая теория поля

За исключением гравитации, все наблюдаемые физические явления соответствуют "Стандартной модели". Стандартная модель - это релятивистская квантовая теория поля, которая объясняет электромагнитные и ядерные взаимодействия, а также все известные частицы. В этой теории любая пара операторов, соответствующих физическим наблюдаемым, разделённым пространственноподобным интервалом событий, "коммутирует" (то есть, можно поменять порядок этих операторов). В принципе, это подразумевает, что в стандартной модели воздействие не может распространяться быстрее света, и это можно считать квантово-полевым эквивалентом довода о бесконечной энергии.

Однако в квантовой теории поля Стандартной модели нет безупречно строгих доказательств. Никто пока даже не доказал, что эта теория внутренне непротиворечива. Скорее всего, это не так. Во всяком случае, нет гарантии, что не существует каких-то пока не открытых частиц или сил, которые не подчиняются запрету на сверхсветовое перемещение. Нет также и обобщения этой теории, включающего гравитацию и общую теорию относительности. Многие физики, работающие в области квантовой гравитации, сомневаются, что простые представления о причинности и локальности будут обобщены. Нет гарантии, что в будущей более полной теории скорость света сохранит смысл предельной скорости.

18. Парадокс дедушки

В специальной теории относительности частица, летящая быстрее света в одной системе отсчета, движется обратно во времени в другой системе отсчета. Сверхсветовое перемещение или передача информации давали бы возможность путешествия или отправки сообщения в прошлое. Если бы такое путешествие во времени было возможно, то вы могли бы вернуться в прошлое и изменить ход истории, убив своего дедушку.

Это очень серьёзный аргумент против возможности сверхсветового перемещения. Правда остаётся почти неправдоподобная вероятность, что возможны какие-то ограниченные сверхсветовые перемещения, не допускающие возвращения в прошлое. Или, может быть, путешествия во времени возможны, но причинность нарушается каким-то непротиворечивым образом. Всё это очень неправдоподобно, но если мы обсуждаем сверхсветовые перемещения, то лучше быть готовым к новым идеям.

Верно и обратное. Если бы мы могли переместиться в прошлое, то смогли бы преодолеть скорость света. Можно вернуться в прошлое, полететь куда-то с небольшой скоростью, и прибыть туда раньше, чем прибудет свет, отправленный обычным образом. Смотрите подробности по этой теме в Time Travel.

Открытые вопросы сверхсветовых путешествий

В этом последнем разделе я опишу несколько серьёзных идей о возможном перемещении быстрее света. Эти темы не часто включают в FAQ, потому что они больше похожи не на ответы, а на множество новых вопросов. Они включены сюда, чтобы показать, что в этом направлении проводятся серьёзные исследования. Даётся только короткое введение в тему. Подробности вы можете найти в интернете. Как и ко всему в интернете, относитесь к ним критически.

19. Тахионы

Тахионы - это гипотетические частицы, локально перемещающиеся быстрее света. Для этого они должны иметь мнимую величину массы. При этом энергия и импульс тахиона - реальные величины. Нет оснований считать, что сверхсветовые частицы невозможно обнаружить. Тени и световые пятна могут перемещаться быстрее света и их можно обнаружить.

Пока тахионы не найдены, и физики сомневаются в их существовании. Были заявления, что в экспериментах по измерению массы нейтрино, рождающихся при бета-распаде трития, нейтрино были тахионами. Это сомнительно, но пока окончательно не опровергнуто.

В теории тахионов есть проблемы. Кроме возможного нарушения причинности, тахионы также делают вакуум нестабильным. Может быть удастся обойти эти трудности, но и тогда мы не сможем использовать тахионы для сверхсветовой передачи сообщений.

Большинство физиков считает, что появление тахионов в теории - признак каких-то проблем этой теории. Идея тахионов так популярна у публики просто потому, что они часто упоминаются в фантастической литературе. Смотрите Tachyons.

20. Кротовые норы

Самый известный способ глобального сверхсветового путешествия - использование "кротовых нор". Кротовая нора - это прорезь в пространстве-времени из одной точки вселенной в другую, которая позволяет пройти от одного конца норы до другого быстрее, чем по обычному пути. Кротовые норы описываются общей теорией относительности. Для их создания требуется изменить топологию пространства-времени. Может быть, это станет возможным в рамках квантовой теории гравитации.

Чтобы удерживать кротовую нору открытой, нужны области пространства с отрицательной энергий. C.W.Misner и K.S.Thorne предложили для создания отрицательной энергии использовать эффект Казимира в большом масштабе. Visser предложил использовать для этого космические струны. Это очень умозрительные идеи, и может быть, это невозможно. Может быть, требуемая форма экзотической материи с отрицательной энергией не существует.

Но оказалось, что можно; теперь считают, что мы никогда не сомжем путешествовать быстрее света... ". Но на самом деле это неправда, что кто-то когда-то считал, что двигаться быстрее звука невозможно. Задолго до того, как появились сверхзвуковые самолеты уже было известно, что быстрее звука летят пули. Реально же речь шла о том, что невозможен управляемый сверхзвуковой полет, и ошибка была в этом. СС движение - это совсем другое дело. С самого начала было ясно, что сверхзвуковому полету препятствуют технические проблемы, которые надо было просто решить. Но совершенно неясно, можно ли когда-нибудь будет решить проблемы, препятствующие СС движению. Теория относительности может много чего сказать на этот счет. Если будет возможно СС путешествие или даже передача сигнала, то будет нарушена причинность, а из этого последуют совершенно невероятные выводы.

Сначала мы обсудим простые случаи СС движения. Мы упоминаем их не потому, что они интересны, а потому, что они снова и снова всплывают в обсуждениях СС движения и потому с ними приходится иметь дело. Потом мы обсудим то, что мы считаем сложными случаями СС движения или общения и рассмотрим некоторые доводы против них. Наконец, мы рассмотрим наиболее серьезные предположения о настоящем СС движении.

Простое СС движение

1. Явление черенковского излучения

Один способ двигаться быстрее света состоит в том, чтобы сперва замедлить сам свет! :-) В вакууме свет летит со скоростью c , и эта величина является мировой постоянной (см. вопрос Постоянна ли скорость света), а в более плотной среде вроде воды или стекла - замедляется до скорости c/n , где n - это показатель преломления среды (1,0003 у воздуха; 1,4 у воды). Поэтому частицы могут двигаться в воде или воздухе быстрее, чем там движется свет. В результате возникает излучение Вавилова-Черенкова (см. вопрос ).

Но когда мы говорим о СС движении, мы, конечно, имеем в виду превышение над скоростью света в вакууме c (299 792 458 м/с). Поэтому явление Черенкова не может считаться примером СС движения.

2. С третьей стороны

Если ракета А летит от меня со скоростью 0,6c на запад, а другая Б - от меня со скоростью 0,6c на восток, то тогда общее расстояние между А и Б в моей системе отсчета увеличивается со скоростью 1,2c . Таким образом, видимая относительная скорость, большая c, может наблюдаться "с третьей стороны".

Однако такая скорость - это не то, что мы обычно понимаем под относительной скоростью. Настоящая скорость ракеты А относительно ракеты Б - это та скорость роста расстояния между ракетами, которую наблюдает наблюдатель в ракете Б . Две скорости надо сложить по релятиви стской формуле сложения скоростей (см. вопрос Как надо складывать скорости в частной относительности). В данном случае относительная скорость получается примерно 0,88c , то есть, не является сверхсветовой.

3. Тени и зайчики

Подумайте, с какой скоростью может двигаться тень? Если Вы создадите на далекой стене тень от своего пальца от близкой лампы, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если палец будет смещаться параллельно стене, то скорость тени будет в D/d раз больше скорости пальца, где d - расстояние от пальца до лампы, а D - расстояние от лампы до стены. А может получиться и еще большая скорость, если стена будет расположена под углом. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и зайчики, например, пятнышко от лазерного луча, направленного на Луну . Зная, что расстояние до Луны 385 000 км., попробуйте рассчитать скорость движения зайчика если слегка поводить лазером. Еще можете подумать о морской волне, косо ударяющей о берег. С какой скоростью может двигаться точка, в которй волна разбивается?

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность, то создается световое кольцо, увеличивающееся быстрее скорости света. В природе такое встречается, когда электромагнитный импульс от молнии достигает верхних слоев атмосферы .

Все это были примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать СС сообщение, так что и общение быстрее света не получается. И опять-таки, это, видимо, не то, что мы хотим понимать под СС движением, хотя становится понятно, насколько трудно определить, что именно нам нужно (см. вопрос Сверхсветовые ножницы).

4. Твердые тела

Если взять длинную твердую палку и толкнуть один ее конец, задвигается ли другой конец сразу же, или нет? Нельзя ли таким образом осуществить СС передачу сообщения?

Да, это было бы можно сделать, если бы такие твердые тела существовали. В реальности же влияние удара по концу палки распространяется по ней со скоростью звука в данном веществе, а скорость звука зависит от упругости и плотности материала. Относительность накладывает абсолютный предел возможной твердости любых тел так, что скорость звука в них не может превышать c .

То же самое происходит и в случае, если вы нахидитесь в поле притяжения, и сначала держите вертикально струну или шест за верхний конец, а потом отпускаете его. Точка, которую вы отпустили, придет в движение сразу, а нижний конец не сможет начать падать до тех пор, пока до него со скоростью звука не дойдет влияние отпускания.

Сложно сформулировать общую теор ию упругих материалов в рамках относительности, но основную идею можно показать и на примере механики Ньютона . Уравнение продольного движения идеально упругого тела можно получить из закона Гука . В переменных массы на единицу длины p и модуля упругости Юнга Y , продольное смещение X удовлетворяет волновому уравнению.

Решение в виде плоских волн двигается со скоростью звука s , причем s 2 = Y/p . Данное уравнение не предполагает возможность причинностного влияния, распространяющегося быстрее s . Таким образом, относительность накладывает теор етический предел на величину упругости: Y < pc 2 . Практически же не встречаются материалы, даже близко подходящие к нему. Кстати, даже если скорость звука в материале близка к c , вещество само по себе вовсе не обязано двигаться с релятиви стской скоростью. Но откуда мы знаем, что в принципе не может существовать вещества, преодолевающего этот предел? Ответ заключается в том, что все вещества состоят из частиц, взаимодействие между которыми подчиняется стандартной модели элементарных частиц, а в этой модели никакое взаимодействие распространяться быстрее света не может (смотри ниже насчет квантовой теор ии поля).

5. Фазовая скорость

Посмотрите на это волновое уравнение:

У него есть решения вида:

Эти решения есть синусоидальные волны, движущиеся со скоростью,

Но ведь это быстрее света, значит у нас в руках уравнение тахионного поля? Нет, это всего лишь обычное релятиви стское уравнение массивной скалярной частицы!

Парадокс разрешится, если понять различие между этой скоростью, называемой также фазовой скоростью v ph от другой скорости, называемой групповой v gr которая датеся формулой,

Если у волнового решения есть разброс частот, то оно приобретет вид волнового пакета , который движется с групповой сокростью, не превышающей c . Только гребни волны движутся с фазовой скоростью. Передавать информацию при помощи такой волны можно лишь с групповой скоростью, так что фазовая скорость дает нам очередной пример сверхсветовой скорости, которая не может переносить информацию.

7. Релятивистская ракета

Диспетчер на Земле следит за космическим кораблем, улетающим со скоростью 0,8c . Согласно теор ии относительности, даже после учета допплеровского сдвига сигналов от корабля, он увидит, что время на корабле замедлено и часы там идут медленнее с коэффициентом 0,6. Если он рассчитает частное от деления расстояния, пройденного кораблем на затраченное время, измеренное по часам корабля, то он получит 4/3c . Это означает, что пассажиры корабля преодолевают межзвездное пространство с эффективной скоростью, большей, чем скорость света, которую они бы получили, если бы ее измерили. С точки зрения пассажиров корабля, межзвездные расстояния подвержены лоренцеву сокращению с тем же коэффициентом 0,6 и значит, они тоже должны признать, что они покрывают известные межзвездные расстояния со скоростью 4/3 c .

Это реальное явление и оно в принципе может быть использовано космическими путешественниками для преодоления огромных расстояний в течение жизни. Если они будут ускоряться с постоянным ускорением, равным ускорению свободного падения на Земле , то у них на корабле будет не только идеальная искусственная сила тяжести , но они еще успеют пересечь Галактику всего за 12 своих лет! (см. вопрос Каковы уравнения релятиви стской ракеты ?)

Однако, и это - не настоящее СС движение. Эффективная скорость вычислена из расстояния в одной системе отсчета, а времени - в другой. Это не настоящая скорость. Только пассажиры корабля получают преимущества от этой скорости. Диспечер же, например, не успеет за свою жизнь увидеть, как они пролетят гигантское расстояние.

Сложные случаи СС движения

9. Парадокс Эйнштейна, Подольского, Розена (ЭПР)

10. Виртуальные фотоны

11. Квантовое туннелирование

Реальные кандидаты в СС путешественники

В данном разделе приведены умозрительные, но серьезные предположения о возможности сверхсветового путешествия. Это будут не те вещи, которые обычно помещают в ЧаВо, так как они вызывают больше вопросов, чем дают ответов. Они приведены здесь в основном для того, чтобы показать, что в данном направлении проводятся серьезные исследования. В каждом направлении дается лишь краткое введение. Более подробные сведения можно почерпнуть на просторах интернета.

19. Тахионы

Тахионы - это гипотетические частицы, которые локально движутся быстрее света. Чтобы это делать, у них должна быть масса, измеряемая мнимым числом, но их энерги я и импульс должны быть положительными. Иногда думают, что такие СС частицы должно быть невозможно засечь, но на самом деле, причин так считать нет. Тени и зайчики подсказывают нам, что из СС движения еще не следует незаметность.

Тахионы никогда не наблюдались и большинство физиков сомневаются в их существовании. Как-то заявлялось, что проведены опыты по измерению массы нейтрино, вылетающих при распаде Трития, и что эти нейтрино были тахионными. Это весьма сомнительно, но все-таки не исключено. В тахионных теор иях есть проблемы, так как с точки зрения возможных нарушений причинности, они дестабилизируют вакуум. Может и можно эти проблемы обойти, но тогда окажется невозможно применять тахионы в нужном нам СС сообщении.

Правда состоит в том, что большинство физиков считают тахионы признаком ошибки в полевых теор их, а интерес к ним со стороны широких масс подогревается, в основном, со стороны научной фантастики (см. статью Тахионы).

20. Чревоточины

Наиболее известной предположительной возможностью СС путешествия является использование чревоточин. Чревоточины - это туннели в пространстве-времени, соединяющие одно место во Вселенной, с другим. По ним можно переместиться между этими точками быстрее, чем сделал бы свет своим обычным путем. Чревоточины - это явление классической общей относительности, но чтобы их создать, нужно изменить топологию пространства-времени. Возможность этого может быть заключено в теор ии квантовой гравитации.

Чтобы поддерживать чревоточины в открытом состоянии, нужны огромные количества отрицательной энерги и. Миснер и Торн предложили, что для генерации отрицательной энерги и можно использовать крупномасштабный эффект Казимира, а Виссер предложил решение с использованием космических струн. Все эти идеи весьма умозрительны и могут быть попросту нереальными. Необычное вещество с отрицательной энерги ей может не существовать в нужной для явления форме.

Торн обнаружил, что если чревоточины можно создать, то с их помощью можно организовать замкнутые временные петли, которые сделают возможными путешествия во времени. Также было сделано предположение, что многовариантная интерпретация квантовой механики свидетельствует о том, что никаких парадоксов путешествие во времени не вызовет, и что события просто развернутся иначе, когда вы попадете в прошлое. Хокинг говорит, что чревоточины могут просто нестабильными и потому неприменимыми на практике. Но сама тема остается плодотворной областью для мысленных экспериментов, позволяющих разобраться, что возможно и что не возможно исходя и известных и предполагаемых законов физики.
refs:
W. G. Morris and K. S. Thorne, American Journal of Physics 56 , 395-412 (1988)
W. G. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev. Letters 61 , 1446-9 (1988)
Matt Visser, Physical Review D39 , 3182-4 (1989)
see also "Black Holes and Time Warps" Kip Thorn, Norton & co. (1994)
For an explanation of the multiverse see, "The Fabric of Reality" David Deutsch, Penguin Press.

21. Двигатели-деформаторы

[Понятие не имею, как это перевести! В оригинале warp drive. - прим. переводчика;
перевёл по аналогии со статьей на Мембране
]

Деформатор мог бы быть механизмом для закручивания пространства-времени таким образом, чтобы объект мог перемещаться быстрее света. Мигель Алькабьер сделался знаменитым благодаря тому, что разработал геометрию, которая описывает такой деформатор. Искажение пространства-времени делает возможным для объекта перемещаться быстрее света, оставаясь на время-подобной кривой. Препятствия те же, что и при создании чревоточин. Чтобы создать деформатор, нужно вещество с отрицательной плотностью энерги и. Даже если такое вещество возможно, все равно непонятно, как его можно получить и как с его помощью заставить работать деформатор.
ref M. Alcubierre, Classical and Quantum Gravity, 11 , L73-L77, (1994)

Заключение

Во-первых, оказалось нелегко вообще определить, что значит СС путешествие и СС сообщение. Многие вещи, навроде теней, совершают СС дивжение, но так, что его нельзя использовать, например, для передачи информации. Но есть и серьезные возможности реального СС перемещения, которые предложены в научной литературе, но их реализация пока невозможна технически. Принцип неопределенности Гейзенберга делает невозможным использование кажущегося СС движения в квантовой механике. В общей относительности есть потенциал ьные средства СС движения, но их может быть невозможно использовать. Думается, что крайне маловероятно, что в обозримом будущем, или вообще, техника окажется способна создавать космические корабли с СС двигателями, но любопытно, что теор етическая физика, как мы ее сейчас знаем, не закрывает дверь для СС движения насовсем. СС движение в стиле научно-фантастических романов, видимо, совершенно невозможно. Для физиков интересен вопрос: "а почему, собственно, это невозможно, и чему из этого можно научиться?"