Степень окисления i2. Степень окисления и правила ее вычисления

Страница 1

Одна из наиболее важных задач фармацевтической химии – это разработка и совершенствование методов оценки качества лекарственных средств.

Для установления чистоты лекарственных веществ используют различные физические, физико-химические, химические методы анализа или их сочетание. ГФ предлагает следующие методы контроля качества ЛС .

Физические и физико-химические методы. К ним относятся: определение температур плавления и затвердевания, а также температурных пределов перегонки; определение плотности, показателей преломления (рефрактометрия), оптического вращения (поляриметрия); спектрофотометрия – ультрафиолетовая, инфракрасная; фотоколориметрия, эмиссионная и атомно-абсорбционная спектрометрия, флуориметрия, спектроскопия ядерного магнитного резонанса, масс-спектрометрия; хроматография – адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная; электрофорез (фронтальный, зональный, капиллярный); электрометрические методы (потенциометрическое определение рН, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод рамановской спектроскопии – оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тиоацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой .

Важной физической константой, характеризующей подлинность и степень чистоты ЛС, является температура плавления. Чистое вещество имеет четкую температуру плавления, которая изменяется в присутствии примесей. Для лекарственных веществ, содержащих некоторое количество допустимых примесей, ГФ регламентирует интервал температуры плавления в пределах 2 °С. Но в соответствии с законом Рауля (AT = iK3C, где AT – понижение температуры кристаллизации; К3 – криоскопическая постоянная; С – концентрация) при i = 1 (неэлектролит) значение АТ не может быть одинаковым для всех веществ. Это связано не только с содержанием примесей, но и с природой самого ЛВ, т. е. с величиной криоскопической постоянной К3, отражающей молярное понижение температуры плавления ЛВ. Таким образом, при одинаковом AT = = 2 "С для камфоры (К3 = 40) и фенола (К3 = 7,3) массовые доли примесей не равны и составляют соответственно 0,76 и 2,5 %.

Для веществ, которые плавятся с разложением, обычно указывается температура, при которой вещество разлагается и происходит резкое изменение его вида.

Критериями чистоты являются также цвет ЛВ и/или прозрачность жидких лекарственных форм .

Определенным критерием чистоты ЛС могут служить такие физические константы, как показатель преломления луча света в растворе испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них гаюскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм.

Важным критерием доброкачественности целого ряда ЛС является содержание в них воды. Изменение этого показателя (особенно при хранении) может изменить концентрацию действующего вещества, а, следовательно, и фармакологическую активность и сделать ЛС не пригодным к применению .

Химические методы. К ним относятся: качественные реакции на подлинность, растворимость, определение летучих веществ и воды, определение содержания азота в органических соединениях, титриметрические методы (кислотно-основное титрование, титрование в неводных растворителях, комплек-сонометрия), нитритометрия, кислотное число, число омыления, эфирное число, йодное число и др.

Биологические методы. Биологические методы контроля качества ЛС весьма разнообразны. Среди них испытания на токсичность, стерильность, микробиологическую чистоту.

Как известно, проведение фармакопейного анализа ставит своей целью установление подлинности, определение чистоты и количественную оценку действующего вещества или ингредиентов сложной ЛФ. Несмотря на то, что каждый из этих этапов фармакопейного анализа решает свою конкретную задачу, их нельзя рассматривать изолированно. Так выполнение реакции подлинности иногда дает ответ на наличие или отсутствие той или иной примеси. В препарате ПАС-Nа проведение качественной реакции с раствором хлорида железа (III) (как производное салициловой кислоты образует фиолетово-красное окрашивание). А вот появление через три часа осадка в этом растворе свидетельствует о наличии примеси 5-аминосалициловой кислоты, фармакологически не активной. Однако такие примеры довольно редки.

Определение же некоторых констант – температуры плавления, плотности, удельного показателя поглощения, позволяет одновременно сделать вывод и о подлинности и о чистоте данного вещества. Так как методики определения тех или иных констант для различных препаратов идентичны, мы изучаем их в общих методах анализа. Знание теоретических основ и умение провести определение потребуется вам в последующем анализе различных групп препаратов.

Фармакопейный анализ является составной частью фармацевтического анализа и представляет собой совокупность способов исследования лекарственных средств и лекарственных форм, изложенных в Государственной фармакопее и другой НД (ФС, ФСП, ГОСТ) и используемых для определения подлинности, чистоты и количественного анализа.

В контроле качества лекарственных средств используют физические, физико-химические, химические и биологические методы анализа. Испытания по НД включают несколько основных стадий:

    описание;

    растворимость;

    подлинность;

    физические константы (температура плавления, кипения или перегонки, показатель преломления, удельное вращение, плотность, спектральные характеристики);

    прозрачность и цветность растворов;

    кислотность или щёлочность, рН раствора;

    определение примесей;

    потеря в массе при высушивании;

    сульфатная зола;

    количественное определение.

В зависимости от природы лекарственного средства некоторые из этих испытаний могут либо отсутствовать, либо включены другие, например, кислотное число, йодное число, число омыления и др.

Частная фармакопейная статья на любой препарат начинается разделом «Описание», в котором в основном приводится характеристика физических свойств вещества:

    агрегатного состояния (твердое вещество, жидкость, газ), если твердое вещество, то определяется степень его дисперсности (мелкокристаллический, крупнокристаллический), форма кристаллов (игольчатые, цилиндрические)

    цвет вещества – важный показатель подлинности и чистоты. Большинство ЛС не имеют окраски, то есть являются белыми. Окраску визуально при определении агрегатного состояния. Небольшое количество вещества помещают тонким слоем на чашку Петри или часовое стекло и рассматривают на белом фоне. В ГФ Х1 имеется статья «Определение степени белизны порошкообразных ЛС». Определение проводится инструментальным методом на специальных фотометрах «Specol-10». Оно основано на спектральной характеристике света, отраженного от образца ЛВ. Измеряют так называемыйкоэффициент отражения – отношение величины отраженного светового потока к величине падающего. Измеренные коэффициенты отражения позволяют определить наличие или отсутствие у веществ цветового или сероватого оттенка путем расчета степени белизны (α) и степени яркости (β). Так как появление оттенков или изменение цвета является, как правило, следствием химических процессов – окисления, восстановления, то уже этот начальный этап исследования веществ позволяет сделать выводы. Этот метод исключен из ГФ Х11 издания.

Запах определяют редко сразу после вскрытия упаковки на расстоянии 4-6 см. Отсутствие запаха после вскрытия упаковки сразу по методике : 1-2 г вещества равномерно распределяют на часовом стекле диаметром 6-8 см и через 2 мин определяют запах на расстоянии 4-6 см.

В разделе «Описание» могут быть указания на возможность изменения веществ в процессе хранения . Например, в препарате кальция хлорид указано, что он очень гигроскопичен и расплывается на воздухе, а натрия йодид – на воздухе сыреет и разлагается с выделением йода, кристаллогидраты, в случае выветривания или несоблюдения условий кристаллизации в производстве, уже не будут иметь нужный внешний вид ни по форме кристаллов, ни по цвету.

Таким образом исследование внешнего вида вещества является первым, но очень важным этапом в анализе веществ и необходимо уметь связать изменения внешнего вида с возможными химическими изменениями и сделать правильный вывод.

Растворимость (ГФ XI, вып. 1, с. 175, ГФ XII, вып. 1, с. 92)

Растворимость является важным показателем качества лекарственного вещества. Как правило, в НД приводится некоторый перечень растворителей, наиболее полно характеризующий это физическое свойство с тем, чтобы в дальнейшем оно могло быть использовано для оценки качества на том или ином этапе исследования этого лекарственного вещества. Так, растворимость в кислотах и щелочах характерна для амфотерных соединений (цинка оксид, сульфаниламиды), для органических кислот и оснований (кислоты глютаминовая, ацетилсалициловая, кодеин). Изменение растворимости указывает на присутствие или появление при хранении менее растворимых примесей, что характеризует изменение его качества.

В ГФ XI под растворимостью подразумевают не физическую константу, а свойство, выраженное приблизительными данными и служащее для ориентировочной характеристики препаратов.

Наряду с температурой плавления растворимость вещества при постоянной температуре и давлении является одним из параметров , по которому устанавливают подлинность и чистоту (доброкачественность) практически всех лекарственных средств.

Рекомендуется использовать растворители разной полярности (обычно три); не рекомендуется использование легкокипящих и легковоспламеняющихся (диэтиловый эфир) или очень токсичных (бензол, метиленхлорид) растворителей.

Фармакопеей XI изд. приняты два способа выражения растворимости :

    В частях (соотношение вещества и растворителя) . Например, для натрия хлорида по ФС растворимость в воде выражена в соотношении 1:3, это означает, что для растворения 1 г лекарственного вещества необходимо не более 3 мл воды.

    В условных терминах (ГФ XI, с.176). Например, для натрия салицилата в ФС дана растворимость в условных терминах – «очень легко растворим в воде». Это означает, что для растворения 1 г вещества необходимо до 1 мл воды.

Фармакопеей XII изд.только в условных (в пересчете на 1 г)

Условные термины и их значения приведены в табл. 1. (ГФ XI, вып. 1, с. 176, ГФ XII, вып. 1, с. 92).

Условные термины растворимости

Условные термины

Сокращения

Количество растворителя (мл),

необходимое для растворения 1г

вещества

Очень легко растворим

Легко растворим

Более 1 до 10

Растворим

Умеренно растворим

Мало растворим

» 100 до 1000

Очень мало растворим

» 1000 до 10000

Практически не растворим

Условный термин соответствует определённому интервалу объёмов растворителя (мл), в пределах которого должно происходить полное растворение одного грамма лекарственного вещества.

Процесс растворения осуществляют в растворителях при температуре 20°С . С целью экономии лекарственного вещества и растворителя массу препарата отвешивают с таким расчётом (с точностью до 0,01 г), чтобы на установление растворимости воды расходовалось не более 100 мл, а органических растворителей - не более 10-20 мл.

Лекарственное вещество (субстанцию) считают растворимым , если в растворе при наблюдении в проходящем свете не обнаруживаются частицы вещества.

Методика . (1 способ). Отвешенную массу лекарственного средства, предварительно растёртого в тонкий порошок, вносят в отмеренный объём растворителя, соответствующий минимальному его объёму, встряхивают. Затем в соответствии с табл. 1 добавляют постепенно растворитель до максимального его объёма и непрерывно встряхивают в течение 10 мин. По истечений этого времени в растворе невооружённым глазом не должны обнаруживаться частицы вещества. Например, отвешивают 1 г натрия бензоата, помещают в пробирку с 1 мл воды, взбалтывают и постепенно приливают 9 мл воды, т.к. натрия бензоат легко растворим в воде (от 1 до 10 мл).

Для медленно растворимых лекарственных средств, требующих для полного растворения более 10 мин., допускается нагревание на водяной бане до 30°С. Наблюдение проводят после охлаждения раствора до 20°С и энергичного встряхивания в течение 1-2 мин. Например, кофеин медленно растворим в воде (1:60), кодеин медленно и мало растворим в воде (100-1000), кальция глюконат медленно растворим в 50 ч. воды, кальция лактат медленно растворим в воде, кислота борная медленно растворима в 7 ч. глицерина.

2 способ. Растворимость, выраженная в частях, показывает объём растворителя в мл, необходимого для растворения 1 г вещества.

Методика . (2 способ) Взвешенную на ручных весах массу лекарственного средства растворяют в указанном НД объёме растворителя. В растворе не должны обнаруживаться частицы не растворившегося вещества.

Растворимость в частях указывается в фармакопейных статьях для следующих препаратов: кислота борная (растворим в 25 ч. воды, в 25 ч. спирта, в 4 ч. кипящей воды);калия иодид (растворим в 0,75 ч. воды, в 12 ч. спирта и в 2,5 ч. глицерина);натрия бромид (растворим в 1,5 ч. воды, в 10 ч. спирта);калия бромид (растворим в 1,7 ч. воды и м.р. спирте);калия хлорид и натрия хлорид (р. в 3 ч. воды).

В случае испытания, например, натрия бромида поступают так: отвешивают на ручных весочках 1 г натрия бромида, добавляют 1,5 мл воды и взбалтывают до полного растворения.

Общая фармакопейная статья «Растворимость » ГФ XII изд.дополнена описанием методик определения растворимости веществ с неизвестной и известной растворимостью.

Температура плавления (Т °пл)

Температура плавления является константой, характеризующей чистоту вещества и одновременно его подлинность . Из физики известно, что температура плавления – это температура, при которой твердая фаза вещества находится в равновесии с расплавом. Чистое вещество имеет четкую температуру плавления. Поскольку ЛВ могут иметь незначительное количество примесей, такой четкой картины мы уже не увидим. В этом случае определяется интервал, при котором плавится вещество. Обычно этот интервал лежит в пределах 2 ◦ С. Более растянутый интервал свидетельствует о наличии примесей в недопустимых пределах.

Согласно формулировке ГФ Х1 под температурой плавления вещества понимают интервал температуры между началом плавления (появлением первой капли жидкости) и концом плавления (полным переходом вещества в жидкое состояние).

Если вещество имеет нечеткое начало или конец плавления , определяют температуру только начала или конца плавления . Иногда вещество плавится с разложением, в этом случае определяют температуру разложения , то есть температуру, при которой происходит резкое изменение вещества (например, вспенивание).

Методы определения температуры плавления

Выбор метода диктуется двумя моментами:

    устойчивостью вещества при нагревании и

    способностью растираться в порошок.

Согласно ГФ Х1 издания, существует 4 способа определения Т °пл:

    Метод 1 – для веществ, способных растираться в порошок, устойчивых при нагревании

    Метод 1а – для веществ, способных растираться в порошок, не устойчивых при нагревании

    Методы 2 и 3 – для веществ, не растирающихся в порошок

Методы 1, 1а и 2 предполагают использование 2х приборов:

    ПТП (прибор для определения Тпл ): знаком Вам с курса органической химии, позволяет определить Тпл веществ в пределах от 20 С до 360 С

    Прибор, состоящий из круглодонной колбы с впаянной в нее пробиркой, в которую вставляется термометр с прикрепленным к нему капилляром, содержащим исходное вещество . Во внешнюю колбу залита на ¾ объема жидкость-теплоноситель:

    вода (позволяет определить Тпл до 80 ◦ С),

    вазелиновое масло или жидкие силиконы, концентрированная серная кислота (позволяет определить Тпл до 260 ◦ С),

    смесь серной кислоты и сульфата калия в соотношении 7:3 (позволяет определить Тпл выше 260 ◦ С)

Методика общая независимо от прибора.

Тонко измельченное сухое вещество помещают в капилляр средних размеров (6-8 см) и вносят в прибор при температуре на 10 градусов ниже ожидаемой. Отрегулировав скорость подъема температуры, фиксируют температурный интервал изменений вещества в капилляре При этом проводят не менее 2х определений и берут среднее арифметическое.

Тпл определяют не только у чистых веществ, но и у их производных – оксимов, гидразонов, оснований и кислот, выделенных из их солей.

В отличие от ГФ XI в ГФ XII изд. температура плавления в капиллярном методе означает не интервал между началом и концом плавления, а температуру конца плавления , что согласуется с Европейской фармакопеей.

Температурные пределы перегонки (Т ° кип.)

ГФ величина определяется как интервал между начальной и конечной температурой кипения при нормальном давлении. (101,3 кПа – 760 мм рт.ст.). Интервал обычно составляет 2°.

Под начальной Т°кип. понимают температуру, при которой в приемник перегнались первые пять капель жидкости.

Под конечной – температуру, при которой в приемник перешло 95% жидкости.

Более растянутый интервал, чем указано в соответствующей ФС, свидетельствует о наличие примесей.

Прибор для определения ТПП состоит из

    термостойкой колбы с термометром, в которую помещают жидкость,

    холодильника и

    приемной колбы (градуированного цилиндра).

ТПП, наблюдаемые в опыте, приводят к нормальному давлению по формуле:

Тиспр = Тнабл + К· (р – р 1)

Где: р – нормальное барометрическое давление (760 мм рт ст)

р 1 – барометрическое давление во время опыта

К – прирост Ткип на 1мм давления

Таким образом определяя температурные пределы перегонки определяют подлинность и чистоту эфира, этанола, хлорэтила, фторотана.

ОФС ГФ XII «Определение температурных пределов перегонки » дополнена определением точки кипения и в частных ФС рекомендует определять температуру затвердевания или кипения для жидких ЛВ.

Плотность (ГФ XI, вып. 1, с. 24)

Плотность – это масса единицы объема вещества. Выражается в г/см 3 .

ρ = m / V

Если массу измерить в гр, а объем в см 3 , то плотность – это масса 1 см 3 вещества.

Определение плотности проводят с помощью пикнометра (до 0,001). или ареометра (точность измерения до 0,01)

Устройство приборов смотрите в ГФ Х1 издании.

Биологическую оценку качества лекарственных препаратов обычно проводят по силе фармакологического эффекта или по токсичности. Применяют биологические методы, когда с помощью физических, химических или физико-химических методов не удается сделать заключение о чистоте или токсичности лекарственного препарата или когда способ получения препарата не гарантирует постоянства активности (например, антибиотики).

Проводят биологические испытания на животных (кошки, собаки, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи), отдельных группах клеток (форменные элементы крови), а также на определенных штаммах микроорганизмов. Активность препаратов выражают в единицах действия (ЕД).

Биологический контроль лекарств, содержащих сердечные гликози- ды. По ГФ XI проводят биологическую оценку активности лекарственного растительного сырья и полученных из него препаратов, содержащих сердечные гликозиды, в частности наперстянки (пурпурной, крупноцветковой и шерстистой), горицвета, ландыша, строфанта, желтушника серого. Испытания проводят на лягушках, кошках и голубях, устанавливая соответственно лягушачьи (ЛЕД), кошачьи (КЕД) и голубиные (ГЕД) единицы действия. Одна ЛЕД соответствует дозе стандартного образца, вызывающего в условиях опыта систолическую остановку сердца у большинства подопытных стандартных лягушек (самцы массой 28--33 г). Одна КЕД или ГЕД соответствует дозе стандартного образца или испытуемого препарата из расчета на 1 кг массы животного или птицы, вызывающего систолическую остановку сердца кошки или голубя. Содержание ЕД рассчитывают в 1,0 г исследуемого лекарственного средства, если испытывают растительное сырье или сухие концентраты; в одной таблетке или в 1 мл, если испытывают жидкие лекарственные формы.

Испытание на токсичность. В этот раздел ГФ XI, вып. 2 (с. 182) по сравнению с ГФ X внесен ряд дополнений и изменений, отражающих возрастающие требования к качеству лекарственных средств и необходимость унификации условий их испытаний. В статью введен раздел, в котором описан порядок отбора проб. Увеличена масса животных, на которых проводят испытание, указаны условия их содержания и срок наблюдения за ними. Для выполнения испытания отбирают по два флакона или ампулы от каждой серии, содержащей не более 10000 флаконов или ампул. Из партий с большим количеством отбирают по три ампулы (флакона) от каждой серии. Содержимое проб одной серии смешивают и испытывают на здоровых белых мышах обоего пола массой 19--21 г. Испытуемый раствор вводят в хвостовую вену пяти мышей и ведут наблюдение за животными 48 ч. Препарат считается выдержавшим испытание, если ни одна из подопытных мышей не погибнет в течение указанного срока. В случае гибели даже одной мыши испытание повторяют по определенной схеме. В частных статьях может быть указан и другой порядок проведения испытания на токсичность.

Испытания на пирогенность. Бактериальные пирогены представляют собой вещества микробного происхождения, способные вызвать у человека и теплокровных животных при попадании в кровяное русло повышение температуры тела, лейкопению, падение кровяного давления и другие изменения в различных органах и системах организма. Пирогенную реакцию вызывают грамотрицательные живые и мертвые микроорганизмы, а также продукты их распада. Допустимо содержание, например, в изотоническом растворе натрия хлорида 10 микроорганизмов в 1 мл, а при введении не более 100 мл допускается 100 на 1 мл. Испытанию на пирогенность подвергают воду для инъекций, инъекционные растворы, иммунобиологические лекарственные средства, растворители, используемые для приготовления инъекционных растворов, а также лекарственные формы, вызывающие, по сведениям клиник, пирогенную реакцию.

В ГФ XI, как и в фармакопеи других стран мира, включен биологический метод испытания пирогенности, основанный на измерении температуры тела кроликов после введения в ушную вену испытуемых стерильных жидкостей. Отбор проб проводится так же, как при испытании на токсичность. В общей статье (ГФ XI, вып. 2, с. 183--185) указаны требования к подопытным животным и порядок их подготовки к проведению испытаний. Испытуемый раствор проверяют на трех кроликах (не альбиносах), масса тела которых отличается не более чем на 0,5 кг. Температуру тела измеряют, вводя термометр в прямую кишку на глубину 5--7 см. Испытуемые жидкости считают непирогенными, если сумма повышенной температуры у трех кроликов равна или меньше 1,4°С. Если эта сумма превышает 2,2°С, то воду для инъекций или инъекционный раствор считают пирогенными. Если сумма повышения температуры у трех кроликов находится в пределах от 1,5 до 2,2° С, испытание повторяют дополнительно на пяти кроликах. Испытуемые жидкости считают непирогенными, если сумма повышений температуры у всех восьми кроликов не превышает 3,7°С. В частных ФС могут быть указаны другие пределы отклонений температуры. Кроликов, бывших в опыте, можно использовать для этой цели повторно не ранее чем через 3 сут., если введенный им раствор был непирогенным. Если же введенный раствор оказался пирогенным, то кроликов повторно можно использовать только через 2--3 недели. В ГФ XI по сравнению с ГФ X введена проверка на реактивность кроликов, впервые используемых для испытаний, и уточнен раздел о возможности их использования для повторных испытаний.

Рекомендуемый ГФ XI биологический метод отличается специфичностью, но не дает количественной оценки содержания пирогенных веществ. К существенным его недостаткам следует отнести трудоемкость и продолжительность испытаний, необходимость содержания животных, ухода за ними, сложность подготовки к проведению испытаний, зависимость результатов от индивидуальных особенностей каждого животного и т.д. Поэтому предпринимались попытки разработки других методов определения пирогенности.

Наряду с определением пирогенности на кроликах за рубежом используют микробиологический метод, основанный на подсчете общего числа микроорганизмов в исследуемой лекарственной форме до ее стерилизации. В нашей стране предложена простая и доступная методика обнаружения пирогенов, основанная На избирательной идентификации грамотрицательных микроорганизмов по реакции образования геля с применением 3%-ного раствора гидроксида калия. Методика может быть использована на химико-фармацевтических предприятиях.

Предпринята попытка заменить биологический метод определения пирогенности химическим. Растворы, содержащие пирогены, после обработки хиноном показывали отрицательную реакцию с тетрабромфенолфталеином. Пирогенал с триптофаном в присутствии серной кислоты образует буро-малиновое окрашивание при содержании пирогенала 1 мкг и более.

Исследовалась возможность спектрофотометрического определения пирогенных веществ в УФ-области спектра. Растворы фильтрата пирогенсодержащих культур микроорганизмов обнаруживают слабовыраженный максимум поглощения при 260 нм. По чувствительности спектрофотометрический метод определения пирогенов в 7-8 раз уступает биологическому испытанию на кроликах. Однако если перед спектрофотометрированием провести ультрафильтрование, то вследствие концентрирования пирогенов можно достигнуть сопоставимых результатов определения биологическим и спектрофотометрическим методами.

После обработки хиноном растворы пирогенов приобретают красную окраску и появляется максимум светопоглощения при 390 нм. Это позволило разработать фотоколориметрический способ определения пирогенов.

Высокая чувствительность люминесцентного метода создала предпосылки использования его для определения пирогенных веществ в концентрации до 1*10 -11 г/мл. Разработаны методики люминесцентного обнаружения пирогенов в воде для инъекций и в некоторых инъекционных растворах с применением красителей родамина 6Ж и 1-анилино-нафталин-8-сульфоната. Методики основаны на способности пирогенов увеличивать интенсивность люминесценции указанных красителей. Они позволяют получать результаты, сопоставимые с биологическим методом.

Относительная ошибка спектрофотометрического и люминесцентного определения не превышает ±3%. Для определения пирогенности воды для инъекций используют также хемилюминесцентный метод.

Перспективным методом является полярография. Установлено, что фильтраты пирогенных культур даже в очень разбавленном состоянии оказывают сильное подавляющее действие на полярографический максимум кислорода. На этой основе разработан способ полярографической оценки качества воды для инъекций и некоторых инъекционных растворов.

Испытание на содержание веществ гистаминоподобного действия.

Данному испытанию подвергают парентеральные лекарственные средства. Выполняют его на кошках обоего пола массой не менее 2 кг под уретановым наркозом. Вначале животному, находящемуся под наркозом, вводят гистамин, проверяя его чувствительность к этому веществу. Затем с интервалом 5 мин продолжают повторные введения (0,1 мкг/кг) стандартного раствора гистамина до тех пор, пока при двух последовательных введениях не будет получено одинаковое снижение артериального давления, которое принимается за стандартное. После этого с интервалом 5 мин животному вводят испытуемый раствор с той же скоростью, с которой вводили гистамин. Препарат считают выдержавшим испытание, если снижение артериального давления после введения тест-дозы не превышает реакции на введение 0,1 мкг/кг в стандартном растворе.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Описание препарата

Список литературы

Введение

Среди задач фармацевтической химии -- таких, как моделирование новых лекарственных, средств и их синтез, изучение фармакокинетики и др. особое место занимает анализ качества лекарств, Сборником обязательных обшегосударственных стандартов и положений, нормирующих качество лекарственных средств, является Государственная фармакопея.

Фармакопейный анализ лекарственных средств включает в себя оценку качества по множеству показателей. В частности, устанавливается подлинность лекарственною средства, анализируется его чистота, проводится количественное определение, Первоначально для такого анализа применяли исключительно химические методы; реакции подлинности, реакции на содержание примесей и титрование при количественном определении.

Со временем не только повысился уровень технического развития фармацевтической отрасли, но и изменились требования к качеству лекарственных средств. В последние годы наметилась тенденция к переходу на расширенное использование физических и физико-химических методов анализа. В частности, широко применяются спектральные методы инфракрасная и ультрафиолетовая спектрофотометрия, спектроскопия ядерно-магнитного резонанса и др. Активно используются методы хроматографии (высокоэффективная жидкостная, газожидкостная, тонкослойная), электрофорез и др.

Изучение всех этих методов и их усовершенствование - одна из самых важных задач фармацевтической химии на сегодняшний день.

качество лекарственный фармакопейный спектральный

Методы качественного и количественного анализа

Анализ вещества может проводиться с целью установления качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое-нибудь новое соединение» обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т. п. Химическое превращение, происходящее при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

Например, для открытия в растворе Fe +++ -ионов анализируемый раствор сначала подкисляют хлористоводородной кислотой, а затем прибавляют раствор гексацианоферрата (II) калия K4.В присутствии Fe+++ выпадает синий осадок гексацианоферрата (II) железа Fe43. (берлинская лазурь):

Другим примером качественного химического анализа может служить обнаружение солей аммония путем нагревания анализируемого вещества с водным раствором едкого натра. Ионы аммония в присутствии OH- ионов образуют аммиак, который узнают по запаху или по посинению влажной красной лакмусовой бумаги:

В приведенных примерах растворы гексацианоферрата (II) калия и едкого натра являются соответственно реактивами на Fe+++ и NH4+ ионы.

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определять в анализируемом веществе содержание отдельных элементов, называют элементным анализом; функциональных групп -- функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, -- молекулярным анализом.

Совокупность разнообразных химических, физических и физикохимических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных! систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

Методы исследования качества лекарственных средств

В соответствии с ГФ XI методы исследования лекарственных средств подразделяются на физические, физико-химические и химические.

Физические методы. Включают методы определение температуры плавления, затвердевания, плотности (для жидких веществ), показателя преломления (рефрактометрия), оптического вращения (поляриметрия) и др.

Физико-химические методы. Их можно разделить на 3 основным группы: электрохимические (полярография, потенциометрия), хромато- графические и спектральным (УФ- и ИК-спектрофотометрия и фотоколориметрия).

Полярография - метод изучения электрохимических процессов, основанный на установлении зависимости силы тока от напряжения, которое прикладывается к исследуемой системе. Электролиз исследуемых растворов проводится в электролизере, одним из электродов которой служит капельный ртутный электрод, а вспомогательным - ртутныш электрод с большой поверхностью, потенциал которого практически не изменяется при прохождении тока небольшой плотности. Полученная полярографическая кривая (полярограмма) имеет вид волны. Вымота волны связана с концентрацией реагирующих веществ. Метод применяется для количественного определения многих органических соединений.

Потенциометрия - метод определения рН и потенциометрическое титрование.

Хроматография - процесс разделения смесей веществ, происходящий при их перемещении в потоке подвижной фазы вдоль неподвижного сорбента. Разделение происходит благодаря различию тех или иныгх физико -химических свойств разделяемые веществ, приводящему к неодинаковому взаимодействию их с веществом неподвижной фазы, следовательно, к различию во времени удерживания слоя сорбента.

По механизму, лежащему в основе разделения, различают адсорбционную, распределительную и ионообменную хроматографию. По способу разделения и применяемой аппаратуре различают хроматографию на колонках, на бумаге в тонком слое сорбента, газовую и жидкостную хроматографию, высокоэффективную жидкостную хроматографию (ВЭЖХ) и др.

Спектральным методы основаны на избирательном поглощении электромагнитного излучения анализируемым веществом. Различают спектрофотометрические методы, основанным на поглощении веществом монохроматического излучения УФ- и ИК-диапазонов, колориметрические и фотоколориметрические методы, основанным на поглощении веществом немонохроматического излучения видимой части спектра.

Химические методы. Основаны на использовании химических реакций для идентификации лекарственные средств. Для неорганических лекарственных средств используют реакции на катионы и анионы, для органических - на функциональным группы, при этом применяются только такие реакции, которым сопровождаются наглядным внешним эффектом: изменением окраски раствора, выделением газов, выпадением осадков и т.д.

С помощью химических методов проводят определение численных показателей масел и эфиров (кислотное число, йодное число, число омыления), характеризующих их доброкачественность.

К химическим методам количественного анализа лекарственных веществ относятся гравиметрический (весовой) метод, титриметрические (объёмным) методы, включающие кислотно - основное титрование в водных и неводных средах, газометрический анализ и количественный элементный анализ.

Гравиметрический метод. Из неорганических лекарственных веществ этим методом можно определять сульфаты, переводя их в нерастворимым соли бария, и силикаты, предварительно прокаливая их до диоксида кремния. Возможно применение гравиметрии для анализа препаратов со - лей хинина, алкалоидов, некоторые витаминов и др.

Титриметрические методы. Это наиболее распространенным в фар - мацевтическом анализе методы, отличающиеся небольшой трудоемкостью и достаточно вымокой точностью. Титриметрические методы можно подразделить на осадительное титрование, кислотно - основное, окислительно - восстановительное, комплексиметрию и нитритометрию. С их помощью количественную оценку производят, проводя определение отдельные элементов или функциональных групп, содержащихся в молекуле лекарственного вещества.

Осадительное титрование (аргентометрия, меркуриметрия, меркурометрия и др.).

Кислотно - основное титрование (титрование в водной среде, ацидиметрия - использование в качестве титранта кислоты, алкалиметрия - использование для титрования щелочи, титрование в смешанные растворителях, неводное титрование и др.).

Окислительно-восстановительное титрование (иодометрия, иодхлорометрия, броматометрия, перманганатометрия и др.).

Комплексиметрия. Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с трилоном Б или др. комплексонами. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона.

Нитритометрия. Метод основан на реакциях первичных и вторичных ароматических аминов с нитритом натрия, которые используют в качестве титранта. Первичные ароматические амины образуют с нитритом натрия в кислой среде диазосоединение, а вторичным ароматические амины в этих условиях образуют нитрозосоединения.

Газометрический анализ. Имеет ограниченное применение в фармацевтическом анализе. Объектами этого анализа являются два газообразныгх препарата: кислород и циклопропан. Сущность газометрического определения заключается во взаимодействии газов с поглотительными растворами.

Количественный элементный анализ. Этот анализ используют для количественного определения органических и элементорганических со - единений, содержащих азот, галогены, серу, а также мы1шьяк, висмут, ртуть, сурьму и др. элементы.

Биологические методы контроля качества лекарственных веществ. Биологическую оценку качества ЛB проводят по их фармакологической активности или токсичности. Биологические микробиологические методы применяют в тех случаях, когда с помощью физических, химических и физико-химических методов нельзя сделать заключение о доброкачественности ЛC. Биологические испытания проводят на животных кошки, собаки, голуби, кролики, лягушки и др.), отдельных изолированных органах (рог матки, часть кожи) и группах клеток (форменные элементы крови, штаммы микроорганизмов и др.). Биологическую активность устанавливают, как правило, путем сравнения действия испытуемых и стандартных образцов.

Испытаниям на микробиологическую чистоту подвергают не стерилизуемые в процессе производства ЛП (таблетки, капсулы, гранулы, растворы, экстракты, мази и др.). Эти испытания имеют своей целью определение состава и количества имеющейся в ЛФ микрофлоры. При этом устанавливается соответствие нормам, ограничивающим микробную обсемененность (контаминацию). Испытание включает количественное определение жизнеспособных бактерий и грибов, выявление некоторых видов микроорганизмов, кишечной флоры и стафилококков. Испытание выполняют в асептических условиях в соответствии с требованиями ГФ XI (в. 2, с. 193) двухслойным агаровым методом в чашках Петри.

Испытание на стерильность основано на доказательстве отсутствия в ЛС жизнеспособных микроорганизмов любого вида и является одним из важнейших показателей безопасности ЛС. Этим испытаниям подвергаются все ЛП для парентерального введения, глазные капли, мази и т.д. Для контроля стерильности применяют биогликолевую и жидкую среду Сабуро, используя метод прямого посева на питательные среды. Если ЛС обладает выраженным антимикробным действием или разлито в емкости более 100 мл, то используют метод мембранной фильтрации (ГФ, в. 2, с. 187).

Acidum acetylsalicylicum

Ацетилсалициловая кислота, или аспирин, представляет собой салициловый эфир уксусной кислоты.

Описание. Бесцветные кристаллы или белый кристаллический порошок без запаха, слабокислого вкуса. Во влажном воздухе постепенно гидролизуется с образованием уксусной и салициловой кислот. Мало растворим в воде, легко растворим в спирте, растворим в хлороформе, эфире, в растворах едких и углекислых щелочей.

Для разжижения массы прибавляют хлорбензол, реакционную смесь выливают в воду, выделившуюся ацетилсалициловую кислоту отфильтровывают и перекристаллизовывают из бензола, хлороформа, изопропилового спирта или других органических растворителе.

В готовом препарате ацетилсалициловой кислоты возможно присутствие остатков несвязанной салициловой кислоты. Количество салициловой кислоты как примеси регламентируется и устанавливается предел содержания салициловой кислоты в ацетилсалициловой Государственными фармакопеями разных стран.

Государственная Фармакопея СССР десятое издание 1968 г устанавливает допустимый предел содержания салициловой кислоты в ацетилсалициловой не более 0,05% в препарате.

Ацетилсалициловая кислота при гидролизе в организме распадается на салициловую и уксусную кислоты.

Ацетилсалициловая кислота как сложный эфир, образованный уксусной кислотой и фенолокислотой (вместо спирта), очень легко гидролизуется. Уже при стоянии во влажном воздухе она гидролизуется на уксусную и салициловую кислоты. В связи с этим фармацевтам часто приходится проверять, не гидролизовалась ли ацетилсалициловая кислота. Для этого очень удобна реакция с FeCl3: ацетилсалициловая кислота не дает окрашивания с FeCl3, тогда как салициловая кислота, образующаяся в результате гидролиза, дает фиолетовое окрашивание.

Клинико-фармакологическая группа : НПВС

Фармакологическое действие

Ацетилсалициловая кислота относится к группе кислотообразующих НПВП с обезболивающим, жаропонижающим и противовоспалительным свойствами. Механизм её действия заключается в необратимой инактивации ферментов циклооксигеназы, которые играют важную роль при синтезе простагландинов. Ацетилсалициловая кислота в дозах от 0.3 г до 1 г применяется для облегчения боли и состояний, которые сопровождаются жаром лёгкой степени, таких как простуда и грипп, для снижения температуры и облегчения боли в суставах и мышцах.

Он также используется для лечения острых и хронических воспалительных заболеваний, таких как ревматоидный артрит, болезнь Бехтерева, остеоартритах.

Ацетилсалициловая кислота угнетает агрегацию тромбоцитов путем блокирования синтеза тромбоксана А2 и применяется при большинстве сосудистых заболеваний в дозах от 75-300 мг в сутки.

Показания

ревматизм;

ревматоидный артрит;

инфекционно-аллергический миокардит;

лихорадка при инфекционно-воспалительных заболеваниях;

болевой синдром слабой и средней интенсивности различного генеза (в т.ч. невралгия, миалгия, головная боль);

профилактика тромбозов и эмболий;

первичная и вторичная профилактика инфаркта миокарда;

профилактика нарушений мозгового кровообращения по ишемическому типу;

в постепенно нарастающих дозах для продолжительной "аспириновой" десенсибилизации и формирования стойкой толерантности к НПВС у больных с "аспириновой" астмой и "аспириновой триадой".

Инструкция по применению и дозировка

Для взрослых разовая доза варьирует от 40 мг до 1 г, суточная - от 150 мг до 8 г; кратность применения - 2-6 раз в сутки. Запивать предпочтительнее молоком или щелочными минеральными водами.

Побочное действие

тошнота, рвота;

анорексия;

боли в эпигастрии;

возникновение эрозивно-язвенных поражений;

кровотечений из ЖКТ;

головокружение;

головная боль;

обратимые нарушения зрения;

шум в ушах;

тромбоцитопения, анемия;

геморрагический синдром;

удлинение времени кровотечения;

нарушение функции почек;

острая почечная недостаточность;

кожная сыпь;

отек Квинке;

бронхоспазм;

"аспириновая триада" (сочетание бронхиальной астмы, рецидивирующего полипоза носа и околоносовых пазух и непереносимости ацетилсалициловой кислоты и лекарственных средств пиразолонового ряда);

синдром Рейе (Рейно);

усиление симптомов хронической сердечной недостаточности.

Противопоказания

эрозивно-язвенные поражения ЖКТ в фазе обострения;

желудочно-кишечное кровотечение;

"аспириновая триада";

наличие в анамнезе указаний на крапивницу, ринит, вызванные приемом ацетилсалициловой кислоты и других НПВС;

гемофилия;

геморрагический диатез;

гипопротромбинемия;

расслаивающая аневризма аорты;

портальная гипертензия;

дефицит витамина К;

печеночная и/или почечная недостаточность;

дефицит глюкозо-6-фосфатдегидрогеназы;

синдром Рейе;

детский возраст (до 15 лет - риск развития синдрома Рейе у детей с гипертермией на фоне вирусных заболеваний);

1 и 3 триместры беременности;

период лактации;

повышенная чувствительность к ацетилсалициловой кислоте и другим салицилатам.

Особые указания

С осторожностью применяют у пациентов с заболеваниями печени и почек, при бронхиальной астме, эрозивно-язвенных поражениях и кровотечениях из ЖКТ в анамнезе, при повышенной кровоточивости или при одновременном проведении противосвертывающей терапии, декомпенсированной хронической сердечной недостаточности.

Ацетилсалициловая кислота даже в небольших дозах уменьшает выведение мочевой кислоты из организма, что может стать причиной острого приступа подагры у предрасположенных пациентов. При проведении длительной терапии и/или применении ацетилсалициловой кислоты в высоких дозах требуется наблюдение врача и регулярный контроль уровня гемоглобина.

Применение ацетилсалициловой кислоты в качестве противовоспалительного средства в суточной дозе 5-8 грамм ограничено в связи с высокой вероятностью развития побочных эффектов со стороны ЖКТ.

Перед хирургическим вмешательством, для уменьшения кровоточивости в ходе операции и в послеоперационном периоде следует отменить прием салицилатов за 5-7 дней.

Во время продолжительной терапии необходимо проводить общий анализ крови и исследование кала на скрытую кровь.

Применение ацетилсалициловой кислоты в педиатрии противопоказано, поскольку в случае вирусной инфекции у детей под влиянием ацетилсалициловой кислоты повышается риск развития синдрома Рейе. Симптомами синдрома Рейе являются длительная рвота, острая энцефалопатия, увеличение печени.

Длительность лечения (без консультации с врачом) не должна превышать 7 дней при назначении в качестве анальгезирующего средства и более 3 дней в качестве жаропонижающего.

В период лечения пациент должен воздерживаться от употребления алкоголя.

Форма выпуска, состав и упаковка

Таблетки 1 таб.

ацетилсалициловая кислота 325 мг

30 - контейнеры (1) - пачки.

50 - контейнеры (1) - пачки.

12 - блистеры (1) - пачки.

Фармакопейная статья. Экспериментальная часть

Описание. Бесцветные кристаллы или белый кристаллический порошок без запаха или со слабым запахом, слабокислого вкуса. Препарат устойчив в сухом воздухе, во влажном постепенно гидролизуется с образованием уксусной и салициловой кислот.

Растворимость. Мало растворим в воде, легко растворим в спирте, растворим в хлороформе, эфире, в растворах едких и углекислых щелочей.

Подлинность. 0 ,5 г препарата кипятят в течение 3 минут с 5 мл раствора едкого натра, затем охлаждают и подкисляют разведенной серной кислотой; выделяется белый кристаллический осадок. Раствор сливают в другую пробирку и добавляют к нему 2 мл спирта и 2 мл концентрированной серной кислоты; раствор имеет запах уксусноэтилового эфира. К осадку добавляют 1-2 капли раствора хлорида окисного железа; появляется фиолетовое окрашивание.

0,2 г препарата помещают в фарфоровую чашку, добавляют 0,5 мл концентрированной серной кислоты, перемешивают и добавляют 1-2 капли воды; ощущается запах уксусной кислоты. Затем добавляют 1-2 капли формалина; появляется розовое окрашивание.

Температура плавления 133-138° (скорость подъема температуры 4-6° в минуту).

Хлориды. 1,5 г препарата взбалтывают с 30 мл воды и фильтруют. 10 мл фильтрата должны выдерживать испытание на хлориды (не более 0,004% в препарате).

Сульфаты . 10 мл того же фильтрата должны выдерживать испытание на сульфаты (не более 0,02% в препарате).

Органические примеси . 0,5 г препарата растворяют в 5 мл концентрированной серной кислоты; окраска раствора не должна быть интенсивнее эталона № 5а.

Свободная салициловая кислота . 0,3 г препарата растворяют в 5 мл спирта и прибавляют 25 мл воды (испытуемый раствор). В один цилиндр помещают 15 мл этого раствора, в другой - 5 мл того же раствора. 0,5 мл 0,01% водного раствора салициловой кислоты, 2 мл спирта и доводят водой до 15 мл (эталонный раствор). Затем в оба цилиндра добавляют по 1 мл кислого 0,2% раствора железоаммониевых квасцов.

Окраска испытуемого раствора не должна быть интенсивнее эталонного раствора (не более 0,05% в препарате).

Сульфатная зола и тяжелые металлы . Сульфатная зола из 0,5 г препарата не должна превышать 0,1% и должна выдерживать испытание на тяжелые металлы (не более 0,001 % в препарате).

Количественное определение. Около 0,5 г препарата (точная навеска) растворяют в 10 мл нейтрализованного по фенолфталеину (5-6 капель) и охлажденного до 8-10° спирта. Раствор титруют с тем же индикатором 0,1 н. раствором едкого натра до розового окрашивания.

1 мл 0,1 н. раствора едкого натра соответствует 0,01802 г C9H8O4 которой в препарате должно быть не менее 99,5%.

Хранение. В хорошо укупоренной таре.

Противоревматическое, противовоспалительное, болеутоляющее, жаропонижающее средство.

Фармацевтическая химия -- наука, которая, базируясь на общих законах химических наук, исследует способы получения, строение, физические и химические свойства лекарственных веществ, взаимосвязь между их химической структурой и действием на организм; методы контроля качества лекарств и изменения, происходящие при их хранении.

Основными методами исследования лекарственных веществ в фармацевтической химии являются анализ и синтез -- диалектически тесно связанные между собой процессы, взаимно дополняющие друг друга. Анализ и синтез -- мощные средства познания сущности явлений, происходящих в природе.

Задачи, стоящие перед фармацевтической химией, решаются с помощью классических физических, химических и физико-химических методов, которые используются как для синтеза, так и для анализа лекарственных веществ.

Чтобы познать фармацевтическую химию, будущий провизор должен иметь глубокие знания в области общетеоретических химических и медико-биологических дисциплин, физики, математики. Необходимы также прочные знания в области философии, ибо фармацевтическая химия, как и другие химические науки, занимается изучением химической формы движения материи.

Фармацевтическая химия занимает центральное место среди других специальных фармацевтических дисциплин -- фармакогнозии, технологии лекарств, фармакологии, организации и экономики фармации, токсикологической химии и является своеобразным связующим звеном между ними.

Вместе с тем фармацевтическая химия занимает промежуточное положение между комплексом медико-биологических и химических наук. Объектом применения лекарств является организм больного человека. Исследованием процессов, происходящих в организме больного человека, и его лечением занимаются специалисты, работающие в области клинических медицинских наук (терапия, хирургия, акушерство и гинекология и т.д.), а также теоретических медицинских дисциплин: анатомии, физиологии и др. Многообразие применяемых в медицине лекарств требует совместной работы врача и провизора при лечении больного.

Являясь прикладной наукой, фармацевтическая химия базируется на теории и законах таких химических наук, как неорганическая, органическая, аналитическая, физическая, коллоидная химия. В тесной связи с неорганической и органической химией фармацевтическая химия занимается исследованием способов синтеза лекарственных веществ. Поскольку их действие на организм зависит как от химической структуры, так и от физико-химических свойств, фармацевтическая химия использует законы физической химии.

При разработке способов контроля качества лекарственных препаратов и лекарственных форм в фармацевтической химии применяют методы аналитической химии. Однако фармацевтический анализ имеет свои специфические особенности и включает три обязательных этапа: установление подлинности препарата, контроль его чистоты (установление допустимых пределов примесей) и количественное определение лекарственного вещества.

Развитие фармацевтической химии невозможно и без широкого использования законов таких точных наук, как физика и математика, так как без них нельзя познать физические методы исследования лекарственных веществ и различные способы расчета, применяемые в фармацевтическом анализе.

В фармацевтическом анализе используются разнообразные методы исследования: физические, физико-химические, химические, биологические. Применение физических и физико-химических методов требует соответствующих приборов и инструментов, поэтому данные методы называют также приборными, или инструментальными.

Использование физических методов основано на измерении физических констант, например, прозрачности или степени мутности, цветности, влажности, температуры плавления, затвердевания и кипения и др.

С помощью физико-химических методов измеряют физические константы анализируемой системы, которые изменяются в результате химических реакций. К этой группе методов относятся оптические, электрохимические, хроматографические.

Химические методы анализа основаны на выполнении химических реакций.

Биологический контроль лекарственных веществ осуществляют на животных, отдельных изолированных органах, группах клеток, на определенных штаммах микроорганизмов. Устанавливают силу фармакологического эффекта или токсичность.

Методики, используемые в фармацевтическом анализе, должны быть чувствительными, специфическими, избирательными, быстрыми и пригодными для экспресс-анализа в условиях аптеки.

Список литературы

1. Фармацевтическая химия: Учеб. пособие / Под ред. Л.П. Арзамасцева. М.: ГЭОТАР-МЕД, 2004.

2. Фармацевтический анализ лекарственных средств / Под общей редакцией В.А.

3. Шаповаловой. Харьков: ИМП «Рубикон», 1995.

4. Мелентьева Г.А., Антонова Л.А. Фармацевтическая химия. М.: Медицина, 1985.

5. Арзамасцев А.П. Фармакопейный анализ. М.: Медицина, 1971.

6. Беликов В.Г. Фармацевтическая химия. В 2 частях. Часть 1. Общая фармацевтическая химия: Учеб. для фармац. ин-тов и фак. мед. ин-тов. М.: Высш. шк., 1993.

7. Государственная фармакопея Российской федерации, Х издание - под. ред. Юргеля Н.В. Москва: “Научный центр экспертизы средств медицинского применения”. 2008.

8. Международная фармакопея, Третье издание, Т.2. Всемирная организация охраны здоровья. Женева. 1983, 364 с.

Размещено на Allbest.ru

...

Подобные документы

    Взаимодействие химических соединений с электромагнитным излучением. Фотометрический метод анализа, обоснование эффективности его использования. Исследование возможности применения фотометрического анализа в контроле качества лекарственных средств.

    курсовая работа , добавлен 26.05.2015

    Структура и функции контрольно-разрешительной системы. Проведение доклинических и клинических исследований. Регистрация и экспертиза лекарственных средств. Система контроля качества изготовления лекарственных средств. Валидация и внедрение правил GMP.

    реферат , добавлен 19.09.2010

    Особенности анализа полезности лекарств. Выписка, получение, хранение и учет лекарственных средств, пути и способы их введения в организм. Строгие правила учета некоторых сильнодействующих лекарственных средств. Правила раздачи лекарственных средств.

    реферат , добавлен 27.03.2010

    Внутриаптечный контроль качества лекарственных средств. Химические и физико-химические методы анализа, количественное определение, стандартизация, оценка качества. Расчет относительной и абсолютной ошибок в титриметрическом анализе лекарственных форм.

    курсовая работа , добавлен 12.01.2016

    Помещение и условия хранения фармацевтической продукции. Особенности контроля качества лекарственных средств, правила Good Storage Practice. Обеспечение качества лекарственных препаратов и средств в аптечных организациях, их выборочный контроль.

    реферат , добавлен 16.09.2010

    Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

    курсовая работа , добавлен 07.04.2016

    Общая характеристика микозов. Классификация противогрибковых лекарственных средств. Контроль качества противогрибковых лекарственных средств. Производные имидазола и триазола, полиеновые антибиотики, аллиламины. Механизм действия противогрибковых средств.

    курсовая работа , добавлен 14.10.2014

    Российские нормативные документы, регламентирующие производство лекарственных средств. Структура, функции и основные задачи испытательной лаборатории по контролю качества лекарственных средств. Законодательные акты РФ об обеспечении единства измерений.

    методичка , добавлен 14.05.2013

    Изучение физико-химических методов анализа. Методы основанные на использовании магнитного поля. Теория методов по спектрометрии и фотоколореметрии в видимой области спектра. Спектрометрические и фотоколореметрические методы анализа лекарственных средств.

    курсовая работа , добавлен 17.08.2010

    Стабильность, как фактор качества лекарственных средств. Физические, химические и биологические процессы, протекающие при их хранении. Влияние условий получения на стабильность лекарств. Классификация групп ЛС. Срок годности и период переконтроля.