Стронций в организме человека. Стронций - характеристика свойств с фото, его биологическая роль в организме человека, лечение препаратами на основе химического элемента

Природный стронций состоит из четырех стабильных изотопов 88 Sr (82,56%), 86 Sr (9,86%), 87 Sr (7,02%) и 84 Sr (0,56%). Распространенность изотопов стронция варьируетcя в связи с образованием 87 Sr за счет распада природного 87 Rb. По этой причине точный изотопный состав стронция в породе или минерале, которые содержат рубидий, зависит от возраста и отношения Rb/Sr в данной породе или минерале.

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в том числе 90 Sr (Т 1/2 = 29,12 года), образующийся при делении урана. Степень окисления +2, очень редко +1.

История открытия элемента.

Свое название стронций получил от минерала стронцианита, найденного в 1787 в свинцовом руднике около Стронциана (Шотландия). В 1790 английским химиком Адером Кроуфордом (Crawford Ader) (1748–1795) было показано, что стронцианит содержит новую, еще неизвестную «землю». Эту особенность стронцианита установил также и немецкий химик Мартин Генрих Клапрот (Klaproth Martin Heinrich) (1743–1817). Английский химик Т.Хоп (Hope T.) в 1791 доказал, что в стронцианите содержится новый элемент. Он четко разграничил соединения бария, стронция и кальция, используя, помимо других методов, характерную окраску пламени: желто-зеленую для бария, ярко-красную для стронция и оранжево-красную для кальция.

Независимо от западных ученых, петербургский академик Тобиаш (Товий Егорович) Ловиц (1757–1804) в 1792, исследуя минерал барит, пришел к заключению, что в нем, помимо оксида бария, в качестве примеси находится и «стронцианова земля». Он сумел извлечь из тяжелого шпата более 100 г новой «земли» и исследовал ее свойства. Результаты этой работы были опубликованы в 1795. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление... Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей... Мне оставалось только проверить... замечательное свойство стронциановой земли – окрашивать спиртовое пламя в карминово-красный цвет, и, действительно, моя соль... обладала в полной мере этим свойством».

В свободном виде стронций первым выделил английский химик и физик Гемфри Дэви в 1808. Металлический стронций был получен при электролизе его увлажненного гидроксида. Выделявшийся на катоде стронций соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Распространенность стронция в природе и его промышленное получение. Содержание стронция в земной коре составляет 0,0384%. Он является пятнадцатым по распространенности и следует сразу за барием, немного уступая фтору. В свободном виде стронций не встречается. Он образует около 40 минералов. Наиболее важный из них – целестин SrSO 4 . Добывают также стронцианит SrCO 3 . Стронций присутствует в качестве изоморфной примеси в различных магниевых, кальциевых и бариевых минералах.

Стронций содержится и в природных водах. В морской воде его концентрация составляет 0,1 мг/л. Это означает, что в водах Мирового океана содержатся миллиарды тонн стронция. Минеральные воды, содержащие стронций, считают перспективным сырьем для выделения этого элемента. В океане часть стронция концентрируется в железомарганцевых конкрециях (4900 т в год). Стронций накапливается также простейшими морскими организмами – радиоляриями, скелет которых построен из SrSO 4 .

Доскональная оценка мировых промышленных ресурсов стронция не проводилась, но полагают, что они превышают 1 млрд. т.

Наиболее крупные залежи целестина – в Мексике, Испании и Турции. В России подобные месторождения есть в Хакассии, Пермской и Тульской области. Однако потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%. Специалисты считают, что добыча стронция в недавно открытом Кишертском месторождении (Пермская область) может повлиять на ситуацию на мировом рынке этого продукта. Цена на пермский стронций может оказаться примерно в 1,5 раза ниже, чем на американский, стоимость которого сейчас составляет около 1200 долл. за тонну.

Характеристика простого вещества и промышленное получение металлического стронция.

Металлический стронций имеет серебристо-белую окраску. В неочищенном состоянии он окрашен в бледно-желтый цвет. Это сравнительно мягкий металл, легко режется ножом. При комнатной температуре стронций имеет кубическую гранецентрированную решетку (a -Sr); при температуре выше 231° С превращается в гексагональную модификацию (b -Sr); при 623° С переходит в кубическую объёмноцентрированную модификацию (g -Sr). Стронций относится к легким металлам, плотность его a -формы 2,63г/см3 (20° С). Температура плавления стронция равна 768° С, температура кипения составляет 1390° С.

Являясь щелочноземельным металлом, стронций активно реагирует с неметаллами. При комнатной температуре металлический стронций покрывается пленкой из оксида и пероксида. При нагревании на воздухе воспламеняется. Стронций легко образует нитрид, гидрид и карбид. При повышенных температурах стронций реагирует с диоксидом углерода:

5Sr + 2CO 2 = SrC 2 + 4SrO

Металлический стронций взаимодействует с водой и кислотами, выделяя из них водород:

Sr + 2H 3 O + = Sr 2+ + H 2 ­ + 2H 2 O

Реакция не идет в тех случаях, когда образуются малорастворимые соли.

Стронций растворяется в жидком аммиаке с образованием темно-синих растворов, из которых при выпаривании можно получить блестящий аммиакат медного цвета Sr(NH 3) 6 , постепенно разлагающийся до амида Sr(NH 2) 2 .

Для получения металлического стронция из природного сырья целестиновый концентрат сначала восстанавливают при нагревании углем до сульфида стронция. Затем сульфид стронция обрабатывают соляной кислотой, а полученный хлорид стронция обезвоживают. Стронцианитовый концентрат разлагают обжигом при 1200° С, а затем растворяют образовавшийся оксид стронция в воде или кислотах. Нередко стронцианит сразу растворяют в азотной или соляной кислоте.

Металлический стронций получают электролизом смеси расплавленных хлорида стронция (85%) и хлорида калия или аммония (15%) на никелевом или железном катоде при 800° С. Полученный этим методом стронций обычно содержит 0,3–0,4% калия.

Используют также высокотемпературное восстановление оксида стронция алюминием:

4SrO + 2Al = 3Sr + SrO·Al 2 O 3

Для металлотермического восстановления оксида стронция применяют также кремний или ферросилиций. Процесс ведут при 1000° С в вакууме в стальной трубке. Хлорид стронция восстанавливают металлическим магнием в атмосфере водорода.

Крупнейшими производителями стронция являются Мексика, Испания, Турция и Великобритания.

Несмотря на довольно большое содержание в земной коре, широкого применения металлический стронций еще не нашел. Как и другие щелочноземельные металлы, он способен очищать черный металл от вредных газов и примесей. Это свойство дает стронцию перспективу применения в металлургии. Кроме того, стронций является легирующей добавкой к сплавам магния, алюминия, свинца, никеля и меди.

Металлический стронций поглощает многие газы и поэтому используется в качестве геттера в электровакуумной технике.

Соединения стронция.

Преобладающая степень окисления (+2) для стронция обусловлена, в первую очередь, его электронной конфигурацией. Он образует многочисленные бинарные соединения и соли. В воде хорошо растворимы хлорид, бромид, иодид, ацетат и некоторые другие соли стронция. Большинство солей стронция мало растворимы; среди них сульфат, фторид, карбонат, оксалат. Малорастворимые соли стронция легко получаются обменными реакциями в водном растворе.

Многие соединения стронция имеют необычное строение. Например, изолированные молекулы галогенидов стронция заметно изогнуты. Валентный угол составляет ~120° для SrF 2 и ~115° – для SrCl 2 . Это явление можно объяснить с помощью sd- (а не sp-) гибридизации.

Оксид стронция SrO получают прокаливанием карбоната или дегидратацией гидроксида при температуре красного каления. Энергия решетки и температура плавления этого соединения (2665° С) очень высоки.

При прокаливании оксида стронция в кислородной среде при высоком давлении образуется пероксид SrO 2 . Получен также желтый надпероксид Sr(O 2) 2 . При взаимодействии с водой оксид стронция образует гидроксид Sr(OH) 2 .

Оксид стронция – компонент оксидных катодов (эмиттеров электронов в электровакуумных приборах). Он входит в состав стекла кинескопов цветных телевизоров (поглощает рентгеновское излучение), высокотемпературных сверхпроводников, пиротехнических смесей. Его применяют как исходное вещество для получения металлического стронция.

В 1920 американец Хилл впервые применил матовую глазурь, в состав которой входили оксиды стронция, кальция и цинка, однако этот факт остался незамеченным, и новая глазурь не стала конкурентом традиционных свинцовых глазурей. Лишь в годы Второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. Это вызвало лавину исследований: в разных странах появились десятки рецептур стронциевых глазурей. Стронциевые глазури не только менее вредны по сравнению со свинцовыми, но и более доступны (карбонат стронция в 3,5 раза дешевле свинцового сурика). При этом им свойственны все положительные качества свинцовых глазурей. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе оксидов кремния и стронция готовят также эмали – непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» – разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280–1300° C, затем температуру снижают до 150–220° C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800–850° C – соли плавятся в трещинах и герметизируют их.

Гидроксид стронция Sr(OH)2 считают умеренно сильным основанием. Он не очень хорошо растворим в воде, поэтому его можно осадить при действии концентрированного раствора щелочи:

SrCl 2 + 2KOH(конц) = Sr(OH) 2 Ї + 2KCl

При обработке кристаллического гидроксида стронция пероксидом водорода образуется SrO 2 ·8H 2 O.

Гидроксид стронция может применяться для выделения сахара из патоки, однако обычно используют более дешевый гидроксид кальция.

Карбонат стронция SrCO 3 мало растворим в воде (2·10 –3 г в 100 г при 25° С). В присутствии избытка диоксида углерода в растворе он превращается в гидрокарбонат Sr(HCO 3) 2 .

При нагревании карбонат стронция разлагается на оксид стронция и диоксид углерода. Он взаимодействует с кислотами с выделением диоксида углерода и образованием соответствующих солей:

SrCO 2 + 3HNO 3 = Sr(NO 3) 2 + CO 2 ­ + H 2 O

Основные сферы карбоната стронция в современном мире – производство кинескопов для цветных телевизоров и компьютеров, керамических ферритовых магнитов, керамических глазурей, зубной пасты, антикоррозионных и фосфоресцирующих красок, высокотехнологичной керамики, в пиротехнике. Наиболее емкими направлениями потребления являются первые два. При этом спрос на карбонат стронция в производстве телевизионного стекла повышается с ростом популярности телеэкранов более крупных размеров. Возможно, развитие технологии производства плоских телеэкранов снизит спрос на карбонат стронция для телевизионных дисплеев, однако эксперты в промышленности считают, что в ближайшие 10 лет плоские телеэкраны не станут значительными конкурентами традиционных.

Европа потребляет львиную долю карбоната стронция для производства ферритовых стронциевых магнитов, которые используются в автомобильной промышленности, где они применяются для магнитных задвижек в дверцах автомобилей и тормозных системах. В США и Японии карбонат стронция используют преимущественно в производстве телевизионного стекла.

В течение многих лет крупнейшими в мире производителями карбоната стронция являлись Мексика и Германия, производственные мощности по выпуску этого товара в которых сейчас составляют соответственно 103 тыс. и 95 тыс. т в год. В Германии используют в качестве сырья импортный целестин, а мексиканские заводы работают на местном сырье. В последнее время годовые мощности по производству карбоната стронция расширились в Китае (примерно до 140 тыс. т). Китайский карбонат стронция активно продается в Азии и Европе.

Нитрат стронция Sr(NO 3) 2 хорошо растворим в воде (70,5 г в 100 г при 20° С). Его получают взаимодействием металлического стронция, оксида, гидроксида или карбоната стронция с азотной кислотой.

Нитрат стронция – компонент пиротехнических составов для сигнальных, осветительных и зажигательных ракет. Он окрашивает пламя в карминово-красный цвет. Хотя другие соединения стронция придают пламени такую же окраску, в пиротехнике предпочитают использовать именно нитрат: он не только окрашивает пламя, но одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород. При этом сначала образуется нитрит стронция, который затем превращается в оксиды стронция и азота.

В России соединения стронция широко использовались в пиротехнических составах. Во времена Петра Первого (1672–1725) их применяли для получения «потешных огней», устраивавшихся при проведении различных торжеств и празднеств. Академик А.Е.Ферсман назвал стронций «металлом красных огней».

Сульфат стронция SrSO 4 мало растворим в воде (0,0113 г в 100 г при 0° С). При нагревании выше 1580° С он разлагается. Его получат осаждением из растворов солей стронция сульфатом натрия.

Сульфат стронция используется как наполнитель при изготовлении красок и резины и утяжелитель в буровых растворах.

Хромат стронция SrCrO 4 осаждается в виде желтых кристаллов при смешивании растворов хромовой кислоты и гидроксида бария.

Дихромат стронция, образующийся при действии кислот на хромат, хорошо растворим в воде. Для перевода хромата стронция в дихромат достаточно такой слабой кислоты, как уксусная:

2SrCrO 4 + 2CH 3 COOH = 2Sr 2+ + Cr 2 O 7 2– + 2CH 3 COO – + H 2 O

Так его можно отделить от менее растворимого хромата бария, который удается превратить в дихромат только действием сильных кислот.

Хромат стронция обладает высокой светостойкостью, он очень устойчив к воздействию высоких температур (до 1000° С), обладает хорошими пассивирующими свойствами по отношению к стали, магнию и алюминию. Хромат стронция применяется как желтый пигмент в производстве лаков и художественных красок. Его называют «стронциановый желтый». Он входит в состав грунтовок на основе водорастворимых смол и особенно грунтовок на основе синтетических смол для легких металлов и сплавов (авиагрунтовок).

Титанат стронция SrTiO 3 не растворяется в воде, однако переходит в раствор под действием горячей концентрированной серной кислоты. Его получают спеканием оксидов стронция и титана при 1200–1300° С или соосажденных труднорастворимых соединений стронция и титана выше 1000° С. Титанат стронция применяют как сегнетоэлектрик, он входит в состав пьезокерамики. В технике сверхвысоких частот он служит в качестве материала для диэлектрических антенн, фазовращателей и других устройств. Пленки из титаната стронция используют при изготовлении нелинейных конденсаторов и датчиков инфракрасного излучения. С их помощью создают слоистые структуры диэлектрик – полупроводник – диэлектрик – металл, которые применяются в фотоприемниках, запоминающих устройствах и других приборах.

Гексаферрит стронция SrO·6Fe 2 O 3 получают спеканием смеси оксида железа (III) и оксида стронция. Это соединение используют в качестве магнитного материала.

Фторид стронция SrF 2 мало растворим в воде (чуть более 0,1 г в 1 л раствора при комнатной температуре). Он не взаимодействует с разбавленными кислотами, но переходит в раствор под действием горячей соляной кислоты. В криолитовых копях Гренландии найден минерал, содержащий фторид стронция – ярлит NaF·3SrF 2 ·3AlF 3 .

Фторид стронция используется в качестве оптического и ядерного материла, компонента специальных стекол и люминофоров.

Хлорид стронция SrCl 2 хорошо растворим в воде (34,6% по массе при 20° С). Из водных растворов ниже 60,34° С кристаллизуется гексагидрат SrCl 2 ·6H 2 O, расплывающийся на воздухе. При более высоких температурах он теряет сначала 4 молекулы воды, затем еще одну, а при 250° С полностью обезвоживается. В отличие от гексагидрата хлорида кальция гексагидрат хлорида стронция мало растворим в этаноле (3,64% по массе при 6° С), что используется для их разделения.

Хлорид стронция используется в пиротехнических составах. Его применяют также в холодильной технике, медицине, косметике.

Бромид стронция SrBr 2 гигроскопичен. В насыщенном водном растворе его массовая доля составляет 50,6% при 20° С. Ниже 88,62° С из водных растворов кристаллизуется гексагидрат SrBr 2 ·6H 2 O, выше этой температуры – моногидрат SrBr 3 ·H 2 O. Гидраты полностью обезвоживаются при 345° С.

Бромид стронция получают реакцией стронция с бромом или оксида (либо карбоната) стронция с бромоводородной кислотой. Он используется в качестве оптического материала.

Иодид стронция SrI 2 хорошо растворим в воде (64,0% по массе при 20° С), хуже – в этаноле (4,3% по массе при 39° С). Ниже 83,9° С из водных растворов кристаллизуется гексагидрат SrI 2 ·6H 2 O, выше этой температуры – дигидрат SrI 2 ·2H 2 O.

Иодид стронция служит в качестве люминесцентного материала в сцинтилляционных счетчиках.

Сульфид стронция SrS получают при нагревании стронция с серой или восстановлением сульфата стронция углем, водородом и другими восстановителями. Его бесцветные кристаллы разлагаются водой. Сульфид стронция применяется как компонент люминофоров, фосфоресцирующих составов, средств для удаления волос в кожевенной промышленности.

Карбоксилаты стронция можно получить при взаимодействии гидроксида стронция с соответствующими карбоновыми кислотами. Стронциевые соли жирных кислот («стронциевые мыла») используют для изготовления специальных консистентных смазок.

Стронциеорганические соединения . Чрезвычайно активные соединения состава SrR 2 (R = Me, Et, Ph, PhCH 2 и т.д.) могут быть получены при использовании HgR 2 (часто лишь при низкой температуре).

Бис(циклопентадиенил)стронций является продуктом прямой реакции металла с или с самим циклопентадиеном

Биологическая роль стронция.

Стронций – составная часть микроорганизмов, растений и животных. У морских радиолярий скелет состоит из сульфата стронция – целестина. Морские водоросли содержат 26–140 мг стронция на 100 г сухого вещества, наземные растения – около 2,6, морские животные – 2–50, наземные животные – около 1,4, бактерии – 0,27–30. Накопление стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения содержания стронция и других элементов, главным образом кальция и фосфора, в окружающей среде.

Животные получают стронций с водой и пищей. Некоторые вещества, например полисахариды водорослей, препятствует усвоению стронция. Стронций накапливается в костной ткани, в золе которой содержится около 0,02% стронция (в других тканях – около 0,0005%).

Соли и соединения стронция относятся к малотоксичным веществам, однако при избытке стронция поражаются костная ткань, печень и мозг. Будучи близок к кальцию по химическим свойствам, стронций резко отличается от него по своему биологическому действию. Избыточное содержание этого элемента в почвах, водах и продуктах питания вызывает «уровскую болезнь» у человека и животных (по названию реки Уров в Восточном Забайкалье) – поражение и деформацию суставов, задержку роста и другие нарушения.

Особенно опасны радиоактивные изотопы стронция.

В результате ядерных испытаний и аварий на АЭС в окружающую среду поступило большое количество радиоактивного стронция-90, период полураспада которого составляет 29,12 года. До тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от радиоактивного стронция росло из года в год.

В течение года после завершения атмосферных ядерных взрывов в результате самоочищения атмосферы большая часть радиоактивных продуктов, в том числе стронция-90, выпала из атмосферы на поверхность земли. Загрязнение природной среды за счет выведения из стратосферы радиоактивных продуктов ядерных взрывов, проводившихся на полигонах планеты в 1954–1980, сейчас играет второстепенную роль, вклад этого процесса в загрязнение атмосферного воздуха 90 Sr на два порядка меньше, чем от ветрового подъема пыли с почвы, загрязненной при ядерных испытаниях и в результате радиационных аварий.

Стронций-90, наряду с цезием-137, являются основными загрязняющими радионуклидами на территории России. На радиационную обстановку существенно влияет наличие загрязненных зон, появившихся вследствие аварий на Чернобыльской АЭС в 1986 и на ПО «Маяк» в Челябинской области в 1957 («Кыштымская авария»), а также в окрестностях некоторых предприятий ядерно-топливного цикла.

Сейчас время средние концентрации 90 Sr в воздухе за пределами территорий, загрязненных в результате Чернобыльской и Кыштымской аварий, вышли на уровни, наблюдавшиеся до аварии на Чернобыльской АЭС. В гидрологических системах, связанных с зонами, загрязненными при этих авариях, существенно сказывается смыв стронция-90 с поверхности почвы.

Попадая в почву, стронций вместе с растворимыми соединениями кальция поступает в растения. Больше других накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше – злаки, в том числе зерновые, и лён. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне).

Из растений стронций-90 может непосредственно или через животных перейти в организм человека. У мужчин стронций-90 накапливается в большей степени, чем у женщин. В первые месяцы жизни ребенка отложение стронция-90 на порядок выше, чем у взрослого человека, он поступает в организм с молоком и накапливается в быстро растущей костной ткани.

Радиоактивный стронций сосредотачивается в скелете и, таким образом, подвергает организм длительному радиоактивному воздействию. Биологическое действие 90 Sr связано с характером его распределения в организме и зависит от дозы b -облучения, создаваемого им и его дочерним радиоизотопом 90 Y. При длительном поступлении 90 Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет.

Применение стронция-90.

Радиоизотоп стронция применяется в производстве атомных электрических батарей. Принцип действия таких батарей основан на способности стронция-90 излучать электроны, обладающие большой энергией, преобразуемой затем в электрическую. Элементы из радиоактивного стронция, соединенные в миниатюрную батарейку (размером со спичечную коробку), способны безотказно служить без перезарядки 15–25 лет, такие батареи незаменимы для космических ракет и искусственных спутников Земли. А швейцарские часовщики с успехом используют крохотные стронциевые батарейки для питания электрочасов.

Отечественными учеными создан изотопный генератор электрической энергии для питания автоматических метеостанций на основе стронция-90. Гарантийный срок службы такого генератора – 10 лет, в течение которых он способен снабжать электрическим током нуждающиеся в нем приборы. Все обслуживание его заключается лишь в профилактических осмотрах – раз в два года. Первые образцы генератора установлены в Забайкалье и в верховьях таежной речки Кручины.

В Таллинне работает атомный маяк. Главная его особенность – радиоизотопные термоэлектрические генераторы, в которых в результате распада стронция-90 возникает тепловая энергия, преобразуемая затем в световую.

Устройства, в которых используется радиоактивный стронций, применяются для измерения толщины. Это необходимо для контроля и управления процессом производства бумаги, тканей, тонких металлических лент, пластмассовых пленок, лакокрасочных покрытий. Изотоп стронция используется в приборах для измерения плотности, вязкости и других характеристик вещества, в дефектоскопах, дозиметрах, сигнализаторах. На машиностроительных предприятиях часто можно встретить так называемые b -реле, они контролируют подачу заготовок на обработку, проверяют исправности инструмента, правильность положения детали.

При производстве материалов, являющихся изоляторами (бумага, ткани, искусственное волокно, пластмассы и т. д.), вследствие трения возникает статическое электричество. Чтобы избежать этого, пользуются ионизирующими стронциевыми источниками.

Елена Савинкина

Общие сведения и методы получения

Стронций (Sr) - металл серебристо-белого цвета. Минерал, содержа­щий стронций, был обнаружен в 1787 г. в Шотландии в свинцовом руд­нике недалеко от деревни Стронциан и назван стронцианитом. В 1790 г. шотландские минералоги Кроуфорд и Крюикшенк подробно исследовали этот минерал и обнаружили в нем новую «землю» (ок­сид). Независимо от них их соотечественник химик Хоп установил, что в этом минерале содержится новый элемент - стронций. К такому же выводу пришел немецкий химик Клапрот. В те же годы известный рус­ский химик акад. Т. Е. Ловиц обнаружил следы стронция в тяжелом шпате. Результаты его исследований опубликованы в 1795 г. Однако чистый металл был выделен лишь в 1808 г. Дэви. В 1924 г. Даннер (США) получил чистый стронций восстановлением его из оксида ме­таллическим алюминием (или магнием).

Металлический стронций в настоящее время получают преимущест­венно алюминотермическим методом. Оксид стронция смешивают с по­рошком алюминия, брикетируют и помещают в электровакуумную печь (вакуум 1,333 Па), где при 1100-1150 "С происходит восстановление металла.

Стронций выпускают в соответствии с ЦМТУ 4764-56 трех марок (Ч, ЧДА и ХЧ) в виде штабиков и кристаллов (друзы).

Соли и соединения стронция токсичны (вызывают паралич, влияют на зрение). При работе с ними следует соблюдать правила техники безопасности с солями щелочных и щелочноземельных металлов.

Физические свойства

Атомные характеристики. Атомный номер 38, атомная масса 87,62 а. е. м, атомный объем 33,7*10 -6 м 3 /моль, атомный радиус 0,215 нм, ионный радиус 0,127 нм. Потенциалы ионизации J (эВ): 5,692; 11,026; 43,6. Электроотрицательность 1,0. Стронций имеет г. ц. к. решетку (a - Sr) с периодом а = 0,6085 нм, энергия кристаллической решетки 164,3 мкДж/кмоль, координационное число 12, межатомное расстояние 4,30 нм. При температуре 488 К происходит a -6-превращение. 6-строн-ций имеет гексагональную решетку с периодами а=0,432 нм, с - = 0,706 им, с/а= 1,64. При 605 °С имеет место полиморфное превраще­ние 6->-у- Образующая кубическая объемноцептрированная модифика­ция имеет период а=0,485 нм. Электронная конфигурация внешнего слоя 5 s 2 . Природный стронций состоит из четырех стабильных изотопов: 84 Sr (0,58 %), 86 Sr (9,88%), 87 Sr (7,2 %). 88 Sr (82,58 %). Получено так­же 14 искусственных неустойчивых изотопов Радиоактивный изотоп 90 Sr с периодом полураспада 27,7 лет образуется при ядерных реак­циях (делении урана). Эффективное поперечное сечение захвата теп­ловых нейтронов 1,21*10 -28 м 2 . Работа выхода электронов ф=2,35 эВ, для монокристалла (100) ф=2,43 эВ.

Плотность р при 273 К равна 2,630 Мг/м 3 .

Магнитная восприимчивость при температуре 293 К х= +1,05-Ю^ 9 .

Химические свойства

Нормальный электродный потенциал реакции Sr -2 e =?* Sr 2 + cp 0 = 2,89 B . Степень окисления +2.

Стронций - очень активный элемент, быстро окисляется на возду­хе с выделением большого количества тепла, энергично разлагает воду. С водородом взаимодействует при повышенной температуре 300- 400°С, образуя гидрид SrH 2 с температурой плавления 650°С. С кис­лородом образует оксид (II) SrO с температурой плавления 2430 °С, при 500 °С и давлении 15 МПа - оксид (IV) Sr 0 2 . С азотом взаимо­действует при 380-400 °С и дает соединение Sr 3 N 2 .

При нагревании стронций легко взаимодействует с галогенами, об­разуя соответствующие соли: хлорид SrCl 2 с температурой плавления 872 °С, бромид SrBr 2 с температурой плавления 643 °С, фторид SrF 2 с температурой плавления 1190°С, иодид Srl 2 . С углеродом образует карбид стронция SrC 2 , с фосфором - фосфид стронция SrP 2 , с серой при нагревании - сульфиды.

С концентрированными азотной и серной кислотами взаимодейству­ет слабо, с разбавленными энергично; со щелочами - NaOH , КОН (концентрированными и разбавленными) также вступает в реакции.

С металлами образует твердые растворы и металлические соедине-

ния В жидком состоянии смешивается с элементами ПА, ПВ - VB подгрупп (Be, Mg, Zn, Cd, Hg, Al, Ga, In, TI, Sn, Pb, Sb, Bi, As). Co многими из них образует металлические соединения (Al , Mg , Zn , Sn , РЬ и др.). С некоторыми переходными и благородными металлами дает несмешивающиеся системы. Для большинства металлов платиновой группы характерно образование со стронцием фаз типа Лавеса. С эле­ментами П1В подгруппы образует фазы типа АВ 4 . Электрохимический эквивалент 0,45404 мг/Кл.

Технологические свойства

Стронций - ковкий и пластичный металл. Ковкой из него можно по­лучить тонкий лист, а прессованием при 230 °С - проволоку.

Области применения

В промышленности используют металлический стронций и его соедине­ния. Введение этого элемента и его соединений в сталь и чугун спо­собствует повышению их качества. Имеются сведения об использова­нии стронция для раскисления и рафинирования меди; при этом также повышается твердость. Введение 0,1 % Sr в титан и его сплавы повы­шает ударную вязкость; стронций увеличивает пластичность магния и его сплавов, положительно влияет на свойства алюминиевых сплавов.

Соединения стронция используют в пиротехнике, в электровакуумной технике (газопоглотитель), в радиоэлектронике (для изготовления фо­тоэлементов). Стронций входит в состав оксидных катодов, применяе­мых в электронно-лучевых трубках, лампах СВЧ и др.

В стекловарении стронций используют для получения специальных оптических стекол; он повышает химическую и термическую устойчи­вость стекла и показатели преломления. Так, стекло, содержащее 9 °," 0 SrO , обладает высоким сопротивлением истиранию и большой эластич­ностью, легко поддастся механической обработке (кручению, перера­ботке в пряжу и ткани). В нашей стране разработана технология полу­чения стронцийсодержащего стекла без бора. Такое стекло обладает высокой химической стойкостью, прочностью и электрофизическими свойствами. Установлена способность стронциевых стекол поглощать рентгеновское излучение трубок цветных телевизоров, а также улуч­шать радиационную стойкость. Фторид стронция используют для про­изводства лазеров и оптической керамики. Гидроксид стронция приме­няют в нефтяной промышленности для производства смазочных масел с повышенным сопротивлением окислению, а в пищевой- для обработ­ки отходов сахарного производства с целью дополнительного извлече­ния сахара. Соединения стронция входят также в состав эмалей, глазу­рей и керамики Их широко используют в химической промышленноеги в качестве наполнителей резииы, стабилизаторов пластмасс, а также для очистки каустической соды от железа и марганца, в качестве ката­лизаторов в органическом синтезе и при крекинге нефти и т. д.

Стронций (лат. Strontium), Sr, химический элемент II группы периодической системы Менделеева, атомный номер 38, атомная масса 87,62, серебристо-белый металл. Природный Стронций состоит из смеси четырех стабильных изотопов: 84 Sr, 86 Sr, 87 Sr и 88 Sr; наиболее распространен 88 Sr (82,56%).

Искусственно получены радиоактивные изотопы с массовыми числами от 80 до 97, в т.ч. 90 Sr (T ½ = 27,7 года), образующийся при делении урана. В 1790 году шотландский врач А. Крофорд, исследуя найденный близ населенного пункта Строншиан (в Шотландии) минерал, обнаружил, что он содержит неизвестную ранее "землю", которая была названа стронцианом. Позднее оказалось, что это оксид Стронция SrO. В 1808 Г. Дэви, подвергая электролизу с ртутным катодом смесь увлажненного гидрооксида Sr(OH) 2 с оксидом ртути, получил амальгаму Стронция.

Распространение Стронция в природе. Среднее содержание Стронция в земной коре (кларк) 3,4·10 -2 % по массе, в геохимических процессах он является спутником кальция. Известно около 30 минералов Стронция; важнейшие - целестин SrSO 4 и стронцианит SrCO 3 . В магматических породах Стронций находится преимущественно в рассеянном виде и входит в виде изоморфной примеси в кристаллическую решетку кальциевых, калиевых и бариевых минералов. В биосфере Стронций накапливается в карбонатных породах и особенно в осадках соленых озер и лагун (месторождения целестина).

Физические свойства Стронция. При комнатной температуре решетка Стронция кубическая гранецентрированная (α-Sr) с периодом а = 6,0848Å; при температуре выше 248 °С превращается в гексагональную модификацию (β-Sr) с периодами решетки а = 4,32Å и с = 7,06 Å; при 614 °C переходит в кубическую объемноцентрированную модификацию (γ-Sr) с периодом а = 4,85Å. Атомный радиус 2,15Å, ионный радиус Sr 2+ 1,20Å. Плотность α-формы 2,63 г/см 3 (20 °C); t пл 770 °С, t кип 1383 °C; удельная теплоемкость 737,4 кдж/(кг·К) ; удельное электросопротивление 22,76·10 -6 ом·см -1 . Стронций парамагнитен, атомная магнитная восприимчивость при комнатной температуре 91,2·10 -6 . Стронций - мягкий пластичный металл, легко режется ножом.

Химические свойства. Конфигурация внешней электронной оболочки атома Sr 5s 2 ; в соединениях обычно имеет степень окисления +2. Стронций - щелочноземельный металл, по химические свойствам сходен с Ca и Ba. Металлический Стронций быстро окисляется на воздухе, образуя желтоватую поверхностную пленку, содержащую оксид SrO, пероксид SrO 2 и нитрид Sr 3 N 2 . С кислородом при обычных условиях образует оксид SrO (серовато-белый порошок), которая на воздухе легко переходит в карбонат SrCO 3 ; с водой энергично взаимодействует, образуя гидроксид Sr(OH) 2 - основание более сильное, чем Ca(OH) 2 . При нагревании на воздухе легко воспламеняется, а порошкообразный Стронций на воздухе самовозгорается, поэтому хранят Стронций в герметически закрытых сосудах под слоем керосина. Бурно разлагает воду с выделением водорода и образованием гидроксида. При повышенных температурах взаимодействует с водородом (>200 °C), азотом (>400 °C), фосфором, серой и галогенами. При нагревании образует интерметаллические соединения с металлами, например SrPb 3 , SrAg 4 , SrHg 8 , SrHg 12 . Из солей Стронция хорошо растворимы в воде галогениды (кроме фторида), нитрат, ацетат, хлорат; трудно растворимы карбонат, сульфат, оксалат и фосфат. Осаждение Стронция в виде оксалата и сульфата используют для его аналитического определения. Многие соли Стронция образуют кристаллогидраты, содержащие от 1 до 6 молекул кристаллизационной воды. Сульфид SrS постепенно гидролизуется водой; нитрид Sr 3 N 2 (черные кристаллы) легко разлагается водой с выделением NH 3 и Sr(OH) 2 . Стронций хорошо растворяется в жидком аммиаке, давая растворы темно-синего цвета.

Получение Стронция. Основным сырьем для получения соединений Стронция служат концентраты от обогащения целестина и стронцианита. Металлический Стронций получают восстановлением оксида Стронция алюминием при 1100-1150 °C:

4SrO+ 2Al = 3Sr+ SrO·Al 2 O 3 .

Процесс ведут в электровакуумных аппаратах [при 1 н/м 2 (10 -2 мм рт. ст.)] периодического действия. Пары Стронция конденсируются на охлажденной поверхности вставленного в аппарат конденсатора; по окончании восстановления аппарат заполняют аргоном и расплавляют конденсат, который стекает в изложницу. Стронций получают также электролизом расплава, содержащего 85% SrCl 2 и 15% KCl, однако при этом процессе выход по току невелик, а металл оказывается загрязненным солями, нитридом и оксидом. В промышленности электролизом с жидким катодом получают сплавы Стронция, например, с оловом.

Применение Стронция. Стронций служит для раскисления меди и бронзы. 90 Sr - источник β-излучения в атомных электрических батареях. Стронций используется для изготовления люминофоров и фотоэлементов, а также сильно пирофорных сплавов. Оксид Стронция входит в состав некоторых оптических стекол и оксидных катодов электронных ламп. Соединения Стронция окрашивают пламя в интенсивный вишнево-красный цвет, благодаря чему некоторые из них находят применение в пиротехнике. Стронцианит вводят в шлак для очистки высокосортных сталей от серы и фосфора; карбонат Стронция используют в неиспаряющихся геттерах, а также добавляют в состав стойких к атмосферным воздействиям глазурей и эмалей для покрытия фарфора, сталей и жаропрочных сплавов. Хромат SrCrO 4 - очень устойчивый пигмент для изготовления художественных красок, титанат SrTiO 3 применяют как сегнетоэлектрик, он входит в состав пьезокерамики. Стронциевые соли жирных кислот ("стронциевые мыла") используют для изготовления специальных консистентных смазок.

Соли и соединения Стронций малотоксичны; при работе с ними следует руководствоваться правилами техники безопасности с солями щелочных и щелочноземельных металлов.

Стронций в организме. Стронций - составная часть микроорганизмов, растений и животных. У морских радиолярий (акантарий) скелет состоит из сульфата Стронция - целестина. Морские водоросли содержат 26-140 мг Стронция на 100 г сухого вещества, наземные растения - 2,6, морские животные - 2-50, наземные животные - 1,4, бактерии - 0,27-30. Накопление Стронция различными организмами зависит не только от их вида, особенностей, но и от соотношения в среде Стронция с другими элементами, главным образом с Ca и P, а также от адаптации организмов к определенной геохимической среде.

Животные получают Стронций с водой и пищей. Всасывается Стронций тонким, а выделяется в основном толстым кишечником. Ряд веществ (полисахариды водорослей, катионообменные смолы) препятствует усвоению Стронция. Главное депо Стронция в организме - костная ткань, в золе которой содержится около 0,02% Стронция (в других тканях - около 0,0005%). Избыток солей Стронций в рационе крыс вызывает "стронциевый" рахит. У животных, обитающих на почвах со значит, количеством целестина, наблюдается повышенное содержание Стронция в организме, что приводит к ломкости костей, рахиту и другим заболеваниям. В биогеохимических провинциях, богатых Стронцием (ряд районов Центральной и Восточной Азии, Северной Европы и других), возможна так называемых уровская болезнь.

Стронций-90. Среди искусственных изотопов Стронций его долгоживущий радионуклид 90 Sr - один из важных компонентов радиоактивного загрязнения биосферы. Попадая в окружающую среду, 90 Sr характеризуется способностью включаться (главным образом вместе с Ca) в процессы обмена веществ у растений, животных и человека. Поэтому при оценке загрязнения биосферы 90 Sr принято рассчитывать отношение 90 Sr/Ca в стронциевых единицах (1 с. е. = 1 мк мккюри 90 Sr на 1 г Ca). При передвижении 90 Sr и Ca по биологическим и пищевым цепям происходит дискриминация Стронций, для количественного выражения которой находят "коэффициент дискриминации", отношение 90 Sr/Ca в последующем звене биологической или пищевой цепи к этой же величине в предыдущем звене. В конечном звене пищевой цепи концентрация 90 Sr, как правило, значительно меньше, чем в начальном.

В растения 90 Sr может поступать непосредственно при прямом загрязнении листьев или из почвы через корни (при этом большое влияние имеет тип почвы, ее влажность, рН, содержание Ca и органических веществ и т. д.). Относительно больше накапливают 90 Sr бобовые растения, корне- и клубнеплоды, меньше - злаки, в т. ч. зерновые, и лен. В семенах и плодах накапливается значительно меньше 90 Sr, чем в других органах (например, в листьях и стеблях пшеницы 90 Sr в 10 раз больше, чем в зерне). У животных (поступает в основном с растительной пищей) и человека (поступает в основном с коровьим молоком и рыбой) 90 Sr накапливается главным образом в костях. Величина отложения 90 Sr в организме животных и человека зависит от возраста особи, количества поступающего радионуклида, интенсивности роста новой костной ткани и других. Большую опасность 90 Sr представляет для детей, в организм которых он поступает с молоком и накапливается в быстро растущей костной ткани.

Биологическое действие 90 Sr связано с характером его распределения в организме (накопление в скелете) и зависит от дозы β-облучения, создаваемого им и его дочерним радиоизотопом 90 Y. При длительном поступлении 90 Sr в организм даже в относительно небольших количествах, в результате непрерывного облучения костной ткани, могут развиваться лейкемия и рак костей. Существенные изменения в костной ткани наблюдаются при содержании 90 Sr в рационе около 1 мккюри на 1 г Ca. Заключение в 1963 году в Москве Договора о запрещении испытаний ядерного оружия в атмосфере, космосе и под водой привело к почти полному освобождению атмосферы от 90 Sr и уменьшению его подвижных форм в почве.

Металлический стронций сейчас получают алюмотермическим способом. Окись SrO смешивают с порошком или стружкой алюминия и при температуре 1100...1150°C в электровакуумной печи (давление 0,01 мм ртутного столба) начинают реакцию:

4SrO + 2Аl → 3Sr + Аl 2 O 3 · SrO.

Электролиз соединений стронция (метод, которым пользовался еще Дэви) менее эффективен.

Применение металлического стронция

Стронций – активный металл. Это препятствует его широкому применению в технике. Но, с другой стороны, высокая химическая активность стронция позволяет использовать его в определенных областях народного хозяйства. В частности, его применяют при выплавке меди и бронз – стронций связывает серу, фосфор, углерод и повышает текучесть шлака. Таким образом, стронций способствует очистке металла от многочисленных примесей. Кроме того, добавка стронция повышает твердость меди, почти не снижая ее электропроводности. В электровакуумные трубки стронций вводят, чтобы поглотить остатки кислорода и азота, сделать вакуум более глубоким. Многократно очищенный стронций используют в качестве восстановителя при получении урана.

Дополнительно:

Стро́нций-90 (англ. strontium-90 ) - радиоактивный нуклид химического элемента стронция с атомным номером 38 и массовым числом 90. Образуется преимущественно при делении ядер в ядерных реакторах и ядерном оружии .

В окружающую среду 90 Sr попадает преимущественно при ядерных взрывах и выбросах с АЭС .

Стронций является аналогом кальция и способен прочно откладываться в костях. Длительное радиационное воздействие 90 Sr и продуктов его распада поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни , опухолей кроветворной ткани и костей.

Применение:

90 Sr применяется в производстве радиоизотопных источников энергии в виде титаната стронция (плотность 4,8 г/см³, энерговыделение около 0,54 Вт/см³).

Одно из широких применений 90 Sr - контрольные источники дозиметрических приборов, в том числе военного назначения и Гражданской обороны. Наиболее распространенный - типа «Б-8» исполнен как металлическая подложка, содержащая в углублении каплю эпоксидной смолы, содержащей соединение 90 Sr. Для обеспечения защиты от образования радиоактивной пыли через эрозию, препарат закрыт тонким слоем фольги. Фактически такие источники ионизирующего излучения являются комплексом 90 Sr - 90 Y, поскольку иттрий непрерывно образуется при распаде стронция. 90 Sr - 90 Y является практически чистым бета-источником. В отличие от гамма-радиоактивных препаратов бета-препараты легко экранировать относительно тонким (порядка 1 мм) слоем стали, что обусловило выбор бета-препарата для проверочных целей, начиная со второго поколения военной дозиметрической аппаратуры (ДП-2, ДП-12, ДП-63).

Стронций - серебристо-белый, мягкий, пластичный металл. Химически он очень активен, как и все щелочноземельные металлы. Степень окисления + 2. Стронций непосредственно соединяется при нагревании с галогенами, фосфором, серой, углеродом, водородом и даже с азотом (при температуре выше 400°С).

Заключение

Итак, стронций частое применяют в химии, метеллургии, перотехнике, атомноводородной энергетике и тд. И поэтому, этот химический элемент все увереннее прокладывает себе дорогу в промышленность, спрос на него непрерывно растет. Стронций так же полезен в медицине. Действие на организм человека природного стронция (малотоксичного, широко используемого для лечения остеопороза). Радиоактивный стронций практически всегда негативно воздействует на организм человека.

А сможет ли природа удовлетворить потребности человечества в этом металле?

В природе имеются довольно крупные так называемые вулканогенно-осадочные месторождения стронция, например в пустынях Калифорнии и Аризоны в США, (Кстати, замечено, что стронций «любит» жаркий климат, поэтому в северных странах он встречается гораздо реже.). В третичную эпоху этот район был ареной бурной вулканической деятельности.

Термальные воды, поднимавшиеся вместе с лавой из земных недр, были богаты стронцием. Расположенные среди вулканов озера накапливали этот элемент, образуя за тысячелетия весьма солидные его запасы.

Есть стронций и в водах Кара-Богаз-Гола. Постоянное испарение вод залива приводит к тому, что концентрация солей непрерывно возрастает и наконец, достигает точки насыщения - соли выпадают в осадок. Содержание стронция в этих осадках иногда составляет 1 - 2%.

Несколько лет назад геологи обнаружили значительное месторождение целестина в горах Туркмении. Голубые пласты этого ценного минерала залегают на склонах ущелий и глубоких каньонов Куштангтау - горного хребта в юго-западной части Памиро-Алая. Нет сомнения, что туркменский «небесный» камень успешно послужит нашему народному хозяйству.

Природе не свойственна торопливость: сейчас человек использует запасы стронция, которые она начала создавать миллионы лет назад. Но и сегодня в глубинах земли, в толще морей и океанов происходят сложные химические процессы, возникают скопления ценных элементов, рождаются новые клады, но достанутся они уже не нам, а нашим далеким-далеким потомкам.

Список литературы

    Энциклопедия Кругосвет

http://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/STRONTSI.html?page=0,3

    Википедия «Стронций»

http://ru.wikipedia.org/wiki/%D0%A1%D1%82%D1%80%D0%BE%D0%BD%D1%86%D0%B8%D0%B9

3.Популярна библиотека химических элементов

СТРОНЦИЙ (Strontium, Sr ) - химический элемент периодической системы Д. И. Менделеева, подгруппы щелочноземельных металлов. В организме человека С. конкурирует с кальцием (см.) за включение в кристаллическую решетку оксиапатита кости (см.). 90 Sr, один из наиболее долгоживупих радиоактивных продуктов расщепления урана (см.), накапливаясь в атмосфере и биосфере при испытаниях ядерного оружия (см.), представляет огромную опасность для человечества. Радиоактивные изотопы С. применяют в медицине для лучевой терапии (см.), в качестве радиоактивной метки в диагностических радиофар-мацевтических препаратах (см.) в медико-биол. исследованиях, а также в атомных электрических батареях. Соединения С. используют в дефектоскопах, в чувствительных приборах, в устройствах для борьбы со статическим электричеством, кроме того, С. применяют в радиоэлектронике, пиротехнике, в металлургической, химической промышленности и при изготовлении керамических изделий. Соединения С. неядовиты. При работе с металлическим С. следует руководствоваться правилами обращения со щелочными металлами (см.) и щелочноземельными металлами (см.).

С. был открыт в составе минерала, позднее названного стронцианитом SrC03, в 1787 г. вблизи шотландского города Стронциана.

Порядковый номер стронция 38, атомный вес (масса) 87,62. Содержание С. в земной коре составляет в среднем 4-10 2 вес. %, в морской воде - 0,013% (13 мг/л). Промышленное значение имеют минералы стронцианит и целестин SrSO 4 .

В организме человека содержится ок. 0,32 г стронция, в основном в костной ткани, в крови концентрация С. в норме составляет 0,035 мг/л, в моче - 0,039 мг/л.

С. представляет собой мягкий серебристо-белый металл, t°пл 770°, t°кип 1383°.

По хим. свойствам С. сходен с кальцием и барием (см.), в соединениях валентность стронция 4-2, химически активен, окисляется при обычных условиях водой с образованием Sr(OH) 2 , а также кислородом и другими окислителями.

В организм человека С. поступает гл. обр. с растительной пищей, а также с молоком. Он всасывается в тонкой кишке и быстро обменивается со С., содержащимся в костях. Выведение С. из организма усиливают комп-лексоны, аминокислоты, полифосфаты. Повышенное содержание кальция и фтора (см.) в воде препятствует кумуляции С. в костях. При увеличении концентрации кальция в рационе в 5 раз накопление С. в организме снижается вдвое. Избыточное поступление С. с пищей и водой вследствие его повышенного содержания в почве нек-рых геохим. провинций (напр., в отдельных р-нах Восточной Сибири) вызывает эндемическое заболевание - уровскую болезнь (см. Кашина - Бека болезнь).

В костях, крови и других биол. субстратах С. определяют гл. обр. спектральными методами (см. Спектроскопия).

Радиоактивный стронций

Природный С. состоит из четырех стабильных изотопов с массовыми числами 84, 86, 87 и 88, из к-рых наиболее распространен последний (82,56%). Известны 18 радиоактивных изотопов С. (с массовыми числами 78-83, 85, 89-99) и 4 изомера у изотопов с массовыми числами 79, 83, 85 и 87 (см. Изомерия).

В медицине 90Sr применяют для лучевой терапии в офтальмологии и дерматологии, а также в радиобиологических экспериментах в качестве источника р-изл учения. 85Sr получают либо облучением в ядерном реакторе нейтронами стронциевой мишени, обогащенной по изотопу 84Sr, по реакции 84Sr (11,7) 85Sr, либо производят на циклотроне, облучая протонами или дейтронами мишени из природного рубидия, напр, по реакции 85Rb (p, n) 85Sr. Радионуклид 85Sr распадается с электронным захватом, испуская гамма-излучение с энергией Е гамма, равной 0,513 Мэв (99,28%) и 0,868 Мэв (< 0,1%).

87m Sr также можно получить облучением стронциевой мишени в реакторе по реакции 86Sr (n, гамма) 87mSr, но выход искомого изотопа мал, кроме того, одновременно с 87mSr образуются изотопы 85Sr и 89Sr. Поэтому обычно 87niSr получают с помощью изотопного генератора (см. Генераторы радиоактивных изотопов) на основе материнского изотопа иттрия-87 - 87Y (Т1/2 = 3,3 сут.). 87mSr распадается с изомерным переходом, испуская гамма-излучение с энергией Егамма, равной 0,388 Мэв, и частично с электронным захватом (0,6%).

89Sr содержится в продуктах деления вместе с 90Sr, поэтому 89Sr получают облучением природного С. в реакторе. При этом неизбежно образуется и примесь 85Sr. Изотоп 89Sr распадается с испусканием P-излучения с энергией 1,463 Мэв (ок. 100%). В спектре имеется также очень слабая линия гамма-излучения с энергией Е гамма, равной 0,95 Мэв (0,01%).

90Sr получают выделением из смеси продуктов деления урана (см.). Этот изотоп распадается с испусканием бета-излучения с энергией Е бета, равной 0,546 Мэе (100%), без сопровождающего гамма-излучения. Распад 90Sr приводит к образованию дочернего радионуклида 90Y, к-рый распадается (Т1/2 = 64 часа) с испусканием р-из-лучения, состоящего из двух компонент с Ер, равной 2,27 Мэв (99%) и 0,513 Мэв (0,02%). При распаде 90Y испускается также весьма слабое гамма-излучение с энергией 1,75 Мэв (0,02%).

Радиоактивные изотопы 89Sr и 90Sr, присутствующие в отходах атомной промышленности и образующиеся при испытаниях ядерного оружия, при загрязнении окружающей среды могут попадать в организм человека с пищей, водой, воздухом. Количественная оценка миграции С. в биосфере обычно проводится в сравнении с кальцием. В большинстве случаев при движении 90Sr от предшествующего звена цепи к последующему происходит уменьшение концентрации 90Sr в расчете на 1 г кальция (так наз. коэффициент дискриминации), у взрослых людей в звене организм - рацион этот коэффициент равен 0,25.

Подобно растворимым соединениям других щелочноземельных элементов растворимые соединения С. хорошо всасываются из жел.-киш. тракта (10-60%), всасывание плохорастворимых соединений С. (напр., SrTi03) составляет менее 1%. Степень всасывания радионуклидов С. в кишечнике зависит от возраста. С увеличением содержания кальция в рационе накопление С. в организме уменьшается. Молоко способствует увеличению всасывания С. и кальция в кишечнике. Полагают, что это связано с присутствием в молоке лактозы и лизина.

При вдыхании растворимые соединения С. быстро элиминируются из легких, в то время как плохорастворимый SrTi03 обменивается в легких крайне медленно. Проникновение радионуклида С. через неповрежденную кожу составляет ок. 1%. Через поврежденную кожу (резаная рана, ожоги и др.)? так же как из подкожной клетчатки и мышечной ткани, С. всасывается почти полностью.

С. является остеотропным элементом. Независимо от пути и ритма поступления в организм растворимые соединения 90Sr избирательно накапливаются в костях. В мягких тканях задерживается менее 1% 90Sr.

При внутривенном введении С. очень быстро элиминируется из кровяного русла. Вскоре после введения концентрация С. в костях становится в 100 раз и более выше, чем в мягких тканях. Отмечены нек-рые отличия в накоплении 90Sr в отдельных органах и тканях. Относительно более высокая концентрация 90Sr у экспериментальных животных обнаруживается в почках, слюнной и щитовидной железах, а самая низкая - в коже, костном мозге и надпочечниках. Концентрация 90Sr в корковом веществе почек всегда выше, чем в мозговом веществе. С. первоначально задерживается на костных поверхностях (надкостнице, эндосте), а затем распределяется сравнительно равномерно по всему объему кости. Тем не менее распределение 90Sr в различных частях одной и той же кости и в разных костях оказывается неравномерным. В первое время после введения концентрация 90Sr в эпифизе и метафизе кости экспериментальных животных примерно в 2 раза выше, чем в диафизе. Из эпифиза и метафиза 90Sr выделяется быстрее, чем из диафиза: за 2 мес. концентрация 90Sr в эпифизе и метафизе кости снижается в 4 раза, а в диафизе почти не изменяется. Первоначально 90Sr концентрируется в тех участках, в к-рых происходит активное образование кости. Обильное крово- и лимфообращение в эпиметафизарных участках кости способствует более интенсивному отложению в них 90Sr по сравнению с диафизом трубчатой кости. Величина отложения 90Sr в костях у животных непостоянна. Резкое понижение фиксации 90Sr в костях с возрастом обнаружено у всех видов животных. Отложение 90Sr в скелете существенным образом зависит от пола, беременности, лактации, состояния нейроэндокринной системы. Более высокое отложение 90Sr в скелете отмечено у самцов крыс. В скелете беременных самок 90Sr накапливается меньше (до 25%), чем у контрольных животных. Существенное влияние на накопление 90Sr в скелете самок оказывает лактация. При введении 90Sr через 24 часа после родов в скелете крыс 90Sr задерживается в 1,5-2 раза меньше, чем у нелактирующих самок.

Проникновение 90Sr в ткани эмбриона и плода зависит от стадии их развития, состояния плаценты и длительности циркуляции изотопа в крови матери. Проникновение 90Sr в плод тем больше, чем больше срок беременности в момент введения радионуклида.

Для уменьшения повреждающего действия радионуклидов стронция необходимо ограничить накопление их в организме. С этой целью при загрязнении кожи следует произвести быструю дезактивацию ее открытых участков (препаратом «Защита-7», моющими порошками «Эра» или «Астра», пастой НЭДЭ). При пероральном поступлении радионуклидов стронция следует применять антидоты, позволяющие связать или сорбировать радионуклид. К таким антидотам относят активированный сульфат бария (адсо-бар), полисурьмин, препараты альгиновой к-ты и др. Напр., препарат адсобар при немедленном приеме после попадания радионуклидов в желудок снижает их всасывание в 10-30 раз. Адсорбенты и антидоты следует назначать сразу после обнаружения поражения радионуклидами стронция, т. к. промедление в этом случае приводит к резкому снижению их положительного действия. Одновременно рекомендуют назначать рвотные средства (апоморфин) или производить обильное промывание желудка, применять солевые слабительные, очистительные клизмы. При поражении пылевидными препаратами необходимо обильное промывание носа и полости рта, отхаркивающие средства (термопсис с содой), хлорид аммония, инъекции препаратов кальция, мочегонные. В более поздние сроки после поражения для уменьшения отложения радионуклидов С. в костях рекомендуют применять так наз. стабильный стронций (лактат С. или глюконат С.). Большие дозы кальция перорально или внутривенно MofyT заменить препараты стабильного стронция, если они недоступны. В связи с хорошей реабсорбцией радионуклидов стронция в почечных канальцах показано также применение мочегонных средств.

Нек-рое уменьшение накопления радионуклидов С. в организме может быть достигнуто путем создания конкурентных отношений между ними и стабильным изотопом С. или кальция, а также созданием дефицита этих элементов в тех случаях, когда радионуклид С. уже зафиксировался в скелете. Однако эффективных средств декорпорации радиоактивного стронция из организма пока не найдено.

Минимально значимая активность, не требующая регистрации или получения разрешения органов Государственного санитарного надзора, для 85mSr, 85Sr, 89Sr и 90Sr составляет соответственно 3,5*10 -8 , 10 -10 , 2,8*10 -11 и 1,2*10 -12 кюри/л.

Библиография: Борисов В. П. и д р. Неотложная помощь при острых радиационных воздействиях, М., 1976; Булдаков Л. А. и М о с к а л е в Ю. И. Проблемы распределения и экспериментальной оценки допустимых уровней Cs137, Sr90 и Ru106, М., 1968, библиогр.; Войнар А. И. Биологическая роль микроэлементов в организме животных и человека, с. 46, М., 1960; Ильин JI. А. и Иванников А. Т. Радиоактивные вещества и раны, М., 1979; К а с а в fi-на Б. С. и Т о р б е н к о В. П. Жизнь костной ткани, М., 1979; JI е в и н В. И. Получение радиоактивных препаратов, М., 1972; Метаболизм стронция, под ред. Дж. М. А. Ленихена и др., пер. с англ., М., 1971; Полуэктов Н. С. и д р. Аналитическая химия стронция, М., 1978; P е м и Г. Курс неорганической химии, пер. с нем., т. 1, М., 1972; Protection of the patient in radionuclide investigations, Oxford, 1969, bibliogr.; Table of isotopes, ed. by С. M. Lederer a. V. S. Shirley, N. Y. a. o., 1978.

А. В. Бабков, Ю. И. Москалев (рад.).