Центральная предельная теорема примеры. Системы Массового Обслуживания

Простейший вариант Центральной предельной теоремы (ЦПТ) теории вероятностей таков.

(для одинаково распределенных слагаемых). Пусть X 1 , X 2 ,…, X n , …– независимые одинаково распределенные случайные величины с математическими ожиданиями M (X i ) = m и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Тогда для любого действительного числа х существует предел

где Ф(х) – функция стандартного нормального распределения.

Эту теорему иногда называют теоремой Линдеберга-Леви .

В ряде прикладных задач не выполнено условие одинаковой распределенности. В таких случаях центральная предельная теорема обычно остается справедливой, однако на последовательность случайных величин приходится накладывать те или иные условия. Суть этих условий состоит в том, что ни одно слагаемое не должно быть доминирующим, вклад каждого слагаемого в среднее арифметическое должен быть пренебрежимо мал по сравнению с итоговой суммой. Наиболее часто используется теорема Ляпунова.

Центральная предельная теорема (для разнораспределенных слагаемых) – теорема Ляпунова . Пусть X 1 , X 2 ,…, X n , …– независимые случайные величины с математическими ожиданиями M (X i ) = m i и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Пусть при некотором δ>0 у всех рассматриваемых случайных величин существуют центральные моменты порядка 2+δ и безгранично убывает «дробь Ляпунова»:

Тогда для любого действительного числа х существует предел

где Ф(х) – функция стандартного нормального распределения.

В случае одинаково распределенных случайных слагаемых

и теорема Ляпунова переходит в теорему Линдеберга-Леви.

История получения центральных предельных теорем для случайных величин растянулась на два века – от первых работ Муавра в 30-х годах 18-го века для необходимых и достаточных условий, полученных Линдебергом и Феллером в 30-х годах 20-го века.

Теорема Линдеберга-Феллера. Пусть X 1 , X 2 ,…, X n , …, – независимые случайные величины с математическими ожиданиями M (X i ) = m i и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Предельное соотношение (1), т.е. центральная предельная теорема, выполнено тогда и только тогда, когда при любом τ>0

где F k (x ) обозначает функцию распределения случайной величины X k .

Доказательства перечисленных вариантов центральной предельной теоремы для случайных величин можно найти в классическом курсе теории вероятностей .

Для прикладной статистики и, в частности, для нечисловой статистики большое значение имеет многомерная центральная предельная теорема. В ней речь идет не о сумме случайных величин, а о сумме случайных векторов.

Необходимое и достаточное условие многомерной сходимости . Пусть F n обозначает совместную функцию распределения k -мерного случайного вектора , n = 1,2,…, и F λn . Необходимое и достаточное условие для сходимости F n к некоторой k -мерной функции распределения F состоит в том, что F λn имеет предел для любого вектора λ.

Приведенная теорема ценна тем, что сходимость векторов сводит к сходимости линейных комбинаций их координат, т.е. к сходимости обычных случайных величин, рассмотренных ранее. Однако она не дает возможности непосредственно указать предельное распределение. Это можно сделать с помощью следующей теоремы.

Теорема о многомерной сходимости. Пусть F n и F λn – те же, что в предыдущей теореме. Пусть F - совместная функция распределения k -мерного случайного вектора . Если функция распределения F λn сходится при росте объема выборки к функции распределения F λ для любого вектора λ, где F λ – функция распределения линейной комбинации , то F n сходится к F .

Здесь сходимость F n к F означает, что для любого k -мерного вектора такого, что функция распределения F непрерывна в , числовая последовательность F n сходится при росте n к числу F . Другими словами, сходимость функций распределения понимается ровно также, как при обсуждении предельных теорем для случайных величин выше. Приведем многомерный аналог этих теорем.

Многомерная центральная предельная теорема . Рассмотрим независимые одинаково распределенные k -мерные случайные вектора

где штрих обозначает операцию транспонирования вектора. Предположим, что случайные вектора U n имеют моменты первого и второго порядка, т.е.

М (U n ) = μ, D (U n ) = Σ,

где μ – вектор математических ожиданий координат случайного вектора, Σ – его ковариационная матрица. Введем последовательность средних арифметических случайных векторов:

Тогда случайный вектор имеет асимптотическое k -мерное нормальное распределение , т.е. он асимптотически распределен так же, как k -мерная нормальная величина с нулевым математическим ожиданием, ковариационной Σ и плотностью

Здесь |Σ| - определитель матрицы Σ. Другими словами, распределение случайного вектора сходится к k -мерному нормальному распределению с нулевым математическим ожиданием и ковариационной матрицей Σ.

Напомним, что многомерным нормальным распределением с математическим ожиданием μ и ковариационной матрицей Σ называется распределение, имеющее плотность

Многомерная центральная предельная теорема показывает, что распределения сумм независимых одинаково распределенных случайных векторов при большом числе слагаемых хорошо приближаются с помощью нормальных распределений, имеющих такие же первые два момента (вектор математических ожиданий координат случайного вектора и его корреляционную матрицу), как и исходные вектора. От одинаковой распределенности можно отказаться, но это потребует некоторого усложнения символики. В целом из теоремы о многомерной сходимости вытекает, что многомерный случай ничем принципиально не отличается от одномерного.

Пример. Пусть X 1 , … X n ,…– независимые одинаково распределенные случайные величины. Рассмотрим k -мерные независимые одинаково распределенные случайные вектора

Их математическое ожидание – вектор теоретических начальных моментов, а ковариационная матрица составлена из соответствующих центральных моментов. Тогда - вектор выборочных центральных моментов. Многомерная центральная предельная теорема утверждает, что имеет асимптотически нормальное распределение. Как вытекает из теорем о наследовании сходимости и о линеаризации (см. ниже), из распределения можно вывести распределения различных функций от выборочных начальных моментов. А поскольку центральные моменты выражаются через начальные моменты, то аналогичное утверждение верно и для них.

Предыдущая

Продемонстрируем основные выводы Центральной предельной теоремы с помощью MS EXCEL : построим выборочное распределение среднего, рассчитаем стандартную ошибку и сравним значения, полученные на основе выборки, с выводами ЦПТ.

стремится к нормальному распределению со средним значением μ и стандартным отклонением равным σ/√n

Примечание : Про статистики и их выборочные распределения можно прочитать в статье .

Покажем почему равно σ/√n.

Каждое отдельное наблюдение X i в выборке имеет дисперсию σ 2 . Из , следует, что сумма независимых случайных величин в выборке , т.е. х 1 +х 2 …+х n , имеет дисперсию n*σ 2 , а стандартное отклонение этой суммы равно КОРЕНЬ(n) *σ. Чтобы найти стандартное отклонение среднего выборки нужно разделить стандартное отклонение суммы на n. В результате получим, что стандартное отклонение выборочного среднего равно σ/√n.

Т.к. обычно стандартное отклонение исходного распределения, из которого взята выборка, неизвестно, то в расчетах вместо σ используют ее оценку s - стандартное отклонение выборки .

Соответствующая величина s/√n, где n – размер выборки , имеет специальное название: Стандартная ошибка (Standard Error of the Mean , SE M ).

Примечание : Термин SEM иногда также может использоваться для стандартного отклонения выборочного распределения среднего.

Примечание : Хотя Стандартная ошибка является, по сути, стандартным отклонением , ее специальное название обусловлено стремлением подчеркнуть, что она показывает величину неопределенности выборочного среднего . Стандартная ошибка оценивает насколько выборочное среднее Х ср отличается от среднего значения μ исходного распределения. А термин стандартное отклонение обычно используют для обозначения величины изменчивости отдельных элементов выборки от среднего .

Для применения ЦПТ необходимо, чтобы были выполнены следующие условия:

  • отдельные наблюдения в выборке должны быть независимыми;
  • наблюдения берутся из одной и той же генеральной совокупности , т.е. имеют одинаковое распределение с параметрами μ и σ;
  • размер выборки n должен быть «достаточно большим» (см. пояснения ниже).

Примечание : Выборочное среднее является случайной величиной. Есливыполнены вышеуказанные условия, то Выборочное среднее распределено по нормальному закону . При этом не требуется, чтобы исходное распределение, из которого делается выборка , должно быть нормальным .

Примечание : Несмотря, что отдельные значения x i подчиняются какому-то неизвестному нам закону распределения, процедура объединения многих значений для вычисления суммы или среднего , приводит к нормальному распределению (для которого мы умеем вычислять вероятности). Зачастую, имеет смысл говорить, является распределение нормальным или нет, только в отношении суммы или среднего .

Примеры расчета вероятности в MS EXCEL с использованием ЦПТ

Задача1 . Предприятие производит плавленые сырки. Номинальный вес сырка должен составлять 100 грамм. По естественным причинам, вес каждого сырка отличается от номинала. Из опыта известно, что средний вес сырка составляет 105г, а стандартное отклонение равно 15г. Чтобы избежать потери репутации фирмы вес сырка не должен быть слишком мал, но он не должен быть слишком велик, т.к. при этом увеличиваются расходы. Известно, что любую упаковку из 30 штук сырков отбраковывают, если средний вес сырка в ней меньше 95г и больше чем 110г. Какая часть упаковок будет отбракована при 100% контроле?

Чтобы найти вероятность (долю отбракованных упаковок), мы должны знать распределение случайной величины - веса упаковки. Хотя мы не знаем формы распределения отдельного сырка (это распределение не обязательно нормальное ), но из ЦПТ нам известно, что вес упаковки будет распределен по нормальному закону . Осталось определить параметры этого распределения.

Примечание : Хотя в ЦПТ сказано, что по нормальному закону распределено выборочное среднее , но очевидно, что выборочное распределение суммы также будет распределено по нормальному закону , но с другими параметрами.

Из условий задачи мы знаем, что среднее значение веса упаковки сырков равно 30шт *105г . Мы также можем вычислить стандартное отклонение этого выборочного распределения .

Стандартное отклонение известно только для сырка (15г ), но из (считаем, что веса сырков получаются случайным образом) можно вычислить Стандартное отклонение для упаковки:
Var(x 1 +…+x 30)= Var(x 1)+…+ Var(x 30)=30* Var(x)

Т.к. считаем, что все веса х i имеют одинаковое распределение, то случайную величину (вес сырка) обозначим просто х.

Следовательно, стандартное отклонение упаковки сырков =15*КОРЕНЬ(30)

Сначала определим вероятность, того что упаковка сырков будет весить менее 95*30г. В MS EXCEL это можно сделать с помощью формулы:
=НОРМ.РАСП(95*30; 105*30; 15*КОРЕНЬ(30); ИСТИНА)=0,013%

Теперь определим вероятность того, что упаковка сырков будет весить больше 110*30г.
=1-НОРМ.РАСП(110*30; 105*30; 15*КОРЕНЬ(30); ИСТИНА)=3,395%

Таким образом, отбраковано будет 3,395%+0,013%=3,407% продукции.

Тот же результат можно получить при расчете через среднее значение одного сырка:
=НОРМ.РАСП(95; 105; 15/КОРЕНЬ(30); ИСТИНА)+ 1-НОРМ.РАСП(110; 105; 15/КОРЕНЬ(30); ИСТИНА)

Задача2 . Из свойств нормального распределения можно ожидать, что примерно в 95% случаях выборочное среднее будет находиться в пределах 2-х стандартных ошибок от среднего генеральной совокупности (исходного распределения, из которого взята выборка ), т.е. в пределах:

2*s/КОРЕНЬ(n)<μ<2*s/КОРЕНЬ(n)

Например, пусть размер выборки n=30, среднее генеральной совокупности μ =0, а вычисленное на основе выборки стандартное отклонение s=5.

В этом случае стандартная ошибка = 5/КОРЕНЬ(30)

Покажем с помощью формулы MS EXCEL, что искомая вероятность действительно близка к 95%:
=1-((1-НОРМ.РАСП(2*5/КОРЕНЬ(30);0;5/КОРЕНЬ(30);ИСТИНА))+ НОРМ.РАСП(-2*5/КОРЕНЬ(30);0;5/КОРЕНЬ(30);ИСТИНА))=95,45%

Как работает ЦПТ при n=3 и n=10

Для демонстрации выводов ЦПТ проведем «оценку нормальности» распределения выборочного среднего при n=3 и n=10.

В качестве исходного распределения возьмем , описывающее вероятность выпадения определенной грани при бросании игральной кости.

Как известно, среднее значение этого распределения =(1+6)/2=3,5 ; а стандартное распределение =КОРЕНЬ(((6-1+1)^2-1)/12)=1,708

С помощью MS EXCEL произведем 100 серий по 3 броска кубика (n=3) и 100 серий по 10 бросков (n=10).

Для каждой серии бросков (т.е. для каждой выборки ) будем вычислять выборочное среднее. Затем вычислим среднее Выборочных средних и стандартную ошибку . Убедимся, что в соответствии с ЦПТ , эти значения равны 3,5 и 1,708/КОРЕНЬ(n) , соответственно.

Также построим , чтобы убедиться, что выборочное среднее распределено по , и для исходного равномерного распределения и распределения выборочного среднего.

файле примера на листе ЦПТ Классик .

При n=3 График проверки распределения на нормальность будет соответствовать прямой очень условно (сохраняется дискретность данных, унаследованная от исходного распределения), но для n=10 – соответствие нормальному распределению будет хорошим.


Примечание : В качестве иллюстрации сравним графики проверки распределения на нормальность при n=3 и исходного , т.е. для n=1 (красные точки на рисунке ниже). Как видно на рисунке, значения, взятые из равномерного распределения, располагаются четко выраженными группами.

Среднее и Стандартная ошибка Выборочного распределения среднего близки к расчетным значениям, предсказанным ЦПТ .

Для n=10 видно, что разброс значений выборочного среднего (гистограмма слева) не имеет ничего общего с гистограммой, полученной на основе выборки из исходного равномерного распределения (гистограмма справа).

Вывод : С помощью MS EXCEL мы продемонстрировали как работает ЦПТ : не смотря на то, что исходное распределение по форме не имеет ничего общего с нормальным , уже при небольшом n=10 выборочное среднее распределено по закону близкому к нормальному с тем же средним значением и со стандартным отклонением равным стандартной ошибке .

На практике часто требуется определить размер выборки n, достаточный, чтобы распределение выборочного среднего было достаточно близко к нормальному. Очевидно, что асимптотическое приближение распределения выборочного среднего зависит от исходного распределения, из которого берется выборка (если исходное распределение имеет , то распределение выборочного среднего будет медленнее приближаться к нормальному с ростом n). На практике исходное распределение неизвестно, поэтому обычно предполагается, что размер выборки должен быть n=>30.

Алгоритм решения задач с применением классической ЦПТ

Вы проводите аудит крупного банка. Банковский служащий сообщил Вам, что средний депозит в банке составляет 200 долл., а стандартное отклонение равно 45 долл. Вам нужно убедиться в истинности информации, сообщенной менеджером, поэтому Вы решаете взять данные по случайным 50 депозитам.
Дайте описание выборочного распределения среднего при n =50. Предполагая, что сообщенные менеджером характеристики распределения верны, вычислить вероятность, что рассчитанное Вами среднее значение выборки будет меньше 190 долл.

СОВЕТ : Отличное изложение материала по данной теме приведено на сайте http://brownmath.com/swt/chap08.htm (англ.)

Сначала дадим описание выборочного распределения среднего . Зачем нам это нужно? Дело в том, чтобы вычислить вероятность необходимо знать распределение вероятности. Т.е. нужно показать, что выборочное среднее распределено по нормальному закону.

Напомним, что для того, чтобы описать любое распределение необходимо вычислить его среднее , разброс и форму .

Форма распределения . Для того, чтобы решить задачу необходимо убедиться, что выборочное распределение среднего является нормальным (выполняются условия применимости ЦПТ). Как правило, для этого необходимо проверить 2 условия:

  • размер выборки не должен превышать 10% от генеральной совокупности ;
  • размер выборки достаточен, чтобы, несмотря на форму исходного распределения, распределение выборочного среднего было нормальным . Обычно достаточно, чтобы n было больше 30.

Будем считать, что первое условие выполнено (пусть известно, что в банке более 1000 депозитов), соответственно, 50 депозитов составляет менее 10% от общего количества депозитов банка. Исходное распределение, скорее всего, будет смещенным влево, т.к. обычно большинство депозитов небольшого и среднего размера, а крупных депозитов гораздо меньше. Размер выборки является достаточно большим (50>30), чтобы гарантировать, что форма распределения выборочного среднего является близкой к нормальному распределению .

Среднее . Среднее выборочного распределения , согласно ЦПТ , равно среднему исходного распределения, т.е. в нашем случае 200 долл.

Разброс . Стандартное отклонение выборочного среднего (стандартная ошибка ), согласно ЦПТ, равна =45/КОРЕНЬ(50)=6,36 .

Теперь переходим непосредственно к решению задачи. Сначала построим выборочного среднего N(200; 45/КОРЕНЬ(50)).

Зеленая вертикальная линия соответствует х=190 долл.

По условиям задачи мы взяли выборку из 50 депозитов и вычислили среднее этой выборки (Хср). Теперь рассчитаем вероятность того, что Хср будет меньше 190 долл. Это можно сделать с помощью формулы
=НОРМ.РАСП(190; 200; 45/КОРЕНЬ(50); ИСТИНА)=0,058

Таким образом, если Х ср, вычисленное по 50 депозитам, окажется меньше 190 долл., то, это может стать серьезным основанием для сомнений в истинности слов банковского служащего (утверждавшего, что средний банковский депозит равен 200 долл.), т.к. это является маловероятным событием (<6%).

Расчеты приведены в файле примера на листе Задача .

Примечание : Частой ошибкой при решении подобных задач является неправильное использование стандартного отклонения , т.е. когда вместо стандартной ошибки используют известное стандартное отклонение исходного распределения (45 долл.), которое не обязательно является нормальным . Но, даже если исходное распределение нормальное , то вычисленное значение вероятности (в нашем случае оно будет около 40%) всегда существенно выше правильного значения (примерно 6%). Это соответствует схеме расчета, если бы мы выбрали лишь 1 депозит (вместо 50) и попытались бы на основании его значения принять решение об истинности слов служащего банка.

Резюме : Чаще всего на практике распределение, из которого делается выборка не известно (можно лишь предположить, что распределение банковских депозитов, скорее всего, скошено влево, т.к. обычно небольшие вклады составляют наибольшее количество). Но, не зная математического выражения для распределения, мы не можем оценить вероятность извлечь определенное значение из него. Именно в таких случаях нам помогает ЦПТ .

Альтернативная формулировка ЦПТ

Теперь рассмотрим как работает ЦПТ в случае, когда случайная величина является суммой случайных величин, распределенных по различным законам с различными средними и стандартными отклонениями .

Если x 1 , x 2 , x 3 , … x n – случайные величины с известными значениями среднего μ i и стандартного отклонения σ i , и y= x 1 +x 2 +x 3 + … +x n , то распределение

приближается к N (0;1) при n стремящемуся к бесконечности.

Другими словами ЦПТ утверждает, что сумма n независимых случайных величин при достаточно большом n , будет распределена по нормальному закону со средним значением равным сумме средних значений этих случайных величин и дисперсией равной сумме их дисперсий , т.е. по закону

Как и в случае классической ЦПТ , для демонстрации выводов ЦПТ используем MS EXCEL. В качестве исходных распределений возьмем 4 B(0,1; 20), 3 U и 3 ). В этой книге мы, о производящих функциях будем давать краткую информацию и некоторые применения к подсчёту числовых характеристик случайных величин.

Краткие сведения об ошибке измерений. Известно, что при повторении измерений одного и того же объекта, выполненными одним и тем же измерительным прибором с одинаковой тщательностью (при одинаковых условиях) не всегда достигаются одинаковые результаты. Разброс результатов измерения вызван тем, что на процесс измерения влияют многочисленные факторы, которые не возможно и не целесообразно учитывать. В этой ситуации ошибку, возникающую при измерении интересующей нас величины часто можно рассматривать как сумму большого числа независимых между собой слагаемых, каждое из которых даёт лишь незначительный вклад в образование всей суммы. Но такие случаи приводят нас как раз к условиям применимости теоремы Ляпунова и можно ожидать, что распределение ошибки измеряемой величины мало отличается от нормального распределения.

В более общем случае, ошибка является функцией большого числа случайных аргументов, каждый из которых лишь немного отличается от своего математического ожидания. Линеаризуя эту функцию, то есть, заменяя её линейной, опять приходят к предыдущему случаю. Накопленный опыт по статистической обработке результатов измерений действительно подтверждает этот факт в большинстве практических случаев.

Аналогичные рассуждения объясняют появление нормального распределения в отклонениях параметров, определяющих выпущенную готовую продукцию (изделия), от нормативных значений при массовом производстве.

Рассмотрим следующий пример.

Пример 5. Независимые случайные величиныраспределены равномерно на отрезке . Найти закон распределения с.в.
, а также вероятность того, что

Решение. Условия ЦПТ соблюдается, поэтому с.в.имеет приближенно плотность распределения

По известным формулам для м.о. и дисперсии в случае равномерного распределения находим: Тогда

На основании формулы (26), находим (с учётом табличных значений функции Лапласа)