Что такое число е. Мировые константы "пи" и "e" в основных законах физики и физиологии

ЧИСЛО e
Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e-kt, где k - число, характеризующее скорость распада данного вещества. Обратная величина 1/k называется средним временем жизни атома данного вещества, так как в среднем атом прежде, чем распасться, существует в течение времени 1/k. Величина 0,693/k называется периодом полураспада радиоактивного вещества, т.е. временем, за которое распадается половина исходного количества вещества; число 0,693 приближенно равно loge 2, т.е. логарифму числа 2 по основанию e. Аналогично, если бактерии в питательной среде размножаются со скоростью, пропорциональной их числу в настоящий момент, то по истечении времени t начальное количество бактерий N превращается в Nekt. Затухание электрического тока I в простом контуре с последовательным соединением, сопротивлением R и индуктивностью L происходит по закону I = I0e-kt, где k = R/L, I0 - сила тока в момент времени t = 0. Аналогичные формулы описывают релаксацию напряжений в вязкой жидкости и затухание магнитного поля. Число 1/k часто называют временем релаксации. В статистике величина e-kt встречается как вероятность того, что за время t не произошло событий, наступающих случайно со средней частотой k событий в единицу времени. Если S - сумма денег, вложенных под r процентов с непрерывным начислением вместо начисления через дискретные промежутки времени, то к моменту времени t первоначальная сумма возрастет до Setr/100. Причина "вездесущности" числа e заключается в том, что формулы математического анализа, содержащие экспоненциальные функции или логарифмы, записываются проще, если логарифмы брать по основанию e, а не 10 или какому-либо другому основанию. Например, производная от log10 x равна (1/x)log10 e, тогда как производная от loge x равна просто 1/x. Аналогично, производная от 2x равна 2xloge 2, тогда как производная от eх равна просто ex. Это означает, что число e можно определить как основание b, при котором график функции y = logb x имеет в точке x = 1 касательную с угловым коэффициентом, равным 1, или при котором кривая y = bx имеет в x = 0 касательную с угловым коэффициентом, равным 1. Логарифмы по основанию e называются "натуральными" и обозначаются ln x. Иногда их также называют "неперовыми", что неверно, так как в действительности Дж. Непер (1550-1617) изобрел логарифмы с другим основанием: неперов логарифм числа x равен 107 log1/e (x/107) (см. также ЛОГАРИФМ). Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции

График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера


где i2 = -1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению eip + 1 = 0, связывающему 5 наиболее известных в математике чисел. При вычислении значения e могут быть использованы и некоторые другие формулы (чаще всего пользуются первой из них):



Значение e с 15 десятичными знаками равно 2,718281828459045. В 1953 было вычислено значение e с 3333 десятичными знаками. Символ e для обозначения этого числа был введен в 1731 Л. Эйлером (1707-1783). Десятичное разложение числа e непериодично (e - иррациональное число). Кроме того, e, как и p, - трансцендентное число (оно не является корнем никакого алгебраического уравнения с рациональными коэффициентами). Это доказал в 1873 Ш.Эрмит. Впервые было показано, что столь естественным образом возникающее в математике число является трансцендентным.
См. также
МАТЕМАТИЧЕСКИЙ АНАЛИЗ ;
НЕПРЕРЫВНЫЕ ДРОБИ ;
ЧИСЕЛ ТЕОРИЯ ;
ЧИСЛО p;
РЯДЫ .

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ЧИСЛО e" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

    ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова

    ЧИСЛО «Е» (ЕХР), иррациональное число, служащее основанием натуральных ЛОГАРИФМОВ. Это действительное десятичное число, бесконечная дробь, равная 2,7182818284590...., является пределом выражения (1/) при п, стремящемся к бесконечности. По сути,… … Научно-технический энциклопедический словарь

    Количество, наличность, состав, численность, контингент, сумма, цифра; день.. Ср. . См. день, количество. небольшое число, несть числа, расти числом... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские… … Словарь синонимов

Книги

  • Число имени. Тайны нумерологии. Выход из тела для ленивых. Учебник по экстрасенсорике (количество томов: 3)
  • Число имени. Новый взгляд на числа. Нумерология - путь познания (количество томов: 3) , Лоуренс Ширли. Число имени. Тайны нумерологии. Книга Ширли Б. Лоуренс является всесторонним исследованием древней эзотерической системы – нумерологии. Чтобы научиться использовать вибрации чисел для…

Все знают геометрический смысл числа π - это длина окружности с единичным диаметром:

А вот смысл другой важной константы, e , имеет свойство быстро забываться. То есть, не знаю, как вам, а мне каждый раз стоит усилий вспомнить, чем же так замечательно это число, равное 2,7182818284590... (значение я, однако, по памяти записал). Поэтому я решил написать заметку, чтобы больше из памяти не вылетало.

Число e по определению - предел функции y = (1 + 1 / x ) x при x → ∞:

x y
1 (1 + 1 / 1) 1 = 2
2 (1 + 1 / 2) 2 = 2,25
3 (1 + 1 / 3) 3 = 2,3703703702...
10 (1 + 1 / 10) 10 = 2,5937424601...
100 (1 + 1 / 100) 100 = 2,7048138294...
1000 (1 + 1 / 1000) 1000 = 2,7169239322...
lim × → ∞ = 2,7182818284590...

Это определение, к сожалению, не наглядно. Непонятно, чем замечателен этот предел (несмотря на то, что он называется «вторым замечательным»). Подумаешь, взяли какую-то неуклюжую функцию, посчитали предел. У другой функции другой будет.

Но число e почему-то всплывает в целой куче самых разных ситуаций в математике.

Для меня главный смысл числа e раскрывается в поведении другой, куда более интересной функции, y = k x . Эта функция обладает уникальным свойством при k = e , которое можно показать графически так:

В точке 0 функция принимает значение e 0 = 1. Если провести касательную в точке x = 0, то она пройдёт к оси абсцисс под углом с тангенсом 1 (в жёлтом треугольнике отношение противолежащего катета 1 к прилежащему 1 равно 1). В точке 1 функция принимает значение e 1 = e . Если провести касательную в точке x = 1, то она пройдёт под углом с тангенсом e зелёном треугольнике отношение противолежащего катета e к прилежащему 1 равно e ). В точке 2 значение e 2 функции снова совпадает с тангенсом угла наклона касательной к ней. Из-за этого, заодно, сами касательные пересекают ось абсцисс ровно в точках −1, 0, 1, 2 и т. д.

Среди всех функций y = k x (например, 2 x , 10 x , π x и т. д.), функция e x - единственная обладает такой красотой, что тангенс угла её наклона в каждой её точке совпадает со значением самой функции. Значит по определению значение этой функции в каждой точке совпадает со значением её производной в этой точке: (e x )´ = e x . Почему-то именно число e = 2,7182818284590... нужно возводить в разные степени, чтобы получилась такая картинка.

Именно в этом, на мой вкус, состоит его смысл.

Числа π и e входят в мою любимую формулу - формулу Эйлера, которая связывает 5 самых главных констант - ноль, единицу, мнимую единицу i и, собственно, числа π и е :

e iπ + 1 = 0

Почему число 2,7182818284590... в комплексной степени 3,1415926535...i вдруг равно минус единице? Ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.

Меня всегда поражала красота этой формулы. Возможно, в математике есть и более удивительные факты, но для моего уровня (тройка в физико-математическом лицее и пятёрка за комплексный анализ в универе) это самое главное чудо.

Число «е» – одна из важнейших математических констант, о которой каждый слышал на школьных уроках математики. Concepture публикует популярное изложение, написанное гуманитарием для гуманитариев, в котором доступным языком расскажет зачем и почему существует число Эйлера.

Что общего у наших денег и числа Эйлера?

В то время как у числа π (пи) есть вполне определенный геометрический смысл и его использовали еще древние математики, то число е (число Эйлера) заняло свое заслуженное место в науке сравнительно недавно и корни его уходят прямиком… к финансовым вопросам.

С момента изобретения денег прошло совсем немного времени, когда люди догадались, что валюту можно одалживать или ссужать под определенный процент. Естественно, «древние» бизнесмены не пользовались привычным нам понятием «процент», но увеличение суммы на какой-то определенный показатель за установленный период времени было им знакомо.

На фото: банкнота стоимостью 10 франков с изображением Леонарда Эйлера (1707-1783).

Мы не будем углубляться в пример с 20% годовых, так как от него добираться до числа Эйлера слишком долго. Воспользуемся самым распространенным и наглядным объяснением значения этой константы, а для этого нам придется немного пофантазировать и вообразить, что какой-то банк предлагает нам положить деньги на депозит под 100% годовых.

Мысленно-финансовый эксперимент

Для этого мысленного эксперимента можно взять любую сумму и результат всегда будет идентичным, но именно начиная с 1, мы сможем прийти непосредственно к первому приближенному значению числа е . Потому, допустим, что мы вкладываем в банк 1 доллар, при ставке 100% годовых в конце года у нас будет 2 доллара.

Но это только если проценты капитализируются (прибавляются) раз в год. А что если они будут капитализироваться два раза в год? То есть будет начисляться по 50% каждые полгода, причем вторые 50% будут начисляться уже не от начальной суммы, а от суммы, увеличенной на первые 50%. Будет ли это выгоднее для нас?

Наглядная инфографика, отображающая геометрический смысл числа π .

Разумеется, будет. При капитализации два раза в год, спустя полгода у нас будет 1,50 доллара на счете. К концу года прибавится еще 50% от 1,50 доллара, то есть общая сумма составит 2,25 доллара. Что же будет, если капитализацию проводить каждый месяц?

Нам будут начислять по 100/12% (то есть, примерно по 8,(3)%) каждый месяц, что окажется еще более выгодным - к концу года у нас будет 2,61 доллара. Общая формула для вычисления итоговой суммы при произвольном количестве капитализаций (n) в год выглядит так:

Итоговая сумма = 1(1+1/n) n

Получается, при значении n = 365 (то есть, если наши проценты будут капитализироваться каждый день), мы получим вот такую формулу: 1(1+1/365) 365 = 2,71 доллара. Из учебников и справочников мы знаем, что е приблизительно равно 2,71828, то есть, рассматривая ежедневную капитализацию нашего сказочного вклада мы уже подошли к приблизительному значению е, которое уже достаточно для многих вычислений.

Рост n можно продолжать бесконечно и чем больше будет его значение, тем точнее мы сможем вычислить число Эйлера, вплоть до необходимого нам, по какой-либо причине, знака после запятой.

Это правило, конечно, не ограничивается только нашими финансовыми интересами. Математические константы далеко не «узкие специалисты» - они действуют одинаково хорошо вне зависимости от области применения. Поэтому хорошенько покопавшись, можно обнаружить их практически в любой сфере жизни.

Получается, число е что-то вроде меры всех изменений и «натуральный язык математического анализа». Ведь «матан» крепко повязан с понятиями дифференцирования и интегрирования, а обе эти операции имеют дело с бесконечно малыми изменениями, которые так великолепно характеризует число е .

Уникальные свойства числа Эйлера

Рассмотрев самый доходчивый пример объяснения построения одной из формул для вычисления числа е , кратко рассмотрим еще пару вопросов, которые к нему напрямую относятся. И один из них: что же такого уникального в числе Эйлера?

По идее, абсолютно любая математическая константа уникальна и у каждой есть своя история, но, согласитесь, претензия на звание натурального языка математического анализа - довольно весомая претензия.

Первая тысяча значений ϕ (n) для функции Эйлера.

Однако, у числа е есть на то основания. При построении графика функции y = e x выясняется поразительный факт: не только y равен e x , этому же показателю равен градиент кривой и площадь под кривой. То есть площадь под кривой от определенного значения y до минус бесконечности.

Никакое другое число этим похвастаться не может. Нам, гуманитариям (ну, или просто НЕ математикам), такое заявление мало что говорит, но сами математики утверждают, что это очень важно. Почему важно? Мы попробуем разобраться в этом вопросе в другой раз.

Логарифм, как предпосылка Числа Эйлера

Возможно, кто-то помнит со школы, что число Эйлера - это также основание натурального логарифма. Что ж, это согласуется с его природой, как меры всех изменений. Все-таки, причем же тут Эйлер? Справедливости ради нужно отметить, что е также иногда называется числом Непера, но без Эйлера история будет неполной, как и без упоминания о логарифмах.

Изобретение в XVII веке логарифмов шотландским математиком Джоном Непером стало одним из важнейших событий истории математики. На праздновании в честь юбилея этого события, которое прошло в 1914 году Лорд Мултон (Lord Moulton) так отозвался о нем:

«Изобретение логарифмов было для научного мира как гром среди ясного неба. Никакая предшествующая работа не вела к нему, не предсказывала и не обещала это открытие. Оно стоит особняком, оно прорывается из человеческой мысли внезапно, не заимствуя ничего из работы других разумов и не следуя уже известным тогда направлениям математической мысли».

Пьер-Симон Лаплас, знаменитый французский математик и астроном, еще более драматично выразил важность этого открытия: «Изобретение логарифмов, уменьшив часы кропотливого труда, вдвое увеличило жизнь астронома». Что же так впечатлило Лапласа? А причина очень проста - логарифмы позволили ученым в разы уменьшить время, обычно затрачиваемое для громоздких вычислений.

В общем и целом, логарифмы упрощали вычисления - опускали их на один уровень ниже по шкале сложности. Проще говоря, вместо умножения и деления приходилось совершать операции сложения и вычитания. А это намного эффективнее.

е - основание натурального логарифма

Давайте примем за данность тот факт, что Непер был первопроходцем в сфере логарифмов - их изобретателем. По крайней мере, он опубликовал свои открытия первым. В таком случае возникает вопрос: в чем заслуга Эйлера?

Все просто - его можно назвать идейным наследником Непера и человеком, который довел дело жизни шотландского ученного до логарифмического (читать логического) завершения. Интересное такое вообще возможно?

Какой-то очень важный график построенный при помощи натурального логорифма.

Если говорить конкретнее, то Эйлер вывел основание натурального логарифма, теперь известное как число е или число Эйлера. Кроме этого, он вписал свое имя в историю науки столько раз, сколько и не снилось Васе, который, кажется, успел «побывать» везде.

К сожалению, конкретно принципы работы с логарифмами - это тема отдельной большой статьи. Поэтому пока будет достаточно сказать, что благодаря работе ряда самоотверженных ученых, которые, буквально, посвятили годы своей жизни составлению логарифмических таблиц в те времена, когда никто и слыхом не слыхивал о калькуляторах, прогресс науки сильно ускорился.

На фото: Джон Непер - шотландский математик, изобретатель логарифма (1550—1617.)

Забавно, но этот прогресс, в конце концов, привел к выходу из употребления данных таблиц, а причиной тому послужило именно появление ручных калькуляторов, которые полностью переняли на себя задачу по выполнению такого рода вычислений.

Возможно, вы еще слышали о логарифмических линейках? Когда-то без них инженерам или математикам бывало не обойтись, а сейчас это почти как астролябия - интересный инструмент, но скорее в плане истории науки, чем повседневной практики.

Почему так важно быть основанием логарифма?

Оказывается, основанием логарифма может быть любое число (например, 2 или 10), но, именно благодаря уникальным свойствам числа Эйлера логарифм по основанию е называется натуральным. Он как бы встроен в структуру реальности - от него никуда не убежать, да и не нужно, ведь он значительно упрощает жизнь ученым, работающим в самых разных областях.

Приведем доходчивое объяснение природы логарифма с сайта Павла Бердова . Логарифм по основанию a от аргумента x - это степень, в которую надо возвести число a, чтобы получить число x. Графически это обозначается так:

log a x = b, где a - основание, x - аргумент, b - это то, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен 3-м, поскольку 2 3 = 8).

Выше мы видели число 2 в образе основания логарифма, но математики говорят, что самый талантливый актер на эту роль - число Эйлера. Поверим им на слово… А потом проверим, чтобы убедиться самим.

Выводы

Наверное, плохо, что в рамках высшего образования так сильно разделены естественные и гуманитарные науки. Иногда это приводит к слишком сильному «перекосу» и получается так, что с человеком, прекрасно разбирающимся, допустим, в физике и математике, абсолютно неинтересно говорить на другие темы.

И наоборот, можно быть первоклассным специалистом-литературоведом, но, в то же время, быть совершенно беспомощным, когда речь заходит о той же физике и математике. А ведь все науки интересны по-своему.

Надеемся, что мы, пытаясь преодолеть свою собственную ограниченность в рамках импровизированной программы «я - гуманитарий, но я лечусь», помогли и вам узнать и, главное, понять, что-то новое из не совсем привычной научной сферы.

Ну а тем, кто захочет поподробнее узнать о числе Эйлера, можем порекомендовать несколько источников, в которых может при желании разобраться даже далекий от математики человек: Эли Маор в своей книге «е: история одного числа» («e: the story of a number») подробно и доступно описывает предысторию и историю числа Эйлера.

Также, в разделе «Рекомендуем« под этой статьей Вы сможете название youtube-каналов и видео, которые были сняты профессиональными математиками, пытающимися доходчиво объяснить число Эйлера так, чтобы это было понятно даже не специалистам Русские субтитры в наличие.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Обычный снос разрядов в числе. Когда записывается 4,47 · 10^8, подразумевается снос плавающей запятой на 8 разрядов вперёд - в данном случае это будет число 447 с 6 нулями впереди, т.е. 447.000.000 . В программировании могут использоваться E-значения, причём e нельзя писать само по себе , но E - можно (но не везде и не всегда, об этом будет отмечено ниже), т.к. предпоследнее может ошибочно принятым за число Эйлера . Если нужно записать огромное число сокращённо, может использоваться стиль 4,47·E8 (альтернативный вариант для производства и мелкошрифтной печати - 4,47×E8), чтобы число читалось более разгружено и разряды указывались более обособленно (между арифметическими знаками ставить пробелы нельзя - в противном случае, это математическое условие, а не число).

3,52E3 - это хорошо для записи без индексов, но читать разрядное смещение будет сложнее. 3,52 · 10^8 - условие, т.к. требует индекса и отсутствует мантисса (последнее существует только у оператора, а это - расширенный множитель). " · 10" - процесс стандартного (основного) операционного умножения, число после ^ - показатель сноса разрядов, поэтому его не нужно делать мелким, если необходимо писать документы в данной форме (соблюдая надстрочное положение), в некоторых случаях, желательно использовать масштаб в районе 100 - 120%, а не стандартные 58%. Используя мелкий масштаб для ключевых элементов условия, снижается визуальное качество цифровой информации - придётся всматриваться (может быть и не нужно, но факт остаётся фактом - «прятать» условия мелким шрифтом не нужно, можно было вообще «закопать» - сокращать масштаб отдельных элементов условия это неприемлемо, особенно на компьютере), чтобы заметить «сюрприз», а это очень вредно даже на бумажном ресурсе.

Если процесс умножения выполняет особые операции, то в таких случаях использование пробелов может быть избыточным, т.к. помимо умножения чисел, множитель может быть связывающим звеном для огромных и мелких чисел, химэлементов и т.д. и т.п., которые нельзя записать десятичной дробью обычных чисел или невозможно записать конечным результатом. Это может не касаться записи с " · 10^y", т.к. любое значение в выражении выполняет роль множителя, а "^y" - степень, указываемая надстрочным способом, т.е. является числовым условием. Но, убрав пробелы вокруг множителя и записав иначе - будет ошибкой, т.к. оператор отсутствует. Сам отрывок записи " · 10" - множитель-оператор + число, а не первый + второй оператор. Здесь и есть основная причина того, почему с 10-кой так нельзя. Если после числового оператора нет особых значений, т.е. нечисловых, но системных, то данный вариант записи не может быть оправдан - если есть системное значение, то такое значение должно подходить под определённые задачи с числовым или практическим сокращением чисел (для определённых действий, например, 1,35f8, где f - какое-либо уравнение, созданное для практических специальных задач, которое выводит действительные числа в результате конкретных практических опытов, 8 - значение, которое подставлено как переменное к оператору f и совпадает с числами при последовательном изменении условий наиболее удобным образом, если эта задача архиважная, то такие данные значения могут быть использованы со знаком без пробелов). Кратко, для подобных арифметических операций, но с другими целями, также можно проделывать с плюсами, минусами и делителями, если в этом есть крайняя необходимость для создания новых или упрощения существующих способов записи данных с сохранением точности на практике и может являться применимым числовым условием для определённых арифметических целей.

Итог: официально утверждённую форму экспоненциальной записи рекомендуется писать с пробелом и масштабом надстрочного шрифта в 58% и смещением в 33% (если изменение масштаба и смещения разрешается другими сторонами уровень в 100 - 120%, то можно установить 100% - это самый оптимальный вариант записи надстрочных значений, оптимальное смещение - ≈ 50%). На компьютере можно использовать 3,74e+2, 4,58E-1, 6,73·E-5, E-11, если последние два формата поддерживаются, на форумах лучше отказаться от e-сокращений по известным причинам, а стиль 3,65·E-5 или 5,67E4 может быть полностью понятным, исключения могут составлять лишь официальные сегменты общественности - там только с " · 10^x ", причём вместо ^x - используется только надстрочная запись степени .

Короче говоря, E является суперсокращением для десятичного антилогарифма, который часто помечают, как antilog либо antilg. Например, 7,947antilg-4 будет равен тому же, что и 7,947E-4. На практике это гораздо практичнее и удобнее, чем тягать «десятку» с надстрочным знаком степени лишний раз. Это можно назвать «экспоненциальным» логарифмическим видом числа как альтернативный вариант менее удобному «экспоненциальному» классическому. Только вместо «antilg», используется «E» либо сразу идёт второе число с пропуском (если число положительное) либо без него (на десятисегментных научных калькуляторах, типа "Citizen CT-207T").