Что такое интенсивность света и почему она важна. Интенсивность освещения

Может очень сильно различаться, причем визуально мы не в состоянии определить степень освещенности, т. к. человеческий глаз наделен способностью приспосабливаться к разному освещению. Между тем, интенсивность освещения имеет чрезвычайно важное значение в самых разнообразных сферах деятельности. Для примера можно взять процесс кино- или видеосъемки, а также, допустим, выращивание комнатных растений.

Человеческий глаз воспринимает световые от 380 нм (фиолетового цвета) до 780 нм (красного). Лучше всего мы воспринимаем волны с длиной, как раз не самой пригодной для растений. Яркое и приятное нашему глазу освещение может быть неподходящим для растений в теплице, которые могут недополучать важных для фотосинтеза волн.

Интенсивность света измеряется в люксах. Ярким солнечным полднем в нашей средней полосе она достигает примерно 100 000 люкс, к вечеру снижается до 25 000 люкс. В густой тени ее значение составляет десятые доли этих величин. В помещениях интенсивность солнечного освещения значительно меньше, т. к. свет ослаблен деревьями и оконными стеклами. Самое яркое освещение (на южном окне летом сразу за стеклами) в лучшем случае 3-5 тысяч люкс, на середине комнаты (в 2-3 метрах от окна) - всего 500 люкс. Это минимально необходимое для выживания растений освещение. Для нормального роста даже неприхотливым требуется не менее 800 люкс.

Интенсивность света на глаз мы определить не можем. Для этого существует прибор, название которого - люксметр. При его покупке необходимо уточнить измеряемый им диапазон волн, т.к. возможности прибора хоть и шире возможностей человеческого глаза, но все же ограничены.

Интенсивность света также можно измерить с помощью фотоаппарата или фотоэкспонометра. Правда, придется сделать перерасчет полученных единиц в люксы. Для проведения измерения нужно в месте замера положить белый лист бумаги и навести на него фотоаппарат, светочувствительность которого установлена на 100, а диафрагма на 4. Определив выдержку, следует ее знаменатель умножить на 10, полученное значение будет приблизительно соответствовать освещению в люксах. Например, при полученной выдержке 1/60 сек. освещение около 600 люкс.

Если вы увлекаетесь разведением цветов и уходом за ними, то, конечно же, знаете, что энергия света жизненно необходима растениям для нормального фотосинтеза. Свет оказывает влияние на скорость роста, направление, развитие цветка, размер и форму его листьев. С уменьшением световой интенсивности пропорционально замедляются все процессы в растениях. Количество его зависит от того, насколько удален источник света, от стороны горизонта, на которую обращено окно, от степени затененности уличными деревьями, от наличия штор или жалюзи. Чем светлее помещение, тем активнее происходит рост растений и тем больше им требуется воды, тепла и удобрений. Если растения растут в тени, то и ухода они требуют в меньшем количестве.

При съемке фильма или телевизионной передачи освещенность имеет очень важное значение. Высококачественная съемка возможна при освещенности порядка 1000 люкс, достигаемой в телевизионной студии при помощи специальных ламп. Но приемлемое качество изображения можно получить и при меньшем освещении.

Интенсивность освещения в студии до начала и в процессе съемки измеряют с помощью экспонометров или высококачественных цветных мониторов, которые подключаются к видеокамере. До начала съемки лучше всего пройтись с экспонометром по всей съемочной площадке с целью определения затемненных или чрезмерно освещенных ее участков во избежание негативных явлений при просмотре отснятого материала. Кроме того, правильной регулировкой освещения можно добиться дополнительной выразительности снимаемой сцены и нужных режиссерских эффектов.

Таким образом, в геометрической оптике световую волну можно рассматривать как пучок лучей. Лучи, однако, сами по себе определяют лишь направление распространения света в каждой точке; остается вопрос о распределении интенсивности света в пространстве.

Выделим на какой-либо из волновых поверхностей рассматриваемого пучка бесконечно малый элемент. Из дифференциальной геометрии известно, что всякая поверхность имеет в каждой своей точке два, вообще говоря, различных главных радиуса кривизны.

Пусть (рис. 7) - элементы главных кругов кривизны, проведенные на данном элементе волновой поверхности. Тогда лучи, проходящие через точки а и с, пересекутся друг с другом в соответствующем центре кривизны а лучи, проходящие через b и d, пересекутся в другом центре кривизны .

При данных углах раствора лучей, исходящих из длины отрезков пропорциональны соответствующим радиусам кривизны (т. е. длинам и ); площадь элемента поверхности пропорциональна произведению длин , т. е. пропорциональна Другими словами, если рассматривать элемент волновой поверхности, ограниченный определенным рядом лучей, то при движении вдоль них площадь этого элемента будет меняться пропорционально .

С другой стороны, интенсивность, т. е. плотность потока энергии, обратно пропорциональна площади поверхности, через которую проходит данное количество световой энергии. Таким образом, мы приходим к выводу, что интенсивность

Эту формулу надо понимать следующим образом. На каждом данном луче (АВ на рис. 7) существуют определенные точки и , являющиеся центрами кривизны всех волновых поверхностей, пересекающих данный луч. Расстояния и от точки О пересечения волновой поверхности с лучом до точек являются радиусами кривизны волновой поверхности в точке О. Таким образом, формула (54,1) определяет интенсивность света в точке О на данном луче как функцию от расстояний до определенных точек на этом дуче. Подчеркнем, что эта формула непригодна для сравнения интенсивностей в разных точках одной и той же волновой поверхности.

Поскольку интенсивность определяется квадратом модуля поля, то для изменения самого поля вдоль луча мы можем написать:

где в фазовом множителе под R может поразумеваться как так и величины отличаются друг от друга только постоянным (для данного луча) множителем, поскольку разность , расстояние между обоими центрами кривизны, постоянна.

Если оба радиуса кривизны волновой поверхности совпадают, то (54,1) и (54,2) имеют вид

Это имеет место, в частности, всегда в тех случаях, когда свет испускается точечным источником (волновые поверхности являются тогда концентрическими сферами, a R - расстоянием до источника света).

Из (54,1) мы видим, что интенсивность обращается в бесконечность в точках т. е. в центрах кривизны волновых поверхностей. Применяя это ко всем лучам в пучке, находим, что интенсивность света в данном пучке обращается в бесконечность, вообще говоря, на двух поверхностях - геометрическом месте всех центров кривизны волновых поверхностей. Эти поверхности носят название каустик. В частном случае пучка лучей со сферическими волновыми поверхностями обе каустики сливаются в одну точку {фокус).

Отметим, что, согласно известным из дифференциальной геометрии свойствам геометрического места центров кривизны семейства поверхностей, лучи касаются каустик.

Надо иметь в виду, что (при выпуклых волновых поверхностях) центры кривизны волновых поверхностей могут оказаться лежащими не на самих лучах, а на их продолжениях за оптическую систему, от которой они исходят. В таких случаях говорят о мнимых каустиках (или мнимых фокусах). Интенсивность света при этом нигде не обращается в бесконечность.

Что касается обращения интенсивности в бесконечность, то в действительности, разумеется, интенсивность в точках каустики делается большой, но остается конечной (см. задачу к § 59). Формальное обращение в бесконечность означает, что приближение геометрической оптики становится во всяком случае неприменимым вблизи каустик. С этим же обстоятельством связано и то, что изменение фазы вдоль луча может определяться формулой (54,2) только на участках луча, не включающих в себя точек его касания с каустиками. Ниже (в § 59) будет показано, что в действительности при прохождении мимо каустики фаза поля уменьшается на . Это значит, что если на участке луча до его касания первой каустики поле пропорционально множителю - координата вдоль луча), то после прохождения мимо каустики поле будет пропорционально То же самое произойдет вблизи точки касания второй каустики, и за этой точкой поле будет пропорционально

I(t) = \frac{1}{T}\int\limits_t^{t+T}\left|\vec S(t)\right|dt,

где вектор Пойнтинга \vec S(t)=\frac{c}{4\pi}\left[\vec E(t)\times\vec B(t)\right], (в системе СГС), E - напряжённость электрического поля, а B - магнитная индукция.

Для монохроматической линейно поляризованной волны с амплитудой напряжённости электрического поля E_0 интенсивность равна:

I = \frac{\epsilon_0cE_0^2}{8\pi}.

Для монохроматической циркулярно поляризованной волны это значение в два раза больше:

I = \frac{\epsilon_0cE_0^2}{4\pi}.

Интенсивность звука

Звук представляет собой волну механических колебаний среды. Интенсивность звука может быть выражена через амплитудные значения звукового давления p и колебательной скорости среды v :

I = \frac{pv}{2}.

Напишите отзыв о статье "Интенсивность (физика)"

Примечания

Отрывок, характеризующий Интенсивность (физика)

– Ежели все русские хотя немного похожи на вас, – говорил он Пьеру, – c"est un sacrilege que de faire la guerre a un peuple comme le votre. [Это кощунство – воевать с таким народом, как вы.] Вы, пострадавшие столько от французов, вы даже злобы не имеете против них.
И страстную любовь итальянца Пьер теперь заслужил только тем, что он вызывал в нем лучшие стороны его души и любовался ими.
Последнее время пребывания Пьера в Орле к нему приехал его старый знакомый масон – граф Вилларский, – тот самый, который вводил его в ложу в 1807 году. Вилларский был женат на богатой русской, имевшей большие имения в Орловской губернии, и занимал в городе временное место по продовольственной части.
Узнав, что Безухов в Орле, Вилларский, хотя и никогда не был коротко знаком с ним, приехал к нему с теми заявлениями дружбы и близости, которые выражают обыкновенно друг другу люди, встречаясь в пустыне. Вилларский скучал в Орле и был счастлив, встретив человека одного с собой круга и с одинаковыми, как он полагал, интересами.
Но, к удивлению своему, Вилларский заметил скоро, что Пьер очень отстал от настоящей жизни и впал, как он сам с собою определял Пьера, в апатию и эгоизм.
– Vous vous encroutez, mon cher, [Вы запускаетесь, мой милый.] – говорил он ему. Несмотря на то, Вилларскому было теперь приятнее с Пьером, чем прежде, и он каждый день бывал у него. Пьеру же, глядя на Вилларского и слушая его теперь, странно и невероятно было думать, что он сам очень недавно был такой же.
Вилларский был женат, семейный человек, занятый и делами имения жены, и службой, и семьей. Он считал, что все эти занятия суть помеха в жизни и что все они презренны, потому что имеют целью личное благо его и семьи. Военные, административные, политические, масонские соображения постоянно поглощали его внимание. И Пьер, не стараясь изменить его взгляд, не осуждая его, с своей теперь постоянно тихой, радостной насмешкой, любовался на это странное, столь знакомое ему явление.
В отношениях своих с Вилларским, с княжною, с доктором, со всеми людьми, с которыми он встречался теперь, в Пьере была новая черта, заслуживавшая ему расположение всех людей: это признание возможности каждого человека думать, чувствовать и смотреть на вещи по своему; признание невозможности словами разубедить человека. Эта законная особенность каждого человека, которая прежде волновала и раздражала Пьера, теперь составляла основу участия и интереса, которые он принимал в людях. Различие, иногда совершенное противоречие взглядов людей с своею жизнью и между собою, радовало Пьера и вызывало в нем насмешливую и кроткую улыбку.

А.4. Перенос излучения в атмосфере

Основными физическими характеристиками поля излучения являются – интенсивность, плотность, поток .

Интенсивность (яркость) излучения - это количество световой энергии, которое падает перпендикулярно на площадку единичной площади (испускается с единицы площади видимой поверхности источника) из единичного телесного угла за единицу времени:

В этом выражении dE – количество световой энергии, dS – площадка, принимающая энергию, - телесный угол, из которого поступает энергия излучения, dt – интервал времени, в течение которого действует излучение. Предполагается, что телесный угол достаточно мал, а площадка перпендикулярна направлению распространения излучения.

В общем случае следует рассматривать так называемую спектральную интенсивность - интенсивность, отнесенную к единичному интервалу длин волн излучения I λ или частоты I ν (здесь индексы обозначают длину волны или частоту). Согласно определению, интенсивность является функцией координат точки среды r , направления распространения и времени (здесь углы определены в сферической системе координат, k – единичный вектор, определяющий направление распространения излучения). Для элемента телесного угла в сферической системе координат имеем

.

Приведенное определение яркости имеет смысл, когда речь идет о поверхностном источнике, для которого вполне очевидно понятие единицы поверхности источника излучения. В случае, когда речь идет о яркости объемного источника излучения (яркости неба), такое определение, по крайней мере, непонятно. Покажем, что яркость источника численно равна интенсивности излучения, регистрируемого на некотором расстоянии, когда угол меньше угловых размеров источника. Предположим, что названный угол охватывает площадку источника излучения, находящегося на расстоянии r от точки наблюдения, и угол между направлением распространения излучения и нормалью к площадке равен α. Тогда . Подставляя это выражение в определение интенсивности, получаем

где обозначено, - телесный угол, в котором распространяется испускаемое излучение. Таким образом, яркость протяженного источника численно равна интенсивности излучения этого источника на некотором удалении от него . В данной формулировке отсутствует упоминание о поверхности источника, поэтому оно применимо и к источникам, не имеющим ярко выраженной излучающей поверхности, например, к такому объемному источнику рассеянного солнечного излучения как атмосфера. При этом предполагается, конечно, что на пути от источника к точке наблюдения среда не вносит дополнительного ослабления излучения.


Объёмная плотность излучения ρ – это количество световой энергии в единице объема среды. Распространяясь со скоростью света c , излучение I по направлению k за время dt занимает объём dV= cdtdS , а энергия, поступившая в объём, - dE=IdSdΩdt . Здесь ds – элементарная площадка, перпендикулярная направлению распространения излучения. Следовательно, вклад в величину ρ от излучения, приходящего из по направлению k, равен

.

Полная плотность излучения получается путём суммирования отдельных вкладов от разных направлений:

.

Если I не зависит от направления, говорят, что излучение изотропно. Тогда

Например, объёмная плотность излучения черного тела

,

а интенсивность .

Потоком излучения называется количество световой энергии, падающей на выбранную площадку за единицу времени со всех направлений. Поток через единичную площадку называется плотностью потока . По направлению k , в частности, на единичную площадку падает в элементарном телесном угле энергия

Следовательно, плотность потока будет равна

.

Чтобы получить значение потока через площадку произвольной площади, приведенное выражение следует проинтегрировать по этой площади. Здесь предполагается, что ось z системы координат совпадает с направлением нормали к площадке n. Тогда зависимость от ориентации излучения k по отношению к площадке «спрятана» в величинах углов и φ сферической системы координат, определяющих направление k .

Выражение для плотности потока можно переписать ещё так: Н =Н + -Н - где,

.

Здесь проведено разделение на потоки, падающие на площадку из верхней и нижней полусфер (если площадка ориентирована горизонтально). Если I не зависит от направления, тогда такие потоки равны, и суммарная плотность потока равна нулю. Плотность потока из верхней полусферы H + еще называют освещенностью (количество энергии излучения, падающего из верхней полусферы на горизонтальную площадку единичной площади в единицу времени).

Установим зависимость между смещением х частиц среды, участвующих в волновом процессе, и расстоянием у этих частиц от источника колебаний О для любого момента времени Для большей наглядности рассмотрим поперечную волну, хотя все последующие рассуждения

будут верны и для продольной волны. Пусть колебания источника являются гармоническими (см. § 27):

где А - амплитуда, круговая частота колебаний. Тогда все частицы среды тоже придут в гармоническое колебание с такой же частотой и амплитудой, но с различными фазами. В среде возникает синусоидальная волна, изображенная на рис. 58.

График волны (рис. 58) внешне похож на график гармонического колебания (рис. 46), но по существу они различны. График колебания представляет зависимость смещения данной частицы от времени. График волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Он является как бы моментальной фотографией волны.

Рассмотрим некоторую частицу С, находящуюся на расстоянии у от источника колебаний (частицы О). Очевидно, что если частица О колеблется уже то частица С колеблется еще только где время распространения колебаний от до С, т. е. время, за которое волна прошла путь у. Тогда уравнение колебания частицы С следует написать так:

Но где скорость распространения волны. Тогда

Соотношение (23), позволяющее определить смещение любой точки волны в любой момент времени, называется уравнением волны. Вводя в рассмотрение длину волны X как расстояние между двумя ближайшими точками волны, находящимися в одинаковой фазе, например между двумя соседними гребнями волны, можно придать уравнению волны другой вид. Очевидно, что длина волны равна расстоянию, на которое распространяется колебание за период со скоростью

где частота волны. Тогда, подставляя в уравнение и учитывая, что получим другие формы уравнения волны:

Так как прохождение волн сопровождается колебанием частиц среды, то вместе с волной перемещается в пространстве и энергия колебаний. Энергия, переносимая волной за единицу времени через единицу площади, перпендикулярной к лучу, называется интенсивностью волны (или плотностью потока энергии). Получим выражение для интенсивности волны