Что такое симметрия и ее виды. Калибровочные симметрии связаны с изменением масштаба

Научно-практическая конференция

МОУ «Средняя общеобразовательная школа № 23»

города Вологды

секция: естественно - научная

проектно-исследовательская работа

ВИДЫ СИММЕТРИИ

Выполнила работу ученица 8 «а» класса

Кренёва Маргарита

Руководитель: учитель математики высшей

2014 год

Структура проекта:

1. Введение.

2. Цели и задачи проекта.

3. Виды симметрии:

3.1. Центральная симметрия;

3.2. Осевая симметрия;

3.3. Зеркальная симметрия (симметрия относительно плоскости);

3.4. Поворотная симметрия;

3.5. Переносная симметрия.

4. Выводы.

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство.

Г. Вейль

Введение.

Тема моей работы была выбрана после изучения раздела «Осевая и центральная симметрия» в курсе «Геометрия 8 класса». Меня очень заинтересовала эта тема. Я захотела узнать: какие виды симметрии существуют, чем они отличаются друг от друга, каковы принципы построения симметричных фигур в каждом из видов.

Цель работы : Знакомство с различными видами симметрии.

Задачи:

    Изучить литературу по данному вопросу.

    Обобщить и систематизировать изученный материал.

    Подготовить презентацию.

В древности слово «СИММЕТРИЯ» употреблялось в значении «гармония», «красота». В переводе с греческого это слово означает «соразмерность, пропорциональность, одинаковость в расположении частей чего-либо по противоположным сторонам от точки, прямой или плоскости.

Существуют две группы симметрий.

К первой группе относится симметрия положений, форм, структур. Это та симметрия, которую можно непосредственно видеть. Она может быть названа геометрической симметрией.

Вторая группа характеризует симметрию физических явлений и законов природы. Эта симметрия лежит в самой основе естественнонаучной картины мира: ее можно назвать физической симметрией.

Я остановлюсь на изучении геометрической симметрии .

В свою очередь, геометрической симметрии существует тоже несколько видов: центральная, осевая, зеркальная (симметрия относительно плоскости) радиальная (или поворотная), переносная и другие. Я рассмотрю сегодня 5 видов симметрии.

    Центральная симметрия

Две точки А и А 1 называются симметричными относительно точки О, если они лежат на прямой, проходящей через т О и находятся по разные стороны от неё на одинаковом расстоянии. Точка О называется центром симметрии.

Фигура называется симметричной относительно точки О , если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры, говорят, что фигура обладает центральной симметрией.

Примерами фигур, обладающими центральной симметрией является окружность и параллелограмм.

Фигуры, изображённые на слайде симметричны, относительно некоторой точки

2. Осевая симметрия

Две точки X и Y называются симметричными относительно прямой t , если эта прямая проходит чрез середину отрезка ХУ и перпендикулярна к нему. Также следует сказать, что каждая точка прямой t считается симметричной сама себе.

Прямая t – ось симметрии.

Фигура называется симметричной относительно прямой t , если для каждой точки фигуры симметричная ей точка относительно прямой t также принадлежит этой фигуре.

Прямая t называется осью симметрии фигуры, говорят, что фигура обладает осевой симметрией.

Осевой симметрией обладают неразвёрнутый угол, равнобедренный и равносторонний треугольники, прямоугольник и ромб, буквы (смотри презентацию).

    Зеркальная симметрия (симметрия относительно плоскости)

Две точки Р 1 и Р называются симметричными относительно плоскости а если они лежат на прямой, перпендикулярной плоскости а, и находятся от неё на одинаковом расстоянии

Зеркальная симметрия хорошо знакома каждому человеку. Она связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура зеркально симметрична другой.

На плоскости фигурой с бесчисленным множеством осей симметрии был круг. В пространстве бесчисленное множество плоскостей симметрии имеет шар.

Но если круг является единственным в своем роде, то в трехмерном мире имеется целый ряд тел, обладающих бесконечным множеством плоскостей симметрии: прямой цилиндр с кругом в основании, конус с круговым основанием, шар.

Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична.

4. П оворотная симметрия (или радиальная симметрия)

Поворотная симметрия - это симметрия, сохраняющаяся форму предмета при повороте вокруг некоторой оси на угол, равный 360°/ n (или кратный этой величине), где n = 2, 3, 4, … Указанную ось называют поворотной осью n -го порядка.

При п=2 все точки фигуры поворачиваются на угол 180 0 ( 360 0 /2 = 180 0 )вокруг оси, при этом форма фигуры сохраняется, т.е. каждая точка фигуры переходит в точку той же фигуры(фигура преобразуется сама в себя). Ось называют осью второго порядка.

На рисунке 2 показана ось третьего порядка, на рисунке 3 – 4 порядка, на рисунке 4 - 5-го порядка.

Предмет может иметь более одной поворотной оси: рис.1 – 3оси поворота, рис.2 -4 оси, рис 3 – 5 осей, рис. 4 – только 1 ось

Всем известные буквы «И» и «Ф» обладают поворотной симметрией Если повернуть букву «И» на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой. Иными словами, буква «И» симметрична относительно поворота на 180°, 180°= 360°: 2, n =2 , значит она обладает симметрией второго порядка.

Заметим, что поворотной симметрией второго порядка обладает также буква «Ф».

Кроме того буква и имеет центр симметрии, а буква Ф ось симметрии

Вернемся к примерам из жизни: стакан, конусообразный фунтик с мороженым, кусочек проволоки, труба.

Если мы повнимательней присмотримся к этим телам, то заметим, что все они, так или иначе состоят из круга, через бесконечное множество осей симметрии которого проходит бесчисленное множество плоскостей симметрии. Большинство таких тел (их называют телами вращения) имеют, конечно, и центр симметрии (центр круга), через который проходит по меньшей мере одна поворотная, ось симметрии.

Отчетливо видна, например, ось у конуса фунтика с мороженым. Она проходит от середины круга (торчит из мороженого!) до острого конца конуса-фунтика. Совокупность элементов симметрии какого-либо тела мы воспринимаем как своего рода меру симметрии. Шар, без сомнения, в отношении симметрии является непревзойденным воплощением совершенства, идеалом. Древние греки воспринимали его как наиболее совершенное тело, а круг, естественно, как наиболее совершенную плоскую фигуру.

Для описания симметрии конкретного объекта надо указать все поворотные оси и их порядок, а также все плоскости симметрии.

Рассмотрим, например, геометрическое тело, составленное из двух одинаковых правильных четырехугольных пирамид.

Оно имеет одну поворотную ось 4-го порядка (ось АВ), четыре поворотные оси 2-го порядка (оси СЕ, DF , MP , NQ ), пять плоскостей симметрии (плоскости CDEF , AFBD , ACBE , AMBP , ANBQ ).

5 . Переносная симметрия

Ещё одним видом симметрии является переносная с имметрия.

О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние «а» либо расстояние, кратное этой величине, она совмещается сама с собой Прямая, вдоль которой производится перенос, называется осью переноса, а расстояние «а» - элементарным переносом, периодом или шагом симметрии.

а

Периодически повторяющийся рисунок на длинной ленте называется бордюром. На практике бордюры встречаются в различных видах (настенная роспись, чугунное литье, гипсовые барельефы или керамика). Бордюры применяют маляры и художники при оформлении комнаты. Для выполнения этих орнаментов изготавливают трафарет. Передвигаем трафарет, переворачивая или не переворачивая его, обводим контур, повторяя рисунок, и получается орнамент (наглядная демонстрация).

Бордюр легко построить с помощью трафарета (исходного элемента), сдвигая или переворачивая его и повторяя рисунок. На рисунке изображены трафареты пяти видов: а ) несимметричный; б, в ) имеющие одну ось симметрии: горизонтальную или вертикальную; г ) центрально-симметричный; д ) имеющий две оси симметрии: вертикальную и горизонтальную.

Для построения бордюров используют следующие преобразования:

а ) параллельный перенос; б ) симметрию относительно вертикальной оси; в ) центральную симметрию; г ) симметрию относительно горизонтальной оси.

Аналогично можно построить розетки. Для этого круг делят на n равных секторов, в одном из них выполняют образец рисунка и затем последовательно повторяют последний в остальных частях круга, поворачивая рисунок каждый раз на угол 360°/ n .

Наглядным примером применения осевой и переносной симметрии может служить забор, изображённый на фотографии.

Вывод: Таким образом, существуют различные виды симметрии, симметричные точки в каждом из этих видов симметрии строятся по определённым законам. В жизни мы повсюду встречаемся тем или иным видом симметрии, а часто у предметов, которые нас окружают, можно отметить сразу несколько видов симметрии. Это создаёт порядок, красоту и совершенство в окружающем нас мире.

ЛИТЕРАТУРА:

    Справочник по элементарной математике. М.Я. Выгодский. – Издательство « Наука». – Москва 1971г. – 416стр.

    Современный словарь иностранных слов. - М.: Русский язык, 1993г .

    История математики в школе IX - X классы. Г.И. Глейзер. – Издательство «Просвещение». – Москва 1983г. – 351стр.

    Наглядная геометрия 5 – 6 классы. И.Ф. Шарыгин, Л.Н. Ерганжиева. – Издательство «Дрофа», Москва 2005г. – 189стр.

    Энциклопедия для детей. Биология. С. Исмаилова. – Издательство «Аванта+». – Москва 1997г. – 704стр.

    Урманцев Ю.А. Симметрия природы и природа симметрии - М.: Мысль arxitekt / arhkomp 2. htm , , ru.wikipedia.org/wiki/

Расположенья частей целого, двух половин. сообразие, сообразность. противоравенство, противоподобие. Симметрическое расположенье дома, фасада, равнообразное на обе половины. Полная симметрия докучает, а изящное разнообразие красит и тешит вкус .

Определение слова «Симметрия» по БСЭ:

Симметрия — Симметрия (от греч. symmetria — соразмерность)
в математике,
1) симметрия (в узком смысле), или отражение (зеркальное) относительно плоскости &alpha. в пространстве (относительно прямой а на плоскости), — преобразование пространства (плоскости), при котором каждая точка М переходит в точку M такую, что отрезок MM перпендикулярен плоскости &alpha. (прямой а) и делится ею пополам.
Плоскость &alpha. (прямая а) называется плоскостью (осью) С.
Отражение — пример ортогонального преобразования, изменяющего ориентацию (в отличие от собственного движения) . Любое ортогональное преобразование можно осуществить последовательным выполнением конечного числа отражений — этот факт играет существенную роль в исследовании С. геометрических фигур.
2) Симметрия (в широком смысле) — свойство геометрической фигуры Ф, характеризующее некоторую правильность формы Ф, неизменность её при действии движений и отражений. Точнее, фигура Ф обладает С. (симметрична), если существует нетождественное ортогональное преобразование, переводящее эту фигуру в себя. Совокупность всех ортогональных преобразований, совмещающих фигуру Ф с самой собой, является группой, называемой группой симметрии этой фигуры (иногда сами эти преобразования называются симметриями).
Так, плоская фигура, преобразующаяся в себя при отражении, симметрична относительно прямой — оси С. (рис. 1). группа симметрии состоит из двух элементов. Если фигура Ф на плоскости такова, что повороты относительно какой-либо точки О на угол 360°/n, n — целое число &ge. 2, переводят её в себя, то Ф обладает С. n-го порядка относительно точки O — центра С.
Примером таких фигур являются правильные многоугольники (рис. 2). группа С. здесь — т. н. циклическая группа n-го порядка. Окружность обладает С. бесконечного порядка (поскольку совмещается с собой поворотом на любой угол).
Простейшими видами пространственной С., помимо С., порожденной отражениями, являются центральная С., осевая С. и С. переноса.
а) В случае центральной симметрии (инверсии) относительно точки О фигура Ф совмещается сама с собой после последовательных отражений от трёх взаимно перпендикулярных плоскостей, другими словами, точка О — середина отрезка, соединяющего симметричные точки Ф (рис. 3). б) В случае осевой симметрии, или С. относительно прямой n-го порядка, фигура накладывается на себя вращением вокруг некоторой прямой (оси С.) на угол 360°/n. Например, куб имеет прямую AB осью С. третьего порядка, а прямую CD — осью С. четвёртого порядка (рис. 3). вообще, правильные и полуправильные многогранники симметричны относительно ряда прямых.
Расположение, количество и порядок осей С. играют важную роль в кристаллографии (см. Симметрия кристаллов), в) Фигура, накладывающаяся на себя последовательным вращением на угол 360°/2k вокруг прямой AB и отражением в плоскости, перпендикулярной к ней, имеет зеркально-осевую С. Прямая AB, называется зеркально-поворотной осью С. порядка 2k, является осью С. порядка k (рис. 4). Зеркально-осевая С. порядка 2 равносильна центральной С. г) В случае симметрии переноса фигура накладывается на себя переносом вдоль некоторой прямой (оси переноса) на какой-либо отрезок. Например, фигура с единственной осью переноса обладает бесконечным множеством плоскостей С. (поскольку любой перенос можно осуществить двумя последовательными отражениями от плоскостей, перпендикулярных оси переноса) (рис. 5). Фигуры, имеющие несколько осей переноса, играют важную роль при исследовании кристаллических решёток.
В искусстве С. получила распространение как один из видов гармоничной композиции . Она свойственна произведениям архитектуры (являясь непременным качеством если не всего сооружения в целом, то его частей и деталей — плана, фасада, колонн, капителей и т. д.) и декоративно-прикладного искусства. С. используется в качестве основного приёма построения бордюров и Орнаментов (плоских фигур, обладающих соответственно одной или несколькими С. переноса в сочетании с отражениями) (рис. 6, 7).
Комбинации С., порожденные отражениями и вращениями (исчерпывающие все виды С. геометрических фигур), а также переносами, представляют интерес и являются предметом исследования в различных областях естествознания . Например, винтовая С., осуществляемая поворотом на некоторый угол вокруг оси, дополненным переносом вдоль той же оси, наблюдается в расположении листьев у растений (рис. 8) (подробнее см. в ст. Симметрия в биологии). С. конфигурации молекул, сказывающаяся на их физических и химических характеристиках, имеет значение при теоретическом анализе строения соединений, их свойств и поведения в различных реакциях (см. Симметрия в химии). Наконец, в физических науках вообще, помимо уже указанной геометрической С. кристаллов и решёток, приобретают важное значение представления о С. в общем смысле (см. ниже) . Так, симметричность физического пространства-времени, выражающаяся в его однородности и изотропности (см. Относительности теория), позволяет установить т. н. Сохранения законы. обобщённая С. играет существенную роль в образовании атомных спектров и в классификации элементарных частиц (см. Симметрия в физике).
3) Симметрия (в общем смысле) означает инвариантность структуры математического (или физического) объекта относительно его преобразований. Например, С. законов теории относительности определяется инвариантностью их относительно Лоренца преобразований. Определение совокупности преобразований, оставляющих без изменения все структурные соотношения объекта, т. е. определение группы G его автоморфизмов, стало руководящим принципом современной математики и физики, позволяющим глубоко проникнуть во внутреннее строение объекта в целом и его частей.
Поскольку такой объект можно представить элементами некоторого пространства P, наделённого соответствующей характерной для него структурой, постольку преобразования объекта являются преобразованиями P. Т. о. получается представление группы G в группе преобразований P (или просто в P), а исследование С. объекта сводится к исследованию действия G на P и отысканию инвариантов этого действия. Точно так же С. физических законов, управляющих исследуемым объектом и обычно описывающихся уравнениями, которым удовлетворяют элементы пространства P, определяется действием G на такие уравнения.
Так, например, если некоторое уравнение линейно на линейном же пространстве P и остаётся инвариантным при преобразованиях некоторой группы G, то каждому элементу g из G соответствует линейное преобразование T g в линейном пространстве R решений этого уравнения. Соответствие g
&rarr. T g является линейным представлением G и знание всех таких её представлений позволяет устанавливать различные свойства решений, а также помогает находить во многих случаях (из «соображений симметрии») и сами решения . Этим, в частности, объясняется необходимость для математики и физики развитой теории линейных представлений групп. Конкретные примеры см. в ст. Симметрия в физике.
Лит.: Шубников А. В., Симметрия. (Законы симметрии и их применение в науке, технике и прикладном искусстве), М. — Л., 1940. Кокстер Г. С. М., Введение в геометрию, пер. с англ., М., 1966. Вейль Г., Симметрия, пер. с англ., М., 1968. Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
М. И. Войцеховский.
Рис. 1. Плоская фигура, симметричная относительно прямой АВ. точка М преобразуется в М&rsquo. при отражении (зеркальном) относительно АВ.
Рис. 2. Звездчатый правильный многоугольник, обладающий симметрией восьмого порядка относительно своего центра.
Рис. 3. Куб, имеющий прямую AB осью симметрии третьего порядка, прямую CD — осью симметрии четвёртого порядка, точку О — центром симметрии. Точки М и M куба симметричны как относительно осей AB и CD, так и относительно центра О.
Рис. 4. Многогранник, обладающий зеркально-осевой симметрией. прямая AB — зеркально-поворотная ось четвёртого порядка.
Рис. 5. Фигуры, обладающие симметрией переноса: верхняя фигура имеет также бесконечное множество вертикальных осей симметрии (второго порядка), т. е. плоскостей отражения
Рис. 6. Бордюр, накладывающийся на себя или переносом на некоторый отрезок вдоль горизонтальной оси, или отражением (зеркальным) относительно той же оси и переносом вдоль неё на отрезок, вдвое меньший.
Рис. 7. Орнамент. осью переноса является любая прямая, соединяющая центры двух каких-либо завитков.
Рис. 8. Фигура, обладающая винтовой симметрией, которая осуществляется переносом вдоль вертикальной оси, дополненным вращением вокруг неё на 90°.

Симметрия — в физике. Если законы, устанавливающие соотношения между величинами, характеризующими физическую систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях (преобразованиях), которым может быть подвергнута система, то говорят, что эти законы обладают С. (или инвариантны) относительно данных преобразований. В математическом отношении преобразования С. составляют группу.
Опыт показывает, что физические законы симметричны относительно следующих наиболее общих преобразований.
Непрерывные преобразования
1) Перенос (сдвиг) системы как целого в пространстве. Это и последующие пространственно-временные преобразования можно понимать в двух смыслах: как активное преобразование — реальный перенос физической системы относительно выбранной системы отсчёта или как пассивное преобразование — параллельный перенос системы отсчёта. С. физических законов относительно сдвигов в пространстве означает эквивалентность всех точек пространства, т. е. отсутствие в пространстве каких-либо выделенных точек (однородность пространства).
2) Поворот системы как целого в пространстве. С. физических законов относительно этого преобразования означает эквивалентность всех направлений в пространстве (изотропию пространства).
3) Изменение начала отсчёта времени (сдвиг во времени). С. относительно этого преобразования означает, что физические законы не меняются со временем.
4) Переход к системе отсчёта, движущейся относительно данной системы с постоянной (по направлению и величине) скоростью . С. относительно этого преобразования означает, в частности, эквивалентность всех инерциальных систем отсчёта (см. Относительности теория).
5) Калибровочные преобразования. Законы, описывающие взаимодействия частиц, обладающих каким-либо зарядом (электрическим зарядом, барионным зарядом, лептонным зарядом, гиперзарядом), симметричны относительно калибровочных преобразований 1-го рода. Эти преобразования заключаются в том, что волновые функции всех частиц могут быть одновременно умножены на произвольный фазовый множитель:


&psi. j &rarr. e iz j &beta. &psi. j , &psi. * j &rarr. e &minus.iz j &beta. &psi. * j ,
(1)

где &psi. j — волновая функция частицы j, &psi. * j — комплексно сопряжённая ей функция, z j — соответствующий частице заряд, выраженный в единицах элементарного заряда (например, элементарного электрического заряда e), &beta. — произвольный числовой множитель.
Наряду с этим Электромагнитные взаимодействия симметричны относительно калибровочных (градиентных) преобразований 2-го рода для потенциалов электромагнитного поля (A, &phi.):
A &rarr. А + grad f, 23/2302744.tif, (2)
где &fnof.(x, y, z, t) — произвольная функция координат (x, y, z) и времени (t), c — скорость света. Чтобы преобразования (1) и (2) в случае электромагнитных полей выполнялись одновременно, следует обобщить калибровочные преобразования 1-го рода: необходимо потребовать, чтобы законы взаимодействия были симметричны относительно преобразований (1) с величиной &beta., являющейся произвольной функцией координат и времени: 23/2302745.tif, где &eta. — Планка постоянная.
Связь калибровочных преобразований 1-го и 2-го рода для электромагнитных взаимодействий обусловлена двоякой ролью электрического заряда: с одной стороны, электрический заряд является сохраняющейся величиной, а с другой — он выступает как константа взаимодействия, характеризующая связь электромагнитного поля с заряженными частицами.
Преобразования (1) отвечают законам сохранения различных зарядов (см. ниже), а также некоторым внутренним С. взаимодействия. Если заряды являются не только сохраняющимися величинами, но и источниками полей (как электрический заряд), то соответствующие им поля должны быть также калибровочными полями (аналогично электромагнитным полям), а преобразования (1) обобщаются на случай, когда величины &beta. являются произвольными функциями координат и времени (и даже операторами, преобразующими состояния внутренней С.).
Такой подход в теории взаимодействующих полей приводит к различным калибровочным теориям сильных и слабых взаимодействий (т. н. Янга — Милса теория).
6) Изотопическая инвариантность сильных взаимодействий. Сильные взаимодействия симметричны относительно поворотов в особом «изотоническом пространстве». Одним из проявлений этой С. является зарядовая независимость ядерных сил, заключающаяся в равенстве сильных взаимодействий нейтронов с нейтронами, протонов с протонами и нейтронов с протонами (если они находятся соответственно в одинаковых состояниях). Изотопическая инвариантность является приближённой С., нарушаемой электромагнитными взаимодействиями. Она представляет собой часть более широкой приближённой С. сильных взаимодействий — SU (3)-C. (см. Сильные взаимодействия).
Дискретные преобразования
Перечисленные выше типы С. характеризуются параметрами, которые могут непрерывно изменяться в некоторой области значений (например, сдвиг в пространстве характеризуется тремя параметрами смещения вдоль каждой из координатных осей, поворот — тремя углами вращения вокруг этих осей и т. д.). Наряду с непрерывными С. большое значение в физике имеют дискретные С. Основные из них следующие.
1) Пространственная инверсия (P). Относительно этого преобразования симметричны процессы, вызванные сильным и электромагнитным взаимодействиями. Указанные процессы одинаково описываются в двух различных декартовых системах координат, получаемых одна из другой изменением направлений осей координат на противоположные (т. н. переход от «правой» к «левой» системе координат).
Это преобразование может быть получено также зеркальным отражением относительно трёх взаимно перпендикулярных плоскостей. поэтому С. по отношению к пространственной инверсии называемой обычно зеркальной С. Наличие зеркальной С. означает, что если в природе осуществляется какой-либо процесс, обусловленный сильным или электромагнитным взаимодействием, то может осуществиться и другой процесс, протекающий с той же вероятностью и являющийся как бы
«зеркальным изображением» первого. При этом физические величины, характеризующие оба процесса, будут связаны определённым образом. Например, скорости частиц и напряжённости электрического поля изменят направления на противоположные, а направления напряжённости магнитного поля и момента количества движения не изменятся.
Нарушением такой С. представляются явления (например, правое или левое вращение плоскости поляризации света), происходящие в веществах-изомерах (оптическая Изомерия). В действительности, однако, зеркальная С. в таких явлениях не нарушена: она проявляется в том, что для любого, например левовращающего, вещества существует аналогичное по химическому составу вещество, молекулы которого являются
«зеркальным изображением» молекул первого и которое будет правовращающим.
Нарушение зеркальной С. наблюдается в процессах, вызванных слабым взаимодействием.
2) Преобразование замены всех частиц на античастицы (Зарядовое сопряжение, С). С. относительно этого преобразования также имеет место для процессов, происходящих в результате сильного и электромагнитного взаимодействий, и нарушается в процессах слабого взаимодействия. При преобразовании зарядового сопряжения меняются на противоположные значения заряды частиц, напряжённости электрического и магнитного полей.
3) Последовательное проведение (произведение) преобразований инверсии и зарядового сопряжения (Комбинированная инверсия, СР). Поскольку сильные и электромагнитные взаимодействия симметричны относительно каждого из этих преобразований, они симметричны и относительно комбинированной инверсии. Однако относительно этого преобразования оказываются симметричными и слабые взаимодействия, которые не обладают С. по отношению к преобразованию инверсии и зарядовому сопряжению в отдельности . С. процессов слабого взаимодействия относительно комбинированной инверсии может быть указанием на то, что отсутствие зеркальной С. в них связано со структурой элементарных частиц и что античастицы по своей структуре являются как бы
«зеркальным изображением» соответствующих частиц. В этом смысле процессы слабого взаимодействия, происходящие с какими-либо частицами, и соответствующие процессы с их античастицами связаны между собой так же, как явления в оптических изомерах.
Открытие распадов долгоживущих K 0 L -мезонов на 2 &pi.-мезона и наличие зарядовой асимметрии в распадах K 0 L &rarr. &pi. + + e &minus. + &nu. e (&pi. + + &mu. &minus. + &nu. &mu.) и K 0 L &rarr. &pi. &minus. + е + + &nu. е (&pi. &minus. + &mu. + + &nu. &mu.) (см. К-мезоны) указывают на существование сил, несимметричных относительно комбинированной инверсии.
Пока не установлено, являются ли эти силы малыми добавками к известным фундаментальным взаимодействиям (сильному, электромагнитному, слабому) или же имеют особую природу. Нельзя также исключить возможность того, что нарушение СР-С. связано с особыми геометрическими свойствами пространства-времени на малых интервалах.
4) Преобразование изменения знака времени (Обращение времени, T). По отношению к этому преобразованию симметричны все элементарные процессы, протекающие в результате сильного, электромагнитного и слабого взаимодействий (за исключением распадов K 0 L -meзонов).
5) Произведение трёх преобразований: зарядового сопряжения С, инверсии Р и обращения времени Т (СРТ-симметрия. см. СРТ-теорема) . СРТ-С. вытекает из общих принципов квантовой теории поля. Она связана главным образом с С. относительно Лоренца преобразований и локальностью взаимодействия (т. е. с взаимодействием полей в одной точке). Эта С. должна была бы выполняться, даже если бы взаимодействия были несимметричны относительно каждого из преобразований C, P и T в отдельности. Следствием СРТ-инвариантности является т. н. перекрёстная (кроссинг) С. в описании процессов, происходящих с частицами и античастицами. Так, например, три реакции — упругое рассеяние какой-либо частицы a на частице b: a + b
&rarr. a + b, упругое рассеяние античастицы a на частице b: a + b &rarr. a + b и аннигиляция частицы а и её античастицы a в пару частиц b, b: а + a &rarr. b + b описываются единой аналитической функцией (зависящей от квадрата полной энергии системы и квадрата переданного импульса), которая в различных областях изменения этих переменных даёт амплитуду каждого из указанных процессов.
6) Преобразование перестановки одинаковых частиц. Волновая функция системы, содержащей одинаковые частицы, симметрична относительно перестановки любой пары одинаковых частиц (т. е. их координат и Спинов) с целым, в частности нулевым, спином и антисимметрична относительно такой перестановки для частиц с полуцелым спином (см. Квантовая механика).
Симметрия и законы сохранения
Согласно Нётер теореме, каждому преобразованию С., характеризуемому одним непрерывно изменяющимся параметром, соответствует величина, которая сохраняется (не меняется со временем) для системы, обладающей этой С. Из С. физических законов относительно сдвига замкнутой системы в пространстве, поворота её как целого и изменения начала отсчёта времени следуют соответственно законы сохранения импульса, момента количества движения и энергии. Из С. относительно калибровочных преобразований 1-го рода — законы сохранения зарядов (электрического, барионного и др.), из изотопической инвариантности — сохранение изотопического спина в процессах сильного взаимодействия. Что касается дискретных С., то в классической механике они не приводят к каким-либо законам сохранения. Однако в квантовой механике, в которой состояние системы описывается волновой функцией, или для волновых полей (например, электромагнитного поля), где справедлив Суперпозиции принцип, из существования дискретных С. следуют законы сохранения некоторых специфических величин, не имеющих аналогов в классической механике. Существование таких величин можно продемонстрировать на примере пространственной чётности, сохранение которой вытекает из С. относительно пространственной инверсии. Действительно, пусть
&psi. 1 — волновая функция, описывающая какое-либо состояние системы, а &psi. 2 — волновая функция системы, получающаяся в результате пространств. инверсии (символически: &psi. 2 = P&psi. 1 , где P — оператор пространств. инверсии). Тогда, если существует С. относительно пространственной инверсии,
&psi. 2 является одним из возможных состояний системы и, согласно принципу суперпозиции, возможными состояниями системы являются суперпозиции &psi. 1 и &psi. 2: симметричная комбинация &psi. s = &psi. 1 +
&psi. 2 и антисимметричная &psi. а = &psi. 1 — &psi. 2 . При преобразованиях инверсии состояние &psi. 2 не меняется (т. к. P&psi. s = P&psi. 1 + P&psi. 2 = &psi. 2 + &psi. 1 = &psi. s),
а состояние &psi. a меняет знак (P&psi. a = P&psi. 1 — P&psi. 2 = &psi. 2 — &psi. 1 = — &psi. a). В первом случае говорят, что пространственная чётность системы положительна (+1), во втором — отрицательна (-1). Если волновая функция системы задаётся с помощью величин, которые не меняются при пространственной инверсии (таких, например, как момент количества движения и энергия), то вполне определённое значение будет иметь и чётность системы. Система будет находиться в состоянии либо с положительной, либо с отрицательной чётностью (причём переходы из одного состояния в другое под действием сил, симметричных относительно пространственной инверсии, абсолютно запрещены).
Аналогично, из С. относительно зарядового сопряжения и комбинированной инверсии следует существование зарядовой чётности (C-чётности) и комбинированной чётности (СР-чётности). Эти величины, однако, могут служить характеристикой только для абсолютно нейтральных (обладающих нулевыми значениями всех зарядов) частиц или систем. Действительно, система с отличным от нуля зарядом при зарядовом сопряжении переходит в систему с противоположным знаком заряда, и поэтому невозможно составить суперпозицию этих двух состояний, не нарушая закона сохранения заряда. Вместе с тем для характеристики системы сильно взаимодействующих частиц (адронов) с нулевыми барионным зарядом и Странностью (или гиперзарядом), но отличным от нуля электрическим зарядом, можно ввести т. н. G-чётность. Эта характеристика возникает из изотопической инвариантности сильных взаимодействий (которую можно трактовать как С. относительно преобразования поворота в «изотопическом пространстве»)
и зарядового сопряжения. Примером такой системы может служить пи-мезон. См. также ст. Сохранения законы.
Симметрия квантово-механических систем и стационарные состояния. Вырождение
Сохранение величин, отвечающих различным С. квантово-механические системы, является следствием того, что соответствующие им операторы коммутируют с гамильтонианом системы, если он не зависит явно от времени (см. Квантовая механика, Перестановочные соотношения). Это означает, что указанные величины измеримы одновременно с энергией системы, т. е. могут принимать вполне определённые значения при заданном значении энергии. Поэтому из них можно составить т. н. полный набор величин, определяющих состояние системы. Т. о., стационарные состояния (состояния с заданной энергией) системы определяются величинами, отвечающими С. рассматриваемой системы.
Наличие С. приводит к тому, что различные состояния движения квантовомеханической системы, которые получаются друг из друга преобразованием С., обладают одинаковыми значениями физических величин, не меняющихся при этих преобразованиях. Т. о., С. системы, как правило, ведёт к вырождению . Например, определённому значению энергии системы может отвечать несколько различных состояний, преобразующихся друг друга при преобразованиях С. В математическом отношении эти состояния представляют базис неприводимого представления группы С. системы (см. Группа) . Это обусловливает плодотворность применения методов теории групп в квантовой механике.
Помимо вырождения уровней энергии, связанного с явной С. системы (например, относительно поворотов системы как целого), в ряде задач существует дополнительное вырождение, связанное с т. н. скрытой С. взаимодействия. Такие скрытые С. существуют, например, для кулоновского взаимодействия и для изотропного Осциллятора.
Если система, обладающая какой-либо С., находится в поле сил, нарушающих эту С. (но достаточно слабых, чтобы их можно было рассматривать как малое возмущение), происходит расщепление вырожденных уровней энергии исходной системы: различные состояния, которые в силу С. системы имели одинаковую энергию, под действием
«несимметричного» возмущения приобретают различные энергетические смещения. В случаях, когда возмущающее поле обладает некоторой С., составляющей часть С. исходной системы, вырождение уровней энергии снимается не полностью: часть уровней остаётся вырожденной в соответствии с С. взаимодействия,
«включающего» возмущающее поле.
Наличие в системе вырожденных по энергии состояний, в свою указывает на существование С. взаимодействия и позволяет в принципе найти эту С., когда она заранее не известна. Последнее обстоятельство играет важнейшую роль, например, в физике элементарных частиц. Существование групп частиц с близкими массами и одинаковыми др. характеристиками, но различными электрическими зарядами (т. н. изотопических мультиплетов) позволило установить изотопическую инвариантность сильных взаимодействий, а возможность объединения частиц с одинаковыми свойствами в более широкие группы привело к открытию SU (3)-C. сильного взаимодействия и взаимодействий, нарушающих эту С. (см. Сильные взаимодействия). Существуют указания, что сильное взаимодействие обладает ещё более широкой группой С.
Весьма плодотворно понятие т. н. динамической С. системы, которое возникает, когда рассматриваются преобразования, включающие переходы между состояниями системы с различными энергиями. Неприводимым представлением группы динамической С. будет весь спектр стационарных состояний системы. Понятие динамической С. можно распространить и на случаи, когда гамильтониан системы зависит явно от времени, причём в одно неприводимое представление динамической группы С. объединяются в этом случае все состояния квантово-механической системы, не являющиеся стационарными (т. е. не обладающие заданной энергией).
Лит.: Вигнер Е., Этюды о симметрии, пер. с англ., М., 1971.
С. С. Герштейн . Симметрия — в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами.
Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д. (см. Симметрия в математике). Так, молекула аммиака NH 3 обладает симметрией правильной треугольной пирамиды, молекула метана CH 4 — симметрией тетраэдра. У сложных молекул симметрия равновесной конфигурации в целом, как правило, отсутствует, однако приближённо сохраняется симметрия отдельных её фрагментов (локальная симметрия). Наиболее полное описание симметрии как равновесных, так и неравновесных конфигураций молекул достигается на основе представлений о т. н. динамических группах симметрии — группах, включающих не только операции пространственной симметрии ядерной конфигурации, но и операции перестановки тождественных ядер в различных конфигурациях. Например, динамическая группа симметрии для молекулы NH 3 включает также и операцию инверсии этой молекулы: переход атома N с одной стороны плоскости, образованной атомами Н, на другую её сторону.
Симметрия равновесной конфигурации ядер в молекуле влечёт за собой определённую симметрию волновых функций различных состояний этой молекулы, что позволяет проводить классификацию состояний по типам симметрии. Переход между двумя состояниями, связанный с поглощением или испусканием света, в зависимости от типов симметрии состояний может либо проявляться в молекулярном спектре, либо быть запрещенным, так что соответствующая этому переходу линия или полоса будет отсутствовать в спектре. Типы симметрии состояний, между которыми возможны переходы, влияют на интенсивность линий и полос, а также и на их поляризацию. Например, у гомоядерных двухатомных молекул запрещены и не проявляются в спектрах переходы между электронными состояниями одинаковой чётности, электронные волновые функции которых ведут себя одинаковым образом при операции инверсии. у молекул бензола и аналогичных соединений запрещены переходы между невырожденными электронными состояниями одного и того же типа симметрии и т. п. Правила отбора по симметрии дополняются для переходов между различными состояниями правилами отбора, связанными со Спином этих состояний.
У молекул с парамагнитными центрами симметрия окружения этих центров приводит к определённому типу анизотропии g-фактора (Ланде множитель), что сказывается на структуре спектров электронного парамагнитного резонанса, тогда как у молекул, ядра атомов которых обладают ненулевым спином, симметрия отдельных локальных фрагментов ведёт к определённому типу расщепления по энергии состояний с различными проекциями ядерного спина, что сказывается на структуре спектров ядерного магнитного резонанса.
В приближённых подходах квантовой химии, использующих представление о молекулярных орбиталях, классификация по симметрии возможна не только для волновой функции молекулы в целом, но и для отдельных орбиталей. Если у равновесной конфигурации молекулы имеется плоскость симметрии, в которой лежат ядра, то все орбитали этой молекулы разбиваются на два класса: симметричные
(&sigma.) и антисимметричные (&pi.) относительно операции отражения в этой плоскости. Молекулы, у которых верхними (по энергии) занятыми орбиталями являются &pi.-орбитали, образуют специфические классы ненасыщенных и сопряжённых соединений с характерными для них свойствами. Знание локальной симметрии отдельных фрагментов молекул и локализованных на этих фрагментах молекулярных орбиталей позволяет судить о том, какие фрагменты легче подвергаются возбуждению и сильнее меняются в ходе химических превращений, например при фотохимических реакциях.
Представления о симметрии имеют важное значение при теоретическом анализе строения комплексных соединений, их свойств и поведения в различных реакциях. Теория кристаллического поля и теория поля лигандов устанавливают взаимное расположение занятых и вакантных орбиталей комплексного соединения на основе данных о его симметрии, характер и степень расщепления энергетических уровней при изменении симметрии поля лигандов. Знание одной лишь симметрии комплекса очень часто позволяет качественно судить о его свойствах.
В 1965 P. Вудворд и Р. Хоффман выдвинули принцип сохранения орбитальной симметрии при химических реакциях, подтвержденный впоследствии обширным экспериментальным материалом и оказавший большое влияние на развитие препаративной органической химии. Этот принцип (правило Вудворда — Хоффмана) утверждает, что отдельные элементарные акты химических реакций проходят с сохранением симметрии молекулярных орбиталей, или орбитальной симметрии. Чем больше нарушается симметрия орбиталей при элементарном акте, тем труднее проходит реакция.
Учёт симметрии молекул важен при поиске и отборе веществ, используемых при создании химических лазеров и молекулярных выпрямителей, при построении моделей органических сверхпроводников, при анализе канцерогенных и фармакологически активных веществ и т. д.
Лит.: Хохштрассер Р., Молекулярные аспекты симметрии, пер. с англ., М., 1968.

симметрия архитектурный фасад сооружение

Симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. некий элемент гармонии.

Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения. Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили эту упорядоченность в своей практической деятельности, мышлении и искусстве.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить.

В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий (формы, подобия, относительного расположения). Причем организмы разного анатомического строения могут иметь один и тот же тип внешней симметрии.

Принцип симметрии - утверждает, что если пространство однородно, перенос системы как целого в пространстве не изменяет свойств системы. Если все направления в пространстве равнозначны, то принцип симметрии разрешает поворот системы как целого в пространстве. Принцип симметрии соблюдается, если изменить начало отсчета времени. В соответствии с принципом, можно произвести переход в другую систему отсчета, движущейся относительно данной системы с постоянной скоростью. Неживой мир очень симметричен. Нередко нарушения симметрии в квантовой физике элементарных частиц - это проявление еще более глубокой симметрии. Ассиметрия является структурообразующим и созидающим принципом жизни. В живых клетках функционально-значимые биомолекулы асимметричны.: белки состоят из левовращающих аминокислот (L-форма) , а нуклеиновые кислоты содержат в своем составе, помимо гетероциклических оснований, правовращающие углеводы - сахара (Д-форма) , кроме того сама ДНК - основа наследственности является правой двойной спиралью.

Принципы симметрии лежат в основе теории относительности, квантовой механики, физики твердого тела, атомной и ядерной физики, физики элементарных частиц. Эти принципы наиболее ярко выражаются в свойствах инвариантности законов природы. Речь при этом идет не только о физических законах, но и других, например, биологических. Примером биологического закона сохранения может служить закон наследования. В основе его лежат инвариантность биологических свойств по отношению к переходу от одного поколения к другому. Вполне очевидно, что без законов сохранения (физических, биологических и прочих) наш мир попросту не смог бы существовать.

Таким образом, симметрия выражает сохранение чего-то при каких-то изменениях или сохранение чего-то, несмотря на изменение. Симметрия предполагает неизменность не только самого объекта, но и каких-либо его свойств по отношению к преобразованиям, выполненным над объектом. Неизменность тех или иных объектов может наблюдаться по отношению к разнообразным операциям - к поворотам, переносам, взаимной замене частей, отражениям и т.д.

Рассмотрим виды симметрии в математике:

  • * центральная (относительно точки)
  • * осевая (относительно прямой)
  • * зеркальная (относительно плоскости)
  • 1. Центральная симметрия (приложение 1)

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры.

Впервые понятие центра симметрии встречается в XVI в. В одной из теорем Клавиуса, гласящей: «если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр». Лежандр, который впервые ввёл в элементарную геометрию элементы учения о симметрии, показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к рёбрам, а другие 6 проходят через диагонали граней.

Примерами фигур, обладающих центральной симметрией, являются окружность и параллелограмм.

В алгебре при изучении чётных и нечётных функций рассматриваются их графики. График чётной функции при построении симметричен относительно оси ординат, а график нечётной функции - относительно начала координат, т.е. точки О. Значит, нечётная функция обладает центральной симметрией, а чётная функция - осевой.

2. Осевая симметрия (приложение 2)

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а, также принадлежит этой фигуре. Прямая а называется осью симметрии фигуры. Говорят также, что фигура обладает осевой симметрией.

В более узком смысле осью симметрии называют ось симметрии второго порядка и говорят об «осевой симметрии», которую можно определить так: фигура (или тело) обладает осевой симметрией относительно некоторой оси, если каждой её точке Е соответствует такая принадлежащая этой же фигуре точка F, что отрезок EF перпендикулярен к оси, пересекает её и в точке пересечения делится пополам.

Приведу примеры фигур, обладающих осевой симметрией. У неразвернутого угла одна ось симметрии -- прямая, на которой расположена биссектриса угла. Равнобедренный (но не равносторонний) треугольник имеет также одну ось симметрии, а равносторонний треугольник-- три оси симметрии. Прямоугольник и ромб, не являющиеся квадратами, имеют по две оси симметрии, а квадрат-- четыре оси симметрии. У окружности их бесконечно много -- любая прямая, проходящая через её центр, является осью симметрии.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

3. Зеркальная симметрия (приложение 3)

Зеркальной симметрией (симметрией относительно плоскости) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости точку М1.

Зеркальная симметрия хорошо знакома каждому человеку из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает любой предмет и его отражение в плоском зеркале. Говорят, что одна фигура (или тело) зеркально симметрично другой, если вместе они образуют зеркально симметричную фигуру (или тело).

Игрокам в бильярд издавна знакомо действие отражения. Их «зеркала» -- это борта игрового поля, а роль луча света исполняют траектории шаров. Ударившись о борт возле угла, шар катится к стороне, расположенной под прямым углом, и, отразившись от неё, движется обратно параллельно направлению первого удара.

Следует отметить, что две симметричные фигуры или две симметричные части одной фигуры при всем их сходстве, равенстве объемов и площадей поверхностей, в общем случае, неравны, т.е. их нельзя совместить друг с другом. Это разные фигуры, их нельзя заменить друг другом, например, правая перчатка, ботинок и т.д. не годятся для левой руки, ноги. Предметы могут иметь одну, две, три и т.д. плоскостей симметрии. Например, прямая пирамида, основанием которой является равнобедренный треугольник, симметрична относительно одной плоскости Р. Призма с таким же основанием имеет две плоскости симметрии. У правильной шестиугольной призмы их семь. Тела вращения: шар, тор, цилиндр, конус и т.д. имеют бесконечное количество плоскостей симметрии.

Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок. Так, Пифагор (5 век до н.э.), считая сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды.

Понятие симметрии проходит через всю историю человечества. Оно встречается уже у истоков человеческого знания. Возникло оно в связи с изучением живого организма, а именно человека. И употреблялось скульпторами ещё в 5 веке до нашей эры. Слово “симметрия ” греческое, оно означает “соразмерность, пропорциональность, одинаковость в расположении частей ”.


Его широко используют все без исключения направления современной науки. Немецкий математик Герман Вейль сказал: “Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство ”. Его деятельность приходится на первую половину ХХ века. Именно он сформулировал определение симметрии, установил по каким признакам усмотреть наличие или, наоборот, отсутствие симметрии в том или ином случае. Таким образом, математически строгое представление сформировалось сравнительно недавно – в начале ХХ века.

1.1. Осевая симметрия

Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему (Рисунок 2.1). Каждая точка прямой а считается симметричной самой себе.


Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой a также принадлежит этой фигуре (Рисунок 2.2).

Прямая а называется осью симметрии фигуры.


Говорят также, что фигура обладает осевой симметрией.

Осевой симметрией обладают такие геометрические фигуры как угол, равнобедренный треугольник, прямоугольник, ромб (Рисунок 2.3).

Фигура может иметь не одну ось симметрии. У прямоугольника их две, у квадрата – четыре, у равностороннего треугольника – три, у круга – любая прямая, проходящая через его центр.

Если присмотреться к буквам алфавита (Рисунок 2.4)., то и среди них можно найти, имеющие горизонтальную или вертикальную, а иногда и обе оси симметрии. Объекты, имеющие оси симметрии достаточно часто встречаются в живой и неживой природе.

Имеются фигуры, у которых нет ни одной оси симметрии. К таким фигурам относятся параллелограмм, отличный от прямоугольника, разносторонний треугольник.

В своей деятельности человек создаёт много объектов (в том числе и орнаменты), имеющих несколько осей симметрии.

1.2 Центральная симметрия

Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА1. Точка О считается симметричной самой себе (Рисунок 2.5).

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре .

Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм (Рисунок 2.6).

Точка О называется центром симметрии фигуры. В подобных случаях фигура обладает центральной симметрией. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма - точка пересечения его диагоналей.

Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.

1.3. Поворотная симметрия

Предположим, что объект совмещается сам с собой при повороте вокруг некоторой оси на угол, равный 360°/n (или кратный этой величине), где n = 2, 3, 4, … В этом случае о поворотной симметрии, а указанную ось называют поворотной осью n-го порядка.

Рассмотрим примеры со всеми известными буквами «И » и «Ф ». Что касается буквы «И », то у нее есть так называемая поворотная симметрия. Если повернуть букву «И » на 180° вокруг оси, перпендикулярной к плоскости буквы и проходящей через ее центр, то буква совместится сама с собой.

Иными словами, буква «И » симметрична относительно поворота на 180°. Заметим, что поворотной симметрией обладает также буква «Ф ».

На рисунке 2.7. даны примеры простых объектов с поворотными осями разного порядка – от 2-го до 5-го.

от греч. symmetria - соразмерность) - равномерное, сходное расположение элементов формы какого-нибудь искусственного предмета; в широком смысле слова - инвариантность (неизменность) структуры, формы материального объекта (системы объектов) относительно его преобразования, в силу чего симметрия связана с сохранением тех или иных величин, характеризующих данный объект (систему), например, энергии, импульса и т. д. (теорема Нетер в теоретической физике). (См. также Сингонии, Кристаллы, Кристаллография).

Отличное определение

Неполное определение ↓

Симметрия (symmetria)

Упорядочение целого есть, по Платону, превращение целого в гармонию, а определенное строение гармонии есть симметрия, пропорция, ритм.

а) Платон не дал достаточно ясного и развитого определения симметрии, хотя это понятие весьма важно для эстетики. Его высказывания о симметрии (Phileb, 23с - 27d)., к сожалению, чересчур общи. Они сводятся примерно к следующему: представим себе какой-нибудь пустой фон, на котором ничего не нарисовано. Нарисуем на этом фоне фигуру - круг, квадрат, треугольник, прямоугольник и т. д. Такая фигура обозначается при помощи прямой или кривой линии. Допустим далее, что мы не рассматриваем взятый нами фон и нарисованную фигуру отдельно друг от друга, а как нечто целое. Такое представление правильно, потому что фигура так или иначе заняла и подчинила себе определенную часть фона. Что же это за фигура, какой она имеет конкретный вид? Ее вид может быть красивый или некрасивый, соразмерный или несоразмерный, симметричный и несимметричный. Придали ли мы фигуре тот именно вид, который хотели, или это нам не удалось? Наше эстетическое чувство подскажет, хороша ли эта фигура или нехороша, стройна она или не стройна, прекрасна или уродлива, и т. д. Вот это простейшее и общечеловеческое рассуждение как раз и надо иметь в виду, чтобы понять содержание трудного платоновского диалога «Филеб».

Вместо того, чтобы говорить о фоне, Платон вводит понятие беспредельного. Конечно, не сразу станут понятными слова Платона о том, что беспредельное «может» быть и как угодно велико и как угодно мало, что оно пусто и ничего в себе не содержит. Итак, наш фон есть платоновское беспредельное. Далее, на нашем фоне мы чертим некую фигуру, т. е. ограничиваем некоторую часть фона. Эту фигуру Платон называет не очень понятным термином - «предел». Предел - это в данном случае просто ограниченность известной части фона. Но наш чертеж, ограничивший часть фона от прочего фона, создал именно определенную фигуру. Эту фигуру Платон именует не совсем понятным термином - «смешение» беспредельного и предела. Это не есть какое бы то ни было смешение каких бы то ни было разных предметов. Этот термин можно сравнить с тем, как воспринимается чертеж фигуры, когда эта фигура, выделяясь на каком-либо фоне, действительно «смешивается» с этим фоном, но ясно, что это понятие «смешение» специфично. Еще труднее и непонятнее термин Платона, употребляемый им для обозначения того, какая же именно фигура у нас получилась, т. е. какую именно идею мы хотели воплотить в чертеже, идею ли, например, треугольника или идею круга, или вообще какую-нибудь определенную идею. Платон назвал это «причиной смешения». Слово «причина» здесь либо неудачное, либо мы просто не сумели перевести соответствующий греческий термин. Ясно, однако, что фигура эта совершенно определенна. Это не фигура вообще, а треугольник, прямоугольник, круг и т. д. Та ли это фигура, которую мы хотели начертить? Здесь появляется новая ступень в понимании чертежа, которую Платон называет сразу тремя терминами: «симметрией», «истиной» и «красотой». Конечно, полученная нами фигура.либо симметрична, либо несимметрична, либо она соответствует нашей идее и потому истинна, либо мы в чем-нибудь ошиблись при чертеже, и тогда она не истинна, и она либо красива, либо некрасива. Это тоже ясно. Но слишком общий характер этих терминов и отсутствие всяких рассуждении об их взаимозависимости делают их не вполне ясными, почему в комментариях античных авторов на «Филеба» Платона по этому поводу было немало споров. Следовательно, симметрия по «Филебу» Платона, предполагает, по крайней мере, четыре разных понятия - беспредельного, предела, смешения того и другого и причины этого смешения. И, кроме того, даже и в этом случае понятие симметрии еще не очень ясно отмежевано от понятия истины и красоты. Если иметь в виду любовь Платона к архитектонике понятий и к их схематизму, разделение красота, истина и симметрия есть не что иное, как повторение первоначальной диалектики беспредельного, предела и смешения на высшей ступени. Наиболее интересно и ближе всего подходит к нашему пониманию эстетики рассуждение об удовольствии, или наслаждении, и разумности. Удовольствие, или наслаждение, -это что-то беспредельное, так как оно, взятое само по себе, ненасытно, вечно стремится как бы слепо и не имеет никакого предела. Разумность, ум, или интеллект, наоборот, всегда основывается на известной системе, на тех или иных точных разграничениях, на воздержании от наслаждений и потому является твердым и определенным принципом, «пределом». Если под красотой Платон понимает синтез наслаждения и разумности, т. е. как бы внутреннюю сторону соразмерности симметрии, то он очевидно, предвидит весьма распространенные впоследствии европейские учения о соединении удовольствия и ума в красоте. Истинное понятие красоты всегда включает не только удовольствие, но и разумную идейность. Учение Платона о симметрии оказывается не так уж наивным и общим; оно в некоторой степени отражает и реальную эстетическую действительность и реальное ее восприятие.

б) Мы исходили из того, что эстетическая и всякая иная терминология вырабатывалась у Платона постепенно, иной раз с большими усилиями и часто принимала неясные и запутанные формы. Однако изучать эстетику Платона нельзя на основании только некоторых материалов «Филеба». Необходимо обратить внимание на употребление термина «симметрия» и в других диалогах.

Например, интересно следующее в «Законах» (Legg., II 668 а): «Ведь равное является равным и симметричное (symmetron) симметричным не потому, что так нравится или так по вкусу кому-либо, но мерилом здесь является, по преимуществу, истина, а не другое». В данном случае «симметрия» уже предполагает «истину», так что, по крайней мере, в этом пункте мы были правы в пашей догадке относительно места «симметрии» в «Филебе». К «Филебу» примыкает и суждение в «Законах» (Legg., VI 773 а): «Равное и соразмерное в отношении добродетели бесконечно выше чрезмерного (acratoy)». Эти примеры показывают также, что Платон недаром поместил свою «симметрию» в такой общей области, как область творческого смешения предела и беспредельного. Указанные два текста весьма слабо подчеркивают структурную сторону симметрии, так что «соразмерность» здесь можно понимать в самом широком смысле. Как «истина» и «красота» есть какое-то соответствие (т. е. взаимосоответствие предела и беспредельного), таким же соответствием является и симметрия.

О структурности симметрии читаем: «Храм самого Посейдона имел одну стадию в длину три плефра в ширину и пропорционально (symmetron) тому на вид высоту» (Critias, 116 d). Что тут значит симметрия, нам неясно. Но ясно, что имеется в виду какое-то структурное соответствие. С такого же рода принципом структурности можно столкнуться в «Софисте», где говорится об искажении предметов, образующихся вследствие перспективы:

«Если они [художники] создают истинную симметрию прекрасных предметов, то ты знаешь, что более высокое кажется меньше нижнего, а более низкое - больше, ввиду того, что первые бывают видимы нами издали, а последние вблизи... Так же не расстаются ли при таких обстоятельствах художники с истиной, когда образам, отделываемым ими, они придают не действительно прекрасные «размеры» (tas oysas simmetrias), но кажущиеся таковыми» (Soph., 235 е - 236 а). Здесь «симметрия» только намекает на структурность, на деле же она означает (как это и переведено) именно «размеры» или (если перевести также приставку этого слова) «совокупность размеров».

Приведем текст, где имеется в виду составленность из единиц длины, но без всякого структурного взаимоотношения этих длин: «Будучи равным, оно будет тех же мер [т. е. «из того же количества единиц меры»], с тем, чем оно будет равно... Если же оно больше или меньше, по сравнению с тем, чему оно соразмерно (xymmetron), то в отношении к меньшему оно будет иметь больше мер [больше размером], а в отношении к большему оно будет иметь меньше мер [меньше размером]... С чем же оно несоизмеримо (me symmetron), в отношении к тому оно будет один раз иметь меньшие меры, другой раз большие» (Parm., 140 b). Под «симметрией», очевидно, здесь понимается просто математическая соизмеримость, т. е. возможность нахождения единой меры измерения.

в) Для характеристики термина «симметрия» имеет важное значение текст из диалога Платона «Теэтет» (147d-148 а). Текст этот представляет значительные трудности с чисто филологической стороны. Идея его сводится к тому, что Платон выдвигает на первый план при изучении симметрии прямоугольники, где стороны измеряются определенным рациональным числом, а диагонали иррациональным. Взаимоотношение стороны и диагонали каждого такого прямоугольника создает особого рода симметрию, на основе которой, как это исследовано современными теоретиками архитектуры, античные мастера возводили храмовые постройки периода классики.

Рассуждение о симметрии из «Теэтета» не осталось без отклика также и в современной искусствоведческой литературе. А именно, Д. Хэмбидж в своем учении о динамической симметрии в архитектуре3 ссылается как раз на это место платоновского «Теэтета», хотя и не подвергает его специальному анализу. Он обосновывается на большом искусствоведческом и естественнонаучном материале и, между прочим, на анализе всех основных архитектурных элементов Парфенона (а также и других греческих храмов)4. Если иметь в виду терминологию «Теэтета», то наименование рассматриваемой у этого автора симметрии как «динамической» нужно считать весьма удачным.

Рассуждение о симметрии в «Теэтете» в своем существе не выходит за пределы «Филеба», но только конкретизирует его. Объединение «предела» и «беспредельного» в художественном образе достигается в «Теэтете» при помощи геометрического построения. Геометрия в диалоге «Теэтета» служит здесь тем телесным и практическим началом, при помощи которого Платон делает свои отвлеченные построения. С помощью геометрии Платон пытается перевести на научный язык практику античного изобразительного искусства (в данном случае архитектуры).

В понятии симметрии у Платона имеется довольно существенное расхождение с обычным пониманием в западно-европейской эстетике. Расхождение это больше всего заметно благодаря чересчур большому объему этого понятия у Платона. Теперь представляют симметрию.главным образом как наличие взаимно эквивалентных частей, расположенных вокруг некоего центра или оси. Платоновское же понятие симметрии сводилось к наличию взаимно эквивалентных частей при очень расширенном понимании «центра» или «оси». Тут мыслятся не только числовые и геометрические отношения, но и отношения любых сфер бытия и жизни вообще.

Больше всего, конечно, «симметрия» мыслится (как и все прочие эстетические формы) у Платона в отношении души и космоса. Как увидим, она свойственна уже и всем элементарным фигурам, из которых строится у Платона космос (Tim., 69 b), но особенно она фиксируется на живом теле и душе и во взаимоотношениях души и тела (Tim., 87 с). Можно сказать, симметрия обладает здесь столь же широким значением, что и в досократовской эстетике, но только в ней подчеркнут творческий момент, совершенно растворенный в космологическом и физическом представлении о мире у досократиков.

Отличное определение

Неполное определение ↓