Электронный ток в полупроводниках. Контактные явления в металлах

Полупроводниками назвали класс веществ, у которых с повышением температуры увеличивается проводимость, уменьшается электрическое сопротивление. Этим полупроводники принципиально отличаются от металлов.

Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены кова-лентной связью. При любых температурах в полупроводниках имеются свободные электроны. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов кристаллической решетки приводит к превращению этого атома в положительный ион. Этот ион может нейтрализоваться, захватив электрон у одного из соседних атомов. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном. Внешне этот процесс воспринимается как перемещение положительного электрического заряда, называемого дыркой .

При помещении кристалла в электрическое поле возникает упорядоченное движение дырок - дырочный ток проводимости.

В идеальном полупроводниковом кристалле электрический ток создается движением равного количества отрицательно заряженных электронов и положительно заряженных дырок. Проводимость в идеальных полупроводниках называется собственной проводимостью.

Свойства полупроводников сильно зависят от содержания примесей. Примеси бывают двух типов - донорные и акцепторные.

Примеси, отдающие электроны и создающие электронную проводимость, называются донорными (примеси, имеющие валентность больше, чем у основного полупроводника). Полупроводники, в которых концентрация электронов превышает концентрацию дырок, называют полупроводниками n-типа.

Примеси, захватывающие электроны и создающие тем самым подвижные дырки, не увеличивая при этом число электронов проводимости, называют акцепторными (примеси имеющие валентность меньше, чем у основного полупроводника).

При низких температурах основными носителями тока в полупроводниковом кристалле с акцепторной примесью являются дырки, а не основными носителями - электроны. Полупроводники, в которых концентрация дырок превышает концентрацию электронов проводимости, называют дырочными полупроводниками или полупроводниками р-типа. Рассмотрим контакт двух полупроводников с различными типами проводимости.

Через границу этих полупроводников происходит взаимная диффузия основных носителей: электроны из n-полупроводника диффундируют в р-полупроводник, а дырки из р-полупроводника в n-полупроводник. В результате участок n-полупроводника, граничащий с контактом, будет обеднен электронами, и в нем образуется избыточный положительный заряд, обусловленный наличием оголенных ионов примеси. Движение дырок из р-полупроводника в n-полупроводник приводит к возникновению избыточного отрицательного заряда в пограничном участке р-полупроводника. В результате образуется двойной электрический слой, и возникает контактное электрическое поле, которое препятствует дальнейшей диффузии основных носителей заряда. Этот слой называют запирающим .

Внешнее электрическое поле влияет на электропроводность запирающего слоя. Если полупроводники подключены к источнику так, как показано на рис. 55, то под действием внешнего электрического поля основные носители заряда - свободные электроны в п-полупроводнике и дырки в р-полупроводнике - будут двигаться навстречу друг другу к границе раздела полупроводников, при этом толщина p-n-перехода уменьшается, следовательно, уменьшается его сопротивление. В этом случае сила тока ограничивается внешним сопротивлением. Такое направление внешнего электрического поля называется прямым. Прямому включению p-n-перехода соответствует участок 1 на вольт-амперной характеристике (см. рис. 57).

Носители электрического тока в различных средах и вольт-амперные характеристики обобщены в табл. 1.

Если полупроводники подключены к источнику так, как показано на рис. 56, то электроны в п-полупроводнике и дырки в р-полупроводнике будут перемещаться под действием внешнего электрического поля от границы в противоположные стороны. Толщина запирающего слоя и, следовательно, его сопротивление увеличиваются. При таком направлении внешнего электрического поля - обратном (запирающем) через границу раздела проходят только неосновные носители заряда, концентрация которых много меньше, чем основных, и ток практически равен нулю. Обратному включению р-п-перехода соответствует участок 2 на вольт-амперной характеристике (рис. 57).

В полупроводниках свободные электроны и дырки на­ходятся в состоянии хаотического движения. Поэтому, если выбрать произвольное сечение внутри объема полупровод­ника и подсчитать число носителей заряда, проходящих через это сечение за единицу времени слева направо и справа налево, значения этих чисел окажутся одинаковы­ми. Это означает, что электрический ток в данном объеме полупроводника отсутствует. При помещении полупроводника в электрическое поле напряженностью Е на хаотическое движение носителей зарядов накладывается составляющая направленного дви­жения. Направленное движение носителей зарядов в элек­трическом поле обусловливает появление тока, называе­мого дрейфовым (рис. 1.5)

В области высоких температур концентрация электро­нов и дырок значительно возрастает за счет разрыва ковалентных связей и, несмотря на уменьшение их подвижно­сти, электропроводность полупроводника увеличивается по экспоненциальному закону.

Рисунок 1.5 Дрейфовый ток в полупроводнике

1.2.2 Диффузионный ток

Кроме теплового возбуждения, приводящего к возник­новению равновесной концентрации зарядов, равномерно распределенных по объему полупроводника, обогащение полупроводника электронами до концентрации n p и дыр­ками до концентрации p n может осуществляться его осве­щением, облучением потоком заряжённых частиц, введе­нием их через контакт (инжекцией) и т. д. В этом случае энергия возбудителя передается непосредственно носите­лям заряда и тепловая энергия кристаллической решетки остается практически постоянной. Следовательно, избы­точные носители заряда не находятся в тепловом равнове­сии с решеткой и поэтому называются неравновесными. В отличие от равновесных они могут неравномерно распре­деляться по объему полупроводника (рис. 1.6)

После прекращения действия возбудителя за счет реком­бинации электронов и дырок концентрация избыточных но­сителей быстро убывает и достигает равновесного значения.

Носители зарядов рекомбинируют в объеме полупро­водника и на его поверхности. Неравномерное распределение неравновесных носите­лей зарядов сопровождается их диффузией в сторону мень­шей концентрации. Это движение носителей зарядов обу­словливает прохождение электрического тока, называемо­го диффузионным (рис. 1.6).

Рисунок 1.6 Диффузионный ток в полупроводнике

1.3 Контактные явления

    Электронно-дырочный переход в состоянии равновесия

Принцип действия большинства полупроводниковых приборов основан на физических явлениях, происходящих в области контакта твердых тел. При этом преимущест­венно используются контакты: полупроводник-полупровод­ник; металл-полупроводник; металл-диэлектрик-полупро­водник.

Если переход создается между полупроводниками n-типа и p-типа, то его называют электронно-дырочным или p-n переходом.

Электронно-дырочный переход создается в одном кри­сталле полупроводника с использованием сложных и раз­нообразных технологических операций.

Рассмотрим p-n переход, в котором концентрации до­норов N д и акцепторов N a изменяются скачком на границе раздела (рис. 1.7, а). Такой p-n переход называют рез­ким. Равновесная концентрация дырок в p-области () значительно превышает их концентрацию вn-области (). Аналогично для электронов выполняется условие>. Неравномерное распределение концентраций одноименных носителей зарядов в кристалле (рис. 1.7, б) приводит к возникновению диффузии электронов изn-области в p-область и дырок из p-области в n-область. Такое движе­ние зарядов создает диффузионный ток электронов и ды­рок.

Электроны и дырки, переходя через контакт навстречу друг другу (благодаря диффузии), рекомбинируют и в приконтактной области дырочно­го полупроводника образуется нескомпенсированный заряд отрицатель­ных ионов акцепторных примесей, а в электронном полу­проводнике нескомпенсированный заряд положительных донорных ионов (рис. 1.6, в). Таким образом, электрон­ный полупроводник заряжается положительно, а дыроч­ный - отрицательно. Между областями с различными ти­пами электропроводности возникает собственное электри­ческое поле напряженностью E соб (рис. 1.7, а), созданное двумя слоями объемных зарядов.

Собственное электрическое поле является тормозя­щим для основных носителей заряда и ускоряющим для неосновных. Электроны p-области и дырки n-области, со­вершая тепловое движение, попадают в пределы диффузи­онного электрического поля, увлекаются им и перебрасы­ваются в противоположные области, образуя ток дрейфа, или ток проводимости.

Рисунок 1.7 Равновесное состояние p-n перехода

Приконтактную область, где имеется собственное электрическое поле, называют p - n переходом . В данной области полупровод­ник характеризуется собственной электропроводностью и обладает по сравнению с остальным объемом повышен­ным сопротивлением. В связи с этим его называют запи­рающим слоем или областью объемного заряда.

На ширину запираю­щего слоя существенное влияние оказывает концентрация примесных атомов. Увеличение концентрации примесных атомов сужает запирающий слой, а уменьшение расширя­ет его. Это часто используется для придания полупровод­никовым приборам требуемых свойств.

Урок № 41-169 Электрический ток в полупроводниках. Полупроводниковый диод. Полупроводниковые приборы.

Полупроводник — вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость увеличивается. Наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями. При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик. Если полупроводник чистый(без примесей), то он обладает собственной проводимостью (невелика).

Собственная проводимость бывает двух видов:

1)электронная (проводимость «п «-типа) При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; При увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны — сопротивление уменьшается.

Свободные электроны перемещаются противоположно вектору напряженности электрического поля. Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2)дырочная (проводимость «р»-типа). При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном — «дырка». Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение «дырки» равноценно перемещению положительного заряда. Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны нагреванием, освещением (фотопроводимость) и действием сильных электрических полей.

Зависимость R (t ): термистор

— дистанционное измерение t;

— противопожарная сигнализация

Зависимость R от освещенности: Фоторезистор

— фотореле

— аварийные выключатели

Общая проводимость чистого полупроводника складывается из проводимостей «р» и «n » -типов и называется электронно-дырочной проводимостью.

Полупроводники при наличии примесей

У них существует собственная и примесная проводимость. Наличие примесей сильно увеличивает проводимость. При изменении концентрации примесей изменяется число носителей электрического тока — электронов и дырок. Возможность управления током лежит в основе широкого применения полупроводников. Существуют следующие примеси:

1) донорные примеси (отдающие) — являются дополнительными

поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике. Это проводники » n » — типа, т.е. полупроводники с донорными примесями, где основной носитель заряда — электроны, а неосновной — дырки. Такой полупроводник обладает электронной примесной проводимостью (пример – мышьяк).

2) акцепторные примеси (принимающие) создают «дырки», забирая в себя электроны. Это полупроводники » р «- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда –

дырки, а неосновной — электроны. Такой полупроводник обладает

дырочной примесной проводимостью (пример – индий).

Электрические свойства «р- n » переходов.

«р-п» переход (или электронно-дырочный переход) — область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия, электронов и дырок и образуется запирающий

электрический слой. Электрическое поле запирающего слоя препятствует

дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

В нешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего электрического поля ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны,

переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

П ри запирающем (обратном направлении внешнего электрического поля) ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой

утолщается, его сопротивление увеличивается.

Таким образом, электронно-дырочный переход обладает односторонней проводимостью.

Полупроводниковый диод — полупроводник с одним «р-п» переходом.

П олупроводниковые диоды основные элементы выпрямителей переменного тока.

При наложении электрического поля: в одном направлении сопротивление полупроводника велико, в обратном — сопротивление мало.

Транзисторы. (от английских слов transfer — переносить, resistor – сопротивление)

Рассмотрим один из видов транзисторов из германия или кремния с введенными в них донорными и акцепторными примесями. Распределе­ние примесей таково, что создает­ся очень тонкая (порядка несколь­ких микрометров) прослойка полупроводника п-типа между дву­мя слоями полупроводника р-типа (см. рис.).

Эту тонкую прослойку называют основанием или базой. В кристалле образуются два р -n -перехода, прямые направле­ния которых противоположны. Три вывода от областей с различными типами проводимости позволяют включать транзистор в схему, изо­браженную на рисунке. При данном включении левый р -n -пе­реход является прямым и отделяет базу от области с проводимостью р-типа, называемую эмиттером. Если бы не было правого р -n -перехода, в цепи эмиттер - база су­ществовал бы ток, зависящий от напряжения источников (батареи Б1 и источника переменного напряжения) и со­противления цепи, включая малое сопротивление прямо­го перехода эмиттер - база.

Батарея Б2 включена так, что правый р -n -переход в схеме (см. рис.) является обратным. Он отделяет базу от правой области с проводимостью р-типа, называ­емой коллектором. Если бы не было левого р -n -перехо­да, сила тока в цепи коллектора была бы близка к ну­лю, так как

сопротивление обратного перехода очень велико. При существовании же тока в левом р -n -пере­ходе появляется ток и в цепи коллектора, причем сила тока в коллекторе лишь немного меньше силы тока в эмиттере (если на эмиттер подано отрицательное напряжение, то левый р -n -переход будет обратным и ток в цепи эмиттера и в цепи коллек­тора будет практически отсутствовать). При создании напряжения между эмиттером и базой основные носители полупровод­ника р-типа - дырки проникают в базу, где они явля­ются уже неосновными носителями. Поскольку толщина базы очень мала и число основных носителей (электро­нов) в ней невелико, попавшие в нее дырки почти не объ­единяются (не рекомбинируют) с электронами базы и про­никают в коллектор за счет диффузии. Правый р -n -переход закрыт для основных носителей заряда ба­зы - электронов, но не для дырок. В коллекторе дырки увлекаются электрическим полем и замыкают цепь. Сила тока, ответвляющегося в цепь эмиттера из базы, очень мала, так как площадь сечения базы в горизонтальной (см. рис. выше) плоскости много меньше сечения в верти­кальной плоскости.

Сила тока в коллекторе, практически равная силе то­ка в эмиттере, изменяется вместе с током в эмиттере. Со­противление резистора R мало влияет на ток в коллекто­ре, и это сопротивление можно сделать достаточно большим. Управляя током эмиттера с помощью источника перемен­ного напряжения, включенного в его цепь, мы получим синхронное изменение напряжения на резисторе R .

При большом сопротивлении резистора изменение напря­жения на нем может в десятки тысяч раз превышать изме­нение напряжения сигнала в цепи эмиттера. Это означает усиление напряжения. Поэтому на нагрузке R можно полу­чить электрические сигналы, мощность которых во много раз превосходит мощность, поступающую в цепь эмиттера.

Применение транзисторов Свойства р -п-перехода в полупроводниках использу­ются для усиления и генерации электрических колебаний.

>>Физика: Электрический ток в полупроводниках

В чем главное отличие полупроводников от проводников? Какие особенности строения полупроводников открыли им доступ во все радиоустройства, телевизоры и ЭВМ?
Отличие проводников от полупроводников особенно проявляется при анализе зависимости их электропроводимости от температуры. Исследования показывают, что у ряда элементов (кремний, германий, селен и др.) и соединений (PbS, CdS, GaAs и др.) удельное сопротивление с увеличением температуры не растет, как у металлов (рис.16.3 ), а, наоборот, чрезвычайно резко уменьшается (рис.16.4 ). Такие вещества и называют полупроводниками .

Из графика, изображенного на рисунке, видно, что при температурах, близких к абсолютному нулю, удельное сопротивление полупроводников очень велико. Это означает, что при низких температурах полупроводник ведет себя как диэлектрик. По мере повышения температуры его удельное сопротивление быстро уменьшается.
Строение полупроводников . Для того чтобы включить транзисторный приемник, знать ничего не надо. Но чтобы его создать, надо было знать очень много и обладать незаурядным талантом. Понять же в общих чертах, как работает транзистор, не так уж и трудно. Сначала необходимо познакомиться с механизмом проводимости в полупроводниках. А для этого придется вникнуть в природу связей , удерживающих атомы полупроводникового кристалла друг возле друга.
Для примера рассмотрим кристалл кремния.
Кремний - четырехвалентный элемент. Это означает, что во внешней оболочке его атома имеется четыре электрона, сравнительно слабо связанных с ядром. Число ближайших соседей каждого атома кремния также равно четырем. Схема структуры кристалла кремния изображена на рисунке 16.5.

Взаимодействие пары соседних атомов осуществляется с помощью парноэлектронной связи, называемой ковалентной связью . В образовании этой связи от каждого атома участвует по одному валентному электрону, которые отделяются от атома, которому они принадлежат (коллективируются кристаллом) и при своем движении большую часть времени проводят в пространстве между соседними атомами. Их отрицательный заряд удерживает положительные ионы кремния друг возле друга.
Не надо думать, что коллективированная пара электронов принадлежит лишь двум атомам. Каждый атом образует четыре связи с соседними, и любой валентный электрон может двигаться по одной из них. Дойдя до соседнего атома, он может перейти к следующему, а затем дальше вдоль всего кристалла. Валентные электроны принадлежат всему кристаллу.
Парноэлектронные связи в кристалле кремния достаточно прочны и при низких температурах не разрываются. Поэтому кремний при низкой температуре не проводит электрический ток. Участвующие в связи атомов валентные электроны являются как бы «цементирующим раствором», удерживающим кристаллическую решетку, и внешнее электрическое поле не оказывает заметного влияния на их движение. Аналогичное строение имеет кристалл германия.
Электронная проводимость. При нагревании кремния кинетическая энергия частиц повышается, и наступает разрыв отдельных связей. Некоторые электроны покидают свои «проторенные пути» и становятся свободными, подобно электронам в металле. В электрическом поле они перемещаются между узлами решетки, создавая электрический ток (рис.16.6 ).

Проводимость полупроводников, обусловленную наличием у них свободных электронов, называют электронной проводимостью . При повышении температуры число разорванных связей, а значит, и свободных электронов увеличивается. При нагревании от 300 до 700 К число свободных носителей заряда увеличивается от 10 17 до 10 24 1/м 3 . Это приводит к уменьшению сопротивления.
Дырочная проводимость. При разрыве связи между атомами полупроводника образуется вакантное место с недостающим электроном. Его называютдыркой . В дырке имеется избыточный положительный заряд по сравнению с остальными, не разорванными связями (см. рис. 16.6).
Положение дырки в кристалле не является неизменным. Непрерывно происходит следующий процесс. Один из электронов, обеспечивающих связь атомов, перескакивает на место образовавшейся дырки и восстанавливает здесь парноэлектронную связь, а там, откуда перескочил этот электрон, образуется новая дырка. Таким образом, дырка может перемещаться по всему кристаллу.
Если напряженность электрического поля в образце равна нулю, то перемещение дырок, равноценное перемещению положительных зарядов, происходит беспорядочно и поэтому не создает электрического тока. При наличии электрического поля возникает упорядоченное перемещение дырок, и, таким образом, к электрическому току свободных электронов добавляется электрический ток, связанный с перемещением дырок. Направление движения дырок противоположно направлению движения электронов (рис.16.7 ).

В отсутствие внешнего поля на один свободный электрон (-) приходится одна дырка (+). При наложении поля свободный электрон смещается против напряженности поля. В этом направлении перемещается также один из связанных электронов. Это выглядит как перемещение дырки в направлении поля.
Итак, в полупроводниках имеются носители заряда двух типов: электроны и дырки. Поэтому полупроводники обладают не только электронной, но и дырочной проводимостью .
Мы рассмотрели механизм проводимости чистых полупроводников. Проводимость при этих условиях называют собственной проводимостью полупроводников.
Проводимость чистых полупроводников (собственная проводимость) осуществляется перемещением свободных электронов (электронная проводимость) и перемещением связанных электронов на вакантные места парноэлектронных связей (дырочная проводимость).

???
1. Какую связь называют ковалентной ?
2. В чем состоит различие зависимости сопротивления полупроводников и металлов от температуры?
3. Какие подвижные носители зарядов имеются в чистом полупроводнике?
4. Что происходит при встрече электрона с дыркой?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

На этом уроке мы рассмотрим такую среду прохождения электрического тока, как полупроводники. Мы рассмотрим принцип их проводимости, зависимость этой проводимости от температуры и наличия примесей, рассмотрим такое понятие, как p-n переход и основные полупроводниковые приборы.

Если же совершить прямое подключение, то внешнее поле нейтрализует запирающее, и ток будет совершаться основными носителями заряда (рис. 9).

Рис. 9. p-n переход при прямом подключении ()

При этом ток неосновных носителей ничтожно мал, его практически нет. Поэтому p-n переход обеспечивает одностороннюю проводимость электрического тока.

Рис. 10. Атомная структура кремния при увеличении температуры

Проводимость полупроводников является электронно-дырочной, и такая проводимость называется собственной проводимостью. И в отличие от проводниковых металлов при увеличении температуры как раз увеличивается количество свободных зарядов (в первом случае оно не меняется), поэтому проводимость полупроводников растет с ростом температуры, а сопротивление уменьшается (рис. 10).

Очень важным вопросом в изучении полупроводников является наличие примесей в них. И в случае наличия примесей следует говорить уже о примесной проводимости.

Полупроводниковые приборы

Малые размеры и очень большое качество пропускаемых сигналов сделали полупроводниковые приборы очень распространенными в современной электронной технике. В состав таких приборов может входить не только вышеупомянутый кремний с примесями, но и, например, германий.

Одним из таких приборов является диод - прибор, способный пропускать ток в одном направлении и препятствовать его прохождению в другом. Он получается вживлением в полупроводниковый кристалл p- или n-типа полупроводника другого типа (рис. 11).

Рис. 11. Обозначение диода на схеме и схема его устройства соответственно

Другим прибором, теперь уже с двумя p-n переходами, называется транзистор. Он служит не только для выбора направления пропускания тока, но и для его преобразования (рис. 12).

Рис. 12. Схема строения транзистора и его обозначение на электрической схеме соответственно ()

Следует отметить, что в современных микросхемах используется множество комбинаций диодов, транзисторов и других электрических приборов.

На следующем уроке мы рассмотрим распространение электрического тока в вакууме.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Принципы действия устройств ().
  2. Энциклопедия Физики и Техники ().

Домашнее задание

  1. Вследствие чего в полупроводнике появляются электроны проводимости?
  2. Что такое собственная проводимость полупроводника?
  3. Как зависит проводимость полупроводника от температуры?
  4. Чем отличается донорная примесь от акцепторной?
  5. *Какую проводимость имеет кремний с примесью а) галлия, б) индия, в) фосфора, г) сурьмы?