График криволинейной трапеции. Определенный интеграл

Рассмотрим криволинейную трапецию, ограниченную осью Ох, кривой y=f(x) и двумя прямыми: х=а и х=Ь (рис. 85). Возьмем произвольное значение х (только не а и не Ь). Дадим ему приращение h = dx и рассмотрим полоску, ограниченную прямыми АВ и CD, осью Ох и дугой BD, принадлежащей рассматриваемой кривой. Эту полоску будем называть элементарной полоской. Площадь элементарной полоски отличается от площади прямоугольника ACQB на криволинейный треугольник BQD, а площадь последнего меньше площади прямоугольника BQDM со сторонами BQ = =h=dx} QD=Ay и площадью, равной hAy = Ay dx. С уменьшением стороны h сторона Ду также уменьшается и одновременно с h стремится к нулю. Поэтому площадь BQDM является бесконечно малой второго порядка. Площадь элементарной полоски есть приращение площади, а площадь прямоугольника ACQB, равная АВ-АС==/(х) dx> есть дифференциал площади. Следовательно, саму площадь найдем, интегрируя ее дифференциал. В пределах рассматриваемой фигуры независимое переменное л: меняется от а до b, поэтому искомая площадь 5 будет равна 5= \f(x) dx. (I) Пример 1. Вычислим площадь, ограниченную параболой у - 1 -х*, прямыми X =--Fj-, х = 1 и осью О* (рис. 86). у Рис. 87. Рис. 86. 1 Здесь f(x)= 1 - л?, пределы интегрирования а = - и £=1, поэтому J [*-т]\- -fl -- Г -1-±Л_ 1V1 -l-l-Ii-^ 3) |_ 2 3V 2 / J 3 24 24* Пример 2. Вычислим площадь, ограниченную синусоидой y = sinXy осью Ох и прямой (рис. 87). Применяя формулу (I), получаем Л 2 S= J sinxdx= [-cos x]Q =0 -(-1) = lf Пример 3. Вычислим площадь, ограниченную дугой синусоиды ^у = sin jc, заключенной между двумя соседними точками пересечения с осью Ох (например, между началом координат и точкой с абсциссой я). Заметим, что из геометрических соображений ясно, что эта площадь будет в два раза больше площади предыдущего примера. Однако проделаем вычисления: я 5= | s\nxdx= [ - cosх}* - - cos я-(-cos 0)= 1 + 1 = 2. о Действительно, наше предположение оказалось справедливым. Пример 4. Вычислить площадь, ограниченную синусоидой и ^ осью Ох на одном пе-х риоде (рис. 88). Предварительные рас-рис суждения позволяют предположить, что площадь получится в четыре раза больше, чем в пр. 2. Однако, произведя вычисления, получим «я Г,*я S - \ sin х dx = [ - cos х]0 = = -cos 2л -(-cos 0) = - 1 + 1 = 0. Этот результат требует разъяснений. Для выяснения сути дела вычисляем еще площадь, ограниченную той же синусоидой у = sin л: и осью Ох в пределах от л до 2я. Применяя формулу (I), получаем 2л $2л sin хdx=[ - cosх]л =-cos 2я~}-с05я=- 1-1 =-2. я Таким образом, видим, что эта площадь получилась отрицательной. Сравнивая ее с площадью, вычисленной в пр. 3, получаем, что их абсолютные величины одинаковы, а знаки разные. Если применить свойство V (см. гл. XI, § 4), то получим 2л я 2л J sin xdx= J sin * dx [ sin x dx = 2 + (- 2) = 0То, что получилось в этом примере, не является случайностью. Всегда площадь, расположенная ниже оси Ох, при условии, что независимое переменное изменяется слева направо, получается при вычислении с помощью интегралов отрицательной. В этом курсе мы всегда будем рассматривать площади без знаков. Поэтому ответ в только что разобранном примере будет таким: искомая площадь равна 2 + |-2| = 4. Пример 5. Вычислим площадь ОАВ, указанную на рис. 89. Эта площадь ограничена осью Ох, параболой у = - хг и прямой у - =-х+\. Площадь криволинейной трапеции Искомая площадь ОАВ состоит из двух частей: ОАМ и МАВ. Так как точка А является точкой пересечения параболы и прямой, то ее координаты найдем, решая систему уравнений 3 2 У = тх. (нам нужно найти только абсциссу точки А). Решая систему, находим л; = ~. Поэтому площадь приходится вычислять по частям, сначала пл. ОАМ, а затем пл. МАВ: .... Г 3 2 , 3 Г хП 3 1 / 2 У 2 . QAM-^х площадь криволинейной трапеции, образованной функцией f, равна приращению первообразной этой функции:

Задание 1:

Найти площадь криволинейной трапеции, ограниченной графиком функции: f(x) = х 2 и прямыми у = 0, х = 1, х = 2.

Решение: (по алгоритму слайд 3 )

Начертим график функции и прямые

Найдём одну из первообразных функции f(x) = х 2 :

Самопроверка по слайду

Интеграл

Рассмотрим криволинейную трапецию, заданную функцией f на отрезке [a; b ]. Разобьём этот отрезок на несколько частей. Площадь всей трапеции разобьётся на сумму площадей более мелких криволинейных трапеций. (слайд 5) . Каждую такую трапецию можно приближённо считать прямоугольником. Сумма площадей этих прямоугольников даёт приближённое представление о всей площади криволинейной трапеции. Чем мельче мы разобьём отрезок [a; b ], тем точнее вычислим площадь.

Запишем эти рассуждения в виде формул.

Разделим отрезок [a; b ] на n частей точками х 0 =а, х1,… ,хn = b. Длину k- го обозначим через хk = xk – xk-1 . Составим сумму

Геометрически эта сумма представляет собой площадь фигуры, заштрихованной на рисунке (щ.м .)

Суммы вида называются интегральными суммами для функции f . (щ.м.)

Интегральные суммы дают приближённое значение площади. Точное значение получается при помощи предельного перехода. Представим, что мы измельчаем разбиение отрезка [a; b ] так, что длины всех маленьких отрезков стремятся к нулю. Тогда площадь составленной фигуры будет приближаться к площади криволинейной трапеции. Можно сказать, что площадь криволинейной трапеции равна пределу интегральных сумм, Sк.т. (щ.м.) или интегралу, т. е.,

Определение:

Интегралом функции f (х) от a до b называется предел интегральных сумм

= (щ.м.)

Формула Ньютона- Лейбница.

Помним, что предел интегральных сумм равен площади криволинейной трапеции, значит можно записать:

Sк.т. =(щ.м.)

С другой стороны, площадь криволинейной трапеции вычисляется по формуле

S к. т.(щ.м.)

Сравнивая эти формулы, получим:

= (щ.м.)

Это равенство называется формулой Ньютона- Лейбница.

Для удобства вычислений формулу записывают в виде:

= = (щ.м.)

Задания: (щ.м.)

1. Вычислить интеграл по формуле Ньютона- Лейбница: (проверяем по слайду 5 )

2. Составить интегралы по чертежу (проверяем по слайду 6 )

3. Найти площадь фигуры, ограниченной линиями: у = х 3 , у = 0, х = 1, х = 2. (Слайд 7 )

Нахождение площадей плоских фигур (слайд 8 )

Как найти площадь фигур, которые не являются криволинейными трапециями?

Пусть даны две функции, графики которых вы видите на слайде. (щ.м.) Необходимо найти площадь закрашенной фигуры. (щ.м.) . Фигура, о которой идёт речь, является криволинейной трапецией? А как можно найти её площадь, пользуясь свойством аддитивности площади? Рассмотреть две криволинейные трапеции и из площади одной из них вычесть площадь другой (щ.м.)

Составим алгоритм нахождения площади по анимации на слайде:

  1. Построить графики функций
  2. Спроецировать точки пересечения графиков на ось абсцисс
  3. Заштриховать фигуру, полученную при пересечении графиков
  4. Найти криволинейные трапеции, пересечение или объединение которых есть данная фигура.
  5. Вычислить площадь каждой из них
  6. Найти разность или сумму площадей

Устное задание: Как получить площадь заштрихованной фигуры (рассказать при помощи анимации, слайд 8 и 9)

Домашнее задание: Проработать конспект, №353 (а), № 364 (а).

Список литературы

  1. Алгебра и начала анализа: учебник для 9-11 классов вечерней (сменной) школы/ под ред. Г.Д. Глейзера. - М: Просвещение, 1983.
  2. Башмаков М.И. Алгебра и начала анализа: учебное пособие для 10-11 кл.сред.шк./ Башмаков М.И. - М: Просвещение, 1991.
  3. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования/ М.И. Башмаков. - М: Академия, 2010.
  4. Колмогоров А.Н. Алгебра и начала анализа: учебник для 10-11 кл. общеобразовательных учреждений/ А.Н.Колмогоров. - М: Просвещение, 2010.
  5. Островский С.Л. Как сделать презентацию к уроку?/ C.Л. Островский. – М.: Первое сентября, 2010.

Вычислить площадь фигуры, ограниченной линиями .

Решение.

Находим точки пересечения заданных линий. Для этого решаем систему уравнений:

Для нахождения абсцисс точек пересечения заданных линий решаем уравнение:

Находим: x 1 = -2, x 2 = 4.

Итак, данные линии, представляющие собой параболу и прямую, пересекаются в точках A (-2; 0), B (4; 6).

Эти линии образуют замкнутую фигуру, площадь которой вычисляем по указанной выше формуле:

По формуле Ньютона-Лейбница находим:

Найти площадь области, ограниченной эллипсом .

Решение.

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin t , dx = a cos t dt . Новые пределы интегрирования t = α и t = β определяются из уравнений 0 = a sin t , a = a sin t . Можно положить α = 0 и β = π /2.

Находим одну четвертую искомой площади

Отсюда S = πab .

Найти площадь фигуры, ограниченной линиями y = - x 2 + x + 4 и y = - x + 1.

Решение.

Найдем точки пересечения линий y = -x 2 + x + 4, y = -x + 1, приравнивая ординаты линий: -x 2 + x + 4 = -x + 1 или x 2 - 2x - 3 = 0. Находим корни x 1 = -1, x 2 = 3 и соответствующие им ординаты y 1 = 2, y 2 = -2.

По формуле площади фигуры получаем

Определить площадь, ограниченную параболой y = x 2 + 1 и прямой x + y = 3.

Решение.

Решая систему уравнений

находим абсциссы точек пересечения x 1 = -2 и x 2 = 1.

Полагая y 2 = 3 - x и y 1 = x 2 + 1, на основании формулы получаем

Вычислить площадь, заключенную внутри лемнискаты Бернулли r 2 = a 2 cos 2 φ .

Решение.

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f (φ ) и двумя полярными радиусами φ 1 = ʅ и φ 2 = ʆ , выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a 2 .

Вычислить длину дуги астроиды x 2/3 + y 2/3 = a 2/3 .

Решение.

Запишем уравнение астроиды в виде

(x 1/3) 2 + (y 1/3) 2 = (a 1/3) 2 .

Положим x 1/3 = a 1/3 cos t , y 1/3 = a 1/3 sin t .

Отсюда получаем параметрические уравнения астроиды

x = a cos 3 t , y = a sin 3 t , (*)

где 0 ≤ t ≤ 2π .

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L , соответствующую изменению параметра t от 0 до π /2.

Получаем

dx = -3a cos 2 t sin t dt , dy = 3a sin 2 t cos t dt .

Отсюда находим

Интегрируя полученное выражение в пределах от 0 до π /2, получаем

Отсюда L = 6a .

Найти площадь, ограниченную спиралью Архимеда r = и двумя радиусами-векторами, которые соответствуют полярным углам φ 1 и φ 2 (φ 1 < φ 2 ).

Решение.

Площадь, ограниченная кривой r = f (φ ) вычисляется по формуле , где α и β - пределы изменения полярного угла.

Таким образом, получаем

(*)

Из (*) следует, что площадь, ограниченная полярной осью и первым витком спирали Архимеда (φ 1 = 0; φ 2 = 2π ):

Аналогичным образом находим площадь, ограниченную полярной осью и вторым витком спирали Архимеда (φ 1 = 2π ; φ 2 = 4π ):

Искомая площадь равна разности этих площадей

Вычислить объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной параболами y = x 2 и x = y 2 .

Решение.

Решим систему уравнений

и получим x 1 = 0, x 2 = 1, y 1 = 0, y 2 = 1, откуда точки пересечения кривых O (0; 0), B (1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA :

Вычислить площадь, ограниченную осью Ox и синусоидой y = sin x на отрезках: а) ; б) .

Решение.

а) На отрезке функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x , находим

б) На отрезке , функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок разделить на два и [π , 2π ], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [π , 2π ] площадь берется со знаком минус.

В итоге, искомая площадь равна

Определить объем тела, ограниченного поверхностью, полученной от вращения эллипса вокруг большой оси a .

Решение.

Учитывая, что эллипс симметричен относительно осей координат, то достаточно найти объем, образованный вращением вокруг оси Ox площади OAB , равной одной четверти площади эллипса, и полученный результат удвоить.

Обозначим объем тела вращения через V x ; тогда на основании формулы имеем , где 0 и a - абсциссы точек B и A . Из уравнения эллипса находим . Отсюда

Таким образом, искомый объем равен . (При вращении эллипса вокруг малой оси b , объем тела равен )

Найти площадь, ограниченную параболами y 2 = 2 px и x 2 = 2 py .

Решение.

Сначала найдем координаты точек пересечения парабол, чтобы определить отрезок интегрирования. Преобразуя исходные уравнения, получаем и . Приравнивая эти значения, получим или x 4 - 8p 3 x = 0.

x 4 - 8p 3 x = x (x 3 - 8p 3) = x (x - 2p )(x 2 + 2px + 4p 2) = 0.

Находим корни уравнений:

Учитывая то факт, что точка A пересечения парабол находится в первой четверти, то пределы интегрирования x = 0 и x = 2p .

Искомую площадь находим по формуле

В предыдущем разделе, посвященном разбору геометрического смысла определенного интеграла, мы получили ряд формул для вычисления площади криволинейной трапеции:

S (G) = ∫ a b f (x) d x для непрерывной и неотрицательной функции y = f (x) на отрезке [ a ; b ] ,

S (G) = - ∫ a b f (x) d x для непрерывной и неположительной функции y = f (x) на отрезке [ a ; b ] .

Эти формулы применимы для решения относительно простых задач. На деле же нам чаще придется работать с более сложными фигурами. В связи с этим, данный раздел мы посвятим разбору алгоритмов вычисления площади фигур, которые ограничены функциями в явном виде, т.е. как y = f (x) или x = g (y) .

Теорема

Пусть функции y = f 1 (x) и y = f 2 (x) определены и непрерывны на отрезке [ a ; b ] , причем f 1 (x) ≤ f 2 (x) для любого значения x из [ a ; b ] . Тогда формула для вычисления площади фигуры G , ограниченной линиями x = a , x = b , y = f 1 (x) и y = f 2 (x) будет иметь вид S (G) = ∫ a b f 2 (x) - f 1 (x) d x .

Похожая формула будет применима для площади фигуры, ограниченной линиями y = c , y = d , x = g 1 (y) и x = g 2 (y) : S (G) = ∫ c d (g 2 (y) - g 1 (y) d y .

Доказательство

Разберем три случая, для которых формула будет справедлива.

В первом случае, учитывая свойство аддитивности площади, сумма площадей исходной фигуры G и криволинейной трапеции G 1 равна площади фигуры G 2 . Это значит, что

Поэтому, S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x .

Выполнить последний переход мы можем с использованием третьего свойства определенного интеграла.

Во втором случае справедливо равенство: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x

Графическая иллюстрация будет иметь вид:

Если обе функции неположительные, получаем: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) d x . Графическая иллюстрация будет иметь вид:

Перейдем к рассмотрению общего случая, когда y = f 1 (x) и y = f 2 (x) пересекают ось O x .

Точки пересечения мы обозначим как x i , i = 1 , 2 , . . . , n - 1 . Эти точки разбивают отрезок [ a ; b ] на n частей x i - 1 ; x i , i = 1 , 2 , . . . , n , где α = x 0 < x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

Следовательно,

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f (x)) d x = ∫ a b f 2 (x) - f 1 (x) d x

Последний переход мы можем осуществить с использованием пятого свойства определенного интеграла.

Проиллюстрируем на графике общий случай.

Формулу S (G) = ∫ a b f 2 (x) - f 1 (x) d x можно считать доказанной.

А теперь перейдем к разбору примеров вычисления площади фигур, которые ограничены линиями y = f (x) и x = g (y) .

Рассмотрение любого из примеров мы будем начинать с построения графика. Изображение позволит нам представлять сложные фигуры как объединения более простых фигур. Если построение графиков и фигур на них вызывает у вас затруднения, можете изучить раздел об основных элементарных функциях, геометрическом преобразовании графиков функций, а также построению графиков во время исследования функции.

Пример 1

Необходимо определить площадь фигуры, которая ограничена параболой y = - x 2 + 6 x - 5 и прямыми линиями y = - 1 3 x - 1 2 , x = 1 , x = 4 .

Решение

Изобразим линии на графике в декартовой системе координат.

На отрезке [ 1 ; 4 ] график параболы y = - x 2 + 6 x - 5 расположен выше прямой y = - 1 3 x - 1 2 . В связи с этим, для получения ответа используем формулу, полученную ранее, а также способ вычисления определенного интеграла по формуле Ньютона-Лейбница:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 x 2 - 9 2 x 1 4 = = - 1 3 · 4 3 + 19 6 · 4 2 - 9 2 · 4 - - 1 3 · 1 3 + 19 6 · 1 2 - 9 2 · 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

Ответ: S (G) = 13

Рассмотрим более сложный пример.

Пример 2

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x + 2 , y = x , x = 7 .

Решение

В данном случае мы имеем только одну прямую линию, расположенную параллельно оси абсцисс. Это x = 7 . Это требует от нас найти второй предел интегрирования самостоятельно.

Построим график и нанесем на него линии, данные в условии задачи.

Имея график перед глазами, мы легко можем определить, что нижним пределом интегрирования будет абсцисса точки пересечения графика прямой y = x и полу параболы y = x + 2 . Для нахождения абсциссы используем равенства:

y = x + 2 О Д З: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 · 1 · (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ О Д З x 2 = 1 - 9 2 = - 1 ∉ О Д З

Получается, что абсциссой точки пересечения является x = 2 .

Обращаем ваше внимание на тот факт, что в общем примере на чертеже линии y = x + 2 , y = x пересекаются в точке (2 ; 2) , поэтому такие подробные вычисления могут показаться излишними. Мы привели здесь такое подробное решение только потому, что в более сложных случаях решение может быть не таким очевидным. Это значит, что координаты пересечения линий лучше всегда вычислять аналитически.

На интервале [ 2 ; 7 ] график функции y = x расположен выше графика функции y = x + 2 . Применим формулу для вычисления площади:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 · 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

Ответ: S (G) = 59 6

Пример 3

Необходимо вычислить площадь фигуры, которая ограничена графиками функций y = 1 x и y = - x 2 + 4 x - 2 .

Решение

Нанесем линии на график.

Определимся с пределами интегрирования. Для этого определим координаты точек пересечения линий, приравняв выражения 1 x и - x 2 + 4 x - 2 . При условии, что x не равно нулю, равенство 1 x = - x 2 + 4 x - 2 становится эквивалентным уравнению третьей степени - x 3 + 4 x 2 - 2 x - 1 = 0 с целыми коэффициентами. Освежить в памяти алгоритм по решению таких уравнений мы можете, обратившись к разделу «Решение кубических уравнений».

Корнем этого уравнения является х = 1: - 1 3 + 4 · 1 2 - 2 · 1 - 1 = 0 .

Разделив выражение - x 3 + 4 x 2 - 2 x - 1 на двучлен x - 1 , получаем: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

Оставшиеся корни мы можем найти из уравнения x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 D = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3 ; x 2 = 3 - 13 2 ≈ - 0 . 3

Мы нашли интервал x ∈ 1 ; 3 + 13 2 , на котором фигура G заключена выше синей и ниже красной линии. Это помогает нам определить площадь фигуры:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 · 3 + 13 2 2 - 2 · 3 + 13 2 - ln 3 + 13 2 - - - 1 3 3 + 2 · 1 2 - 2 · 1 - ln 1 = 7 + 13 3 - ln 3 + 13 2

Ответ: S (G) = 7 + 13 3 - ln 3 + 13 2

Пример 4

Необходимо вычислить площадь фигуры, которая ограничена кривыми y = x 3 , y = - log 2 x + 1 и осью абсцисс.

Решение

Нанесем все линии на график. Мы можем получить график функции y = - log 2 x + 1 из графика y = log 2 x , если расположим его симметрично относительно оси абсцисс и поднимем на одну единицу вверх. Уравнение оси абсцисс у = 0 .

Обозначим точки пересечения линий.

Как видно из рисунка, графики функций y = x 3 и y = 0 пересекаются в точке (0 ; 0) . Так получается потому, что х = 0 является единственным действительным корнем уравнения x 3 = 0 .

x = 2 является единственным корнем уравнения - log 2 x + 1 = 0 , поэтому графики функций y = - log 2 x + 1 и y = 0 пересекаются в точке (2 ; 0) .

x = 1 является единственным корнем уравнения x 3 = - log 2 x + 1 . В связи с этим графики функций y = x 3 и y = - log 2 x + 1 пересекаются в точке (1 ; 1) . Последнее утверждение может быть неочевидным, но уравнение x 3 = - log 2 x + 1 не может иметь более одного корня, так как функция y = x 3 является строго возрастающей, а функция y = - log 2 x + 1 строго убывающей.

Дальнейшее решение предполагает несколько вариантов.

Вариант №1

Фигуру G мы можем представить как сумму двух криволинейных трапеций, расположенных выше оси абсцисс, первая из которых располагается ниже средней линии на отрезке x ∈ 0 ; 1 , а вторая ниже красной линии на отрезке x ∈ 1 ; 2 . Это значит, что площадь будет равна S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

Вариант №2

Фигуру G можно представить как разность двух фигур, первая из которых расположена выше оси абсцисс и ниже синей линии на отрезке x ∈ 0 ; 2 , а вторая между красной и синей линиями на отрезке x ∈ 1 ; 2 . Это позволяет нам найти площадь следующим образом:

S (G) = ∫ 0 2 x 3 d x - ∫ 1 2 x 3 - (- log 2 x + 1) d x

В этом случае для нахождения площади придется использовать формулу вида S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y . Фактически, линии, которые ограничивают фигуру, можно представить в виде функций от аргумента y .

Разрешим уравнения y = x 3 и - log 2 x + 1 относительно x:

y = x 3 ⇒ x = y 3 y = - log 2 x + 1 ⇒ log 2 x = 1 - y ⇒ x = 2 1 - y

Получим искомую площадь:

S (G) = ∫ 0 1 (2 1 - y - y 3) d y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

Ответ: S (G) = 1 ln 2 - 1 4

Пример 5

Необходимо вычислить площадь фигуры, которая ограничена линиями y = x , y = 2 3 x - 3 , y = - 1 2 x + 4 .

Решение

Красной линией нанесем на график линию, заданную функцией y = x . Синим цветом нанесем линию y = - 1 2 x + 4 , черным цветом обозначим линию y = 2 3 x - 3 .

Отметим точки пересечения.

Найдем точки пересечения графиков функций y = x и y = - 1 2 x + 4:

x = - 1 2 x + 4 О Д З: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20) 2 - 4 · 1 · 64 = 144 x 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 П р о в е р к а: x 1 = 16 = 4 , - 1 2 x 1 + 4 = - 1 2 · 16 + 4 = - 4 ⇒ x 1 = 16 н е я в л я е т с я р е ш е н и е м у р а в н е н и я x 2 = 4 = 2 , - 1 2 x 2 + 4 = - 1 2 · 4 + 4 = 2 ⇒ x 2 = 4 я в л я е т с я р е ш е н и е м у р а в н и н и я ⇒ (4 ; 2) т о ч к а п е р е с е ч е н и я y = x и y = - 1 2 x + 4

Найдем точку пересечения графиков функций y = x и y = 2 3 x - 3:

x = 2 3 x - 3 О Д З: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45) 2 - 4 · 4 · 81 = 729 x 1 = 45 + 729 8 = 9 , x 2 45 - 729 8 = 9 4 П р о в е р к а: x 1 = 9 = 3 , 2 3 x 1 - 3 = 2 3 · 9 - 3 = 3 ⇒ x 1 = 9 я в л я е т с я р е ш е н и е м у р а в н е н и я ⇒ (9 ; 3) т о ч к а п е р е с е ч а н и я y = x и y = 2 3 x - 3 x 2 = 9 4 = 3 2 , 2 3 x 1 - 3 = 2 3 · 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 н е я в л я е т с я р е ш е н и е м у р а в н е н и я

Найдем точку пересечения линий y = - 1 2 x + 4 и y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 · 6 + 4 = 2 3 · 6 - 3 = 1 ⇒ (6 ; 1) т о ч к а п е р е с е ч е н и я y = - 1 2 x + 4 и y = 2 3 x - 3

Способ №1

Представим площадь искомой фигуры как сумму площадей отдельных фигур.

Тогда площадь фигуры равна:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - x 2 3 + 3 x 6 9 = = 2 3 · 6 3 2 + 6 2 4 - 4 · 6 - 2 3 · 4 3 2 + 4 2 4 - 4 · 4 + + 2 3 · 9 3 2 - 9 2 3 + 3 · 9 - 2 3 · 6 3 2 - 6 2 3 + 3 · 6 = = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

Способ №2

Площадь исходной фигуры можно представить как сумму двух других фигур.

Тогда решим уравнение линии относительно x , а только после этого применим формулу вычисления площади фигуры.

y = x ⇒ x = y 2 к р а с н а я л и н и я y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 ч е р н а я л и н и я y = - 1 2 x + 4 ⇒ x = - 2 y + 8 с и н я я л и н и я

Таким образом, площадь равна:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = 7 4 y 2 - 7 4 y 1 2 + - y 3 3 + 3 y 2 4 + 9 2 y 2 3 = 7 4 · 2 2 - 7 4 · 2 - 7 4 · 1 2 - 7 4 · 1 + + - 3 3 3 + 3 · 3 2 4 + 9 2 · 3 - - 2 3 3 + 3 · 2 2 4 + 9 2 · 2 = = 7 4 + 23 12 = 11 3

Как видите, значения совпадают.

Ответ: S (G) = 11 3

Итоги

Для нахождения площади фигуры, которая ограничена заданными линиями нам необходимо построить линии на плоскости, найти точки их пересечения, применить формулу для нахождения площади. В данном разделе мы рассмотрели наиболее часто встречающиеся варианты задач.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.