Хлор в природе. Влияние температуры на агрегатное состояние Cl

Хлор

ХЛОР -а; м. [от греч. chlōros - бледно-зелёный] Химический элемент (Cl), удушливый газ зеленовато-жёлтого цвета с резким запахом (используется как отравляющее и обеззараживающее средство). Соединения хлора. Отравление хлором.

Хло́рный (см.).

хлор

(лат. Chlorum), химический элемент VII группы периодической системы, относится к галогенам. Название от греческого chlōros - жёлто-зелёный. Свободный хлор состоит из двухатомных молекул (Cl 2); газ жёлто-зелёного цвета с резким запахом; плотность 3,214 г/л; t пл -101°C; t кип -33,97°C; при обычной температуре легко сжижается под давлением 0,6 МПа. Химически очень активен (окислитель). Главные минералы - галит (каменная соль), сильвин, бишофит; морская вода содержит хлориды натрия, калия, магния и других элементов. Применяют в производстве хлорсодержащих органических соединений (60-75%), неорганических веществ (10-20%), для отбеливания целлюлозы и тканей (5-15%), для санитарных нужд и обеззараживания (хлорирования) воды. Токсичен.

ХЛОР

ХЛОР (лат. Сhlorum), Cl (читается «хлор»), химический элемент с атомным номером 17, атомная масса 35,453. В свободном виде - желто-зеленый тяжелый газ с резким удушливым запахом (отсюда название: греч. chloros - желто-зеленый).
Природный хлор представляет смесь двух нуклидов (см. НУКЛИД) с массовыми числами 35 (в смеси 75,77% по массе) и 37 (24,23%). Конфигурация внешнего электронного слоя 3s 2 p 5 . В соединениях проявляет главным образом степени окисления –1, +1, +3, +5 и +7 (валентности I, III, V и VII). Расположен в третьем периоде в группе VIIА периодической системы элементов Менделеева, относится к галогенам (см. ГАЛОГЕНЫ) .
Радиус нейтрального атома хлора 0,099 нм, ионные радиусы равны, соответственно (в скобках указаны значения координационного числа): Cl - 0,167 нм (6), Cl 5+ 0,026 нм (3) и Clr 7+ 0,022 нм (3) и 0,041 нм (6). Энергии последовательной ионизации нейтрального атома хлора равны, соответственно, 12,97, 23,80, 35,9, 53,5, 67,8, 96,7 и 114,3 эВ. Сродство к электрону 3,614 эВ. По шкале Полинга электроотрицательность хлора 3,16.
История открытия
Важнейшее химическое соединение хлора - поваренная соль (химическая формула NaCl, химическое название хлорид натрия) - было известно человеку с древнейших времен. Имеются свидетельства того, что добыча поваренной соли осуществлялась еще 3-4 тысячи лет до нашей эры в Ливии. Возможно, что, используя поваренную соль для различных манипуляций, алхимики сталкивались и с газообразным хлором. Для растворения «царя металлов» - золота - они использовали «царскую водку» - смесь соляной и азотной кислот, при взаимодействии которых выделяется хлор.
Впервые газ хлор получил и подробно описал шведский химик К. Шееле (см. ШЕЕЛЕ Карл Вильгельм) в 1774 году. Он нагревал соляную кислоту с минералом пиролюзитом (см. ПИРОЛЮЗИТ) MnO 2 и наблюдал выделение желто-зеленого газа с резким запахом. Так как в те времена господствовала теория флогистона (см. ФЛОГИСТОН) , новый газ Шееле рассматривал как «дефлогистонированную соляную кислоту», т. е. как окись (оксид) соляной кислоты. А.Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) рассматривал газ как оксид элемента «мурия» (соляную кислоту называли муриевой, от лат. muria - рассол). Такую же точку зрения сначала разделял английский ученый Г. Дэви (см. ДЭВИ Гемфри) , который потратил много времени на то, чтобы разложить «окись мурия» на простые вещества. Это ему не удалось, и к 1811 году Дэви пришел к выводу, что данный газ - это простое вещество, и ему отвечает химический элемент. Дэви первым предложил в соответствие с желто-зеленой окраской газа назвать его chlorine (хлорин). Название «хлор» элементу дал в 1812 французский химик Ж. Л. Гей-Люссак (см. ГЕЙ-ЛЮССАК Жозеф Луи) ; оно принято во всех странах, кроме Великобритании и США, где сохранилось название, введенное Дэви. Высказывалось мнение о том, что данный элемент следует назвать «галоген» (т. е. рождающий соли), но оно со временем стало общим названием всех элементов группы VIIA.
Нахождение в природе
Содержание хлора в земной коре составляет 0,013% по массе, в заметной концентрации он в виде иона Cl – присутствует в морской воде (в среднем около 18,8 г/л). Химически хлор высоко активен и поэтому в свободном виде в природе не встречается. Он входит в состав таких минералов, образующих большие залежи, как поваренная, или каменная, соль (галит (см. ГАЛИТ) ) NaCl, карналлит (см. КАРНАЛЛИТ) KCl·MgCl 2 ·6H 21 O, сильвин (см. СИЛЬВИН) КСl, сильвинит (Na, K)Cl, каинит (см. КАИНИТ) КСl·MgSO 4 ·3Н 2 О, бишофит (см. БИШОФИТ) MgCl 2 ·6H 2 O и многих других. Хлор можно обнаружить в самых разных породах, в почве.
Получение
Для получения газообразного хлора используют электролиз крепкого водного раствора NaCl (иногда используют KCl). Электролиз проводят с использованием катионообменной мембраны, разделяющей катодное и анодное пространства. При этом за счет процесса
2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2
получают сразу три ценных химических продукта: на аноде - хлор, на катоде - водород (см. ВОДОРОД) , и в электролизере накапливается щелочь (1,13 тонны NaOH на каждую тонну полученного хлора). Производство хлора электролизом требует больших затрат электроэнергии: на получение1 т хлора расходуется от 2,3 до 3,7 МВт.
Для получения хлора в лаборатории используют реакцию концентрированной соляной кислоты с каким-либо сильным окислителем (перманганатом калия KMnO 4 , дихроматом калия K 2 Cr 2 O 7 , хлоратом калия KClO 3 , хлорной известью CaClOCl, оксидом марганца (IV) MnO 2). Наиболее удобно использовать для этих целей перманганат калия: в этом случае реакция протекает без нагревания:
2KMnO 4 + 16HCl = 2KСl + 2MnCl 2 + 5Cl 2 + 8H 2 O.
При необходимости хлор в сжиженном (под давлением) виде транспортируют в железнодорожных цистернах или в стальных баллонах. Баллоны с хлором имеют специальную маркировку, но даже при ее отсутствии хлорный баллон легко отличить от баллонов с другими неядовитыми газами. Дно хлорных баллонов имеет форму полушария, и баллон с жидким хлором невозможно без опоры поставить вертикально.
Физические и химические свойства

При обычных условиях хлор - желто-зеленый газ, плотность газа при 25°C 3,214 г/дм 3 (примерно в 2,5 раза больше плотности воздуха). Температура плавления твердого хлора –100,98°C, температура кипения –33,97°C. Стандартный электродный потенциал Сl 2 /Сl - в водном растворе равен +1,3583 В.
В свободном состоянии существует в виде двухатомных молекул Сl 2 . Межъядерное расстояние в этой молекуле 0,1987 нм. Сродство к электрону молекулы Сl 2 2,45 эВ, потенциал ионизации 11,48 эВ. Энергия диссоциации молекул Сl 2 на атомы сравнительно невелика и составляет 239,23 кДж/моль.
Хлор немного растворим в воде. При температуре 0°C растворимость составляет 1,44 масс.%, при 20°C - 0,711°C масс.%, при 60°C - 0,323 масс. %. Раствор хлора в воде называют хлорной водой. В хлорной воде устанавливается равновесие:
Сl 2 + H 2 O H + = Сl - + HOСl.
Для того, чтобы сместить это равновесие влево, т. е. понизить растворимость хлора в воде, в воду следует добавить или хлорид натрия NaCl, или какую-либо нелетучую сильную кислоту (например, серную).
Хлор хорошо растворим во многих неполярных жидкостях. Жидкий хлор сам служит растворителем таких веществ, как ВСl 3 , SiCl 4 , TiCl 4 .
Из-за низкой энергии диссоциации молекул Сl 2 на атомы и высокого сродства атома хлора к электрону химически хлор высоко активен. Он вступает в непосредственное взаимодействие с большинством металлов (в том числе, например, с золотом) и многими неметаллами. Так, без нагревания хлор реагирует с щелочными (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) и щелочноземельными металлами (см. ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ) , с сурьмой:
2Sb + 3Cl 2 = 2SbCl 3
При нагревании хлор реагирует с алюминием:
3Сl 2 + 2Аl = 2А1Сl 3
и железом:
2Fe + 3Cl 2 = 2FeCl 3 .
С водородом H 2 хлор реагирует или при поджигании (хлор спокойно горит в атмосфере водорода), или при облучении смеси хлора и водорода ультрафиолетовым светом. При этом возникает газ хлороводород НСl:
Н 2 + Сl 2 = 2НСl.
Раствор хлороводорода в воде называют соляной (см. СОЛЯНАЯ КИСЛОТА) (хлороводородной) кислотой. Максимальная массовая концентрация соляной кислоты около 38%. Соли соляной кислоты - хлориды (см. ХЛОРИДЫ) , например, хлорид аммония NH 4 Cl, хлорид кальция СаСl 2 , хлорид бария ВаСl 2 и другие. Многие хлориды хорошо растворимы в воде. Практически нерастворим в воде и в кислых водных растворах хлорид серебра AgCl. Качественная реакция на присутствие хлорид-ионов в растворе - образование с ионами Ag + белого осадка AgСl, практически нерастворимого в азотнокислой среде:
СаСl 2 + 2AgNO 3 = Ca(NO 3) 2 + 2AgCl.
При комнатной температуре хлор реагирует с серой (образуется так называемая однохлористая сера S 2 Cl 2) и фтором (образуются соединения ClF и СlF 3). При нагревании хлор взаимодействует с фосфором (образуются, в зависимости от условий проведения реакции, соединения РСl 3 или РСl 5), мышьяком, бором и другими неметаллами. Непосредственно хлор не реагирует с кислородом, азотом, углеродом (многочисленные соединения хлора с этими элементами получают косвенными путями) и инертными газами (в последнее время ученые нашли способы активирования подобных реакций и их осуществления «напрямую»). С другими галогенами хлор образует межгалогенные соединения, например, очень сильные окислители - фториды ClF, ClF 3 , ClF 5 . Окислительная способность хлора выше, чем брома, поэтому хлор вытесняет бромид-ион из растворов бромидов, например:
Cl 2 + 2NaBr = Br 2 + 2NaCl
Хлор вступает в реакции замещения со многими органическими соединениями, например, с метаном СН 4 и бензолом С 6 Н 6:
СН 4 + Сl 2 = СН 3 Сl + НСl или С 6 Н 6 + Сl 2 = С 6 Н 5 Сl + НСl.
Молекула хлора способна присоединятся по кратным связям (двойным и тройным) к органическим соединениям, например, к этилену С 2 Н 4:
С 2 Н 4 + Сl 2 = СН 2 СlСН 2 Сl.
Хлор вступает во взаимодействие с водными растворами щелочей. Если реакция протекает при комнатной температуре, то образуются хлорид (например, хлорид калия КCl) и гипохлорит (см. ГИПОХЛОРИТЫ) (например, гипохлорит калия КClО):
Cl 2 + 2КОН = КClО + КСl +Н 2 О.
При взаимодействии хлора с горячим (температура около 70-80°C) раствором щелочи образуется соответствующий хлорид и хлорат (см. ХЛОРАТЫ) , например:
3Сl 2 + 6КОН= 5КСl + КСlО 3 + 3Н 2 О.
При взаимодействии хлора с влажной кашицей из гидроксида кальция Са(ОН) 2 образуется хлорная известь (см. ХЛОРНАЯ ИЗВЕСТЬ) («хлорка») СаСlОСl.
Степени окисления хлора +1 отвечает слабая малоустойчивая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО. Ее соли - гипохлориты, например, NaClO - гипохлорит натрия. Гипохлориты - сильнейшие окислители, широко используются как отбеливающие и дезинфицирующие агенты. При взаимодействии гипохлоритов, в частности, хлорной извести, с углекислым газом СО 2 образуется среди других продуктов летучая хлорноватистая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) , которая может разлагаться с выделением оксида хлора (I) Сl 2 О:
2НСlО = Сl 2 О + Н 2 О.
Именно запах этого газа Сl 2 О - характерный запах «хлорки».
Степени окисления хлора +3 отвечает малоустойчивая кислота средней силы НСlО 2 . Эту кислоту называют хлористой, ее соли - хлориты (см. ХЛОРИТЫ (соли)) , например, NaClO 2 - хлорит натрия.
Степени окисления хлора +4 соответствует только одно соединение - диоксид хлора СlО 2 .
Степени окисления хлора +5 отвечает сильная, устойчивая только в водных растворах при концентрации ниже 40%, хлорноватая кислота (см. ХЛОРНОВАТИСТАЯ КИСЛОТА) НСlО 3 . Ее соли - хлораты, например, хлорат калия КСlО 3 .
Степени окисления хлора +6 соответствует только одно соединение - триоксид хлора СlО 3 (существует в виде димера Сl 2 О 6).
Степени окисления хлора +7 отвечает очень сильная и довольно устойчивая хлорная кислота (см. ХЛОРНАЯ КИСЛОТА) НСlО 4 . Ее соли - перхлораты (см. ПЕРХЛОРАТЫ) , например, перхлорат аммония NH 4 ClO 4 или перхлорат калия КСlО 4 . Следует отметить, что перхлораты тяжелых щелочных металлов - калия, и особенно рубидия и цезия мало растворимы в воде. Оксид, соответствующий степени окисления хлора +7 - Сl 2 О 7 .
Среди соединений, содержащих хлор в положительных степенях окисления, наиболее сильными окислительными свойствами обладают гипохлориты. Для перхлоратов окислительные свойства нехарактерны.
Применение
Хлор - один из важнейших продуктов химической промышленности. Его мировое производство составляет десятки миллионов тонн в год. Хлор используют для получения дезинфицирующих и отбеливающих средств (гипохлорита натрия, хлорной извести и других), соляной кислоты, хлоридов многих металлов и неметаллов, многих пластмасс (поливинилхлорида (см. ПОЛИВИНИЛХЛОРИД) и других), хлорсодержащих растворителей (дихлорэтана СН 2 СlСН 2 Сl, четыреххлористого углерода ССl 4 и др.), для вскрытия руд, разделения и очистки металлов и т.д. Хлор применяют для обеззараживания воды (хлорирования (см. ХЛОРИРОВАНИЕ) ) и для многих других целей.
Биологическая роль
Хлор относится к важнейшим биогенным элементам (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) и входит в состав всех живых организмов. Некоторые растения, так называемые галофиты, не только способны расти на сильно засоленных почвах, но и накапливают в больших количествах хлориды. Известны микроорганизмы (галобактерии и др.) и животные, обитающие в условиях высокой солености среды. Хлор - один из основных элементов водно-солевого обмена животных и человека, определяющих физико-химические процессы в тканях организма. Он участвует в поддержании кислотно-щелочного равновесия в тканях, осморегуляции (см. ОСМОРЕГУЛЯЦИЯ) (хлор - основное осмотически активное вещество крови, лимфы и др. жидкостей тела), находясь, в основном, вне клеток. У растений хлор принимает участие в окислительных реакциях и фотосинтезе.
Мышечная ткань человека содержит 0,20-0,52% хлора, костная - 0,09%; в крови - 2,89 г/л. В организме среднего человека (масса тела 70 кг) 95 г хлора. Ежедневно с пищей человек получает 3-6 г хлора, что с избытком покрывает потребность в этом элементе.
Особенности работы с хлором
Хлор - ядовитый удушливый газ, при попадании в легкие вызывает ожог легочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л. Хлор был одним из первых химических отравляющих веществ (см. ОТРАВЛЯЮЩИЕ ВЕЩЕСТВА) , использованных Германией в Первую мировую войну. При работе с хлором следует пользоваться защитной спецодеждой, противогазом, перчатками. На короткое время защитить органы дыхания от попадания в них хлора можно тряпичной повязкой, смоченной раствором сульфита натрия Na 2 SO 3 или тиосульфата натрия Na 2 S 2 O 3 . ПДК хлора в воздухе рабочих помещений 1 мг/м 3 , в воздухе населенных пунктов 0,03 мг/м 3 .

  • Виды договоров. Предварительный договор, публичный договор, договор присоединения и договор в пользу третьего лица, их особенности.
  • Характер химической связи, а, следовательно, и свойства хлоридов, как и фторидов, закономерно изменяются по группам и перйодам элементов. Так, в ряду хлоридов элементов данного перйода, тип химической связи изменяется от преимущественно ионной в хлоридах типичных металлов до ковалентной в хлоридах неметаллов.

    Ионные хлориды – твердые кристаллические вещества с высокими температурами плавления, ковалентные хлориды – газы, жидкости или же легкоплавкие твердые вещества. Промежуточное положение занимают ионно-ковалентные хлориды. Ионные хлориды (хлориды металлов) проявляют основные свойства, ковалентные хлориды (хлориды неметаллов) – кислотные. Основные хлориды гидролизу практически не подвергаются, а кислотные гидролизуются полностью и необратимо с образованием кислот:

    SiCl 4 + 3НОН = H 2 SiО 3 + 4НСl.

    Различие свойств хлоридов разного типа проявляется также в реакциях между собой, например:

    KСl + АlСl 3 = K[АlСl 4 ].

    При этом основные хлориды (за счет хлорид-ионов Сl –) являются донорами электронных пар, а кислотные – акцепторами. Амфотерные хлориды взаимодействуют как с кислотными, так и с основными соединениями.

    Большинство хлоридов металлов хорошо растворимо в воде (за исключением AgCl, CuCl, AuCl, ТlСl и РbСl 2).

    Хлориды получают:

    – хлорированием простых веществ хлором или сухим хлоридом водорода:

    2Fe + 3Сl 2 = 2FeCl 3 ,

    Fe + 2НСl (г) = FeCl 2 + Н 2 ;

    – взаимодействием оксидов с хлором (либо с хлоридами, часто с ССl 4) в присутствии угля:

    ТiO 2 + 2Сl 2 + С = TiCl 4 + СО 2 .

    Большое применение в технике имеет хлорид водорода НСl. В обычных условиях НСl – бесцветный газ (Т пл = –114,2 °С, Т кип = –84,9 °С). В промышленности его получают синтезом из простых веществ:

    Н 2(г) + Сl 2(г) = 2НСl (г) .

    В лаборатории хлороводород получают взаимодействием концентрированной серной кислоты и кристаллического хлорида натрия, реакция идет при нагревании:

    Н 2 SO 4(к) + 2NaСl (т) = 2НСl + Na 2 SO 4 .

    Хлорид водорода очень хорошо поглощается водой (1 объем Н 2 O при 20 °С поглощает около 450 объемов НСl). Водный раствор НСl – сильная кислота (рK а ~ 7,1), называемая соляной. Как сильная кислота HC1 находит широкое применение в технике, медицине, лабораторной практике. Хлороводородная кислота входит в состав желудочного сока.

    Соляная (хлороводородная кислота) проявляет все общие свойства сильных кислот. Кроме этого, при действии сильных окислителей или при электролизе проявляет восстановительные свойства:

    МnО 2 + 4НСl = МnСl 2 + Сl 2 + 2Н 2 О.

    Этой реакцией пользуются в лаборатории для получения хлора.

    При нагревании хлорид водорода окисляется кислородом (катализатор – СuСl 2):

    4НСl (г) + О 2(г) = 2Н 2 О (г) + 2Сl 2(г) .

    Соединения хлора (+1)

    Степень окисления хлора +1 проявляется во фториде ClF, оксиде Сl 2 О и нитриде Cl 3 N, а также в соответствующих им анионах – , [СlO] – и 2– .

    ClF – ядовитый бесцветный газ. Экзотермическое соединение. Молекула имеет линейное строение.

    Cl 2 O – желто-коричневый газ, ядовит. Молекула имеет угловое строение. Экзотермическое соединение.

    Cl 3 N – темно-желтое летучее вещество. Структура молекулы тригонально-пирамидальная.

    Бинарные соединения хлора (I) имеют кислотный характер, что подтверждается, например, их отношением к воде:

    Сl 2 О + НОН = 2НСlO,

    ClF + НОН = НСlO + HF,

    Cl 3 N + 3НОН = 3НСlO + H 3 N.

    Оксид хлора (I) Сl 2 О – желто-коричневый газ. Молекула имеет угловое строение с валентным углом 170°. Это эндотермическое соединение, очень неустойчивое и даже при незначительном нагревании подвергается распаду со взрывом:

    2Сl 2 О = 2Сl 2 + O 2 .

    Получить оксид хлора (I) можно при взаимодействии хлора с оксидом ртути:

    2Сl 2 + HgO = Cl 2 O + HgCl 2 .

    Производные оксохлорат (1) аниона [С1O] – , называемые гипохлоритами, неустойчивы. Их растворы получают, пропуская хлор в охлаждаемые растворы щелочей:

    2OН – + Сl 2 = Сl – + СlO – + Н 2 O,

    2КOН + Cl 2 = КСl + КСlO + Н 2 O.

    Оксохлорат (I) водорода НСlO известен только в разбавленных растворах. Это хлорноватистая кислота. Образуется она, наряду с соляной, при взаимодействии хлора с водой:

    Cl 2 + HOH = HCl + HСlO.

    Хлорноватистая кислота слабая, проявляет в растворе все общие свойства слабых кислот.

    В растворе хлорноватистой кислоты происходят следующие процессы:

    НСlО = НСl + O 0 ,

    НСlО + О 2 = НСlO 3 ,

    3НСlO = НСlO 3 + 2НСl.

    Производные хлора (+1) проявляют окислительно-восстановительную двойственность с преобладанием сильных окислительных свойств:

    3Сl 2 O + 6AgNO 3 + 3H 2 O = 4AgCl + 2AgClO 3 + 6HNO 3 ,

    NaСlO + 2HCl = NaСl + Cl 2 + H 2 O .

    Особенно агрессивен ClF, который реагирует с веществами еще более энергично, чем свободный фтор. На этом основано его применение в качестве фторирующего агента.

    Соли хлорноватистой кислоты называются гипохлориты:

    Cl 2 + 2NaOH = NaCl + NaClO + H 2 O,

    Лаборраковая вода

    Cl 2 + 2КOH = КCl + КСlO + H 2 O.

    Жавелевая вода

    Гипохлориты применяются в качестве отбеливающего средства.

    Наибольший практический интерес (как отбеливающее средство, средство для дегазации, дешевый окислитель) представляет гипохлорит кальция Са(СlO) 2 . Получается он при взаимодействии хлора с гидроксидом кальция:

    2Са(ОН) 2 + 2Сl 2 = Са(СlO) 2 + СаСl 2 + 2Н 2 О.

    Как видно из приведенного уравнения реакции, одновременно с Са(СlO) 2 образуется СаС1 2 . Поэтому получаемый в технике продукт – белильная или хлорная известь – можно рассматривать как смешанную соль Са(СlO)Сl, т.е. гипохлорит-хлорид кальция. На воздухе карбонизируется:

    2Ca(ClO)Cl + CO 2 + H 2 O = CaCO 3 + CaCl 2 + 2HClO,

    HClO = HCl + O 0 .

    Выделение атомарного кислорода обусловливает сильные окислительные свойства. За счет Сl +1 хлорная известь также проявляет окислительные свойства:

    Ca(ClO)Cl + PbO = PbO 2 + CaCl 2 .

    Гипохлориты более мягкие окислители, чем раствор хлорноватистой кислоты.

    Соединения хлора (+3)

    Степень окисления хлора +3 проявляется в трифториде ClF 3 и тетрафторохлорат(III)-анионе – , а также в диоксохлорат(III)-анионе – .

    Трифторид хлора – газ бледно-зеленого цвета, может быть получен при нагревании C1F с избытком фтора. По химической природе ClF 3 – соединение кислотное:

    ClF 3 + KF = KClF 4 .

    Оксид хлора (III) Cl 2 O 3 и диоксохлорат (III) водорода НСlO 2 в индивидуальном состоянии не выделены.

    Производные аниона называются хлоритами. Хлориты щелочных металлов представляют собой белые кристаллические вещества. Раствор НСlO 2 – кислота средней силы называемая хлористой. При нагревании хлориты диспропорционируют:

    3NaClO 2 = NaCl + 2NaClO 3

    и разлагаются с выделением кислорода:

    NaClO 2 = NaCl + O 2 .

    Степень окисления +3 для хлора – это промежуточная степень окисления, поэтому соединения обладают окислительно-восстановительной двойственностью:

    5HClO 2 + 2KMnO 4 + 3H 2 SO 4 = 5HClO 3 + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

    KClO 2 + 2H 2 S = KCl + 2S + 2H 2 O.

    В присутствии органических веществ твердые оксо- и фторохлораты (III) взрываются от удара.

    Трифторид хлора и тетрафторохлораты (III) применяются как фторирующие агенты. Из хлоритов наибольшее значение имеет NaClO 2 , применяемый при отбелке тканей и бумажной массы.

    Cоединения хлора (+4)

    Диоксид хлора ClO 2 – зеленовато-желтый газ с резким запахом хлора. Молекула имеет угловую форму с валентным углом 118 о, полярна, обладает парамагнитными свойствами. Диоксид хлора постепенно разлагается на свету:

    2ClO 2 = Cl 2 + 2O 2 .

    При небольшом нагревании, ударе или соприкосновении с горючими веществами разлагается со взрывом.

    Один из технических методов получения СlО 2 основан на реакции восстановления NaClO 3 диоксидом серы в растворе серной кислоты при нагревании:

    2NaClO 3 + SO 2 + H 2 SO 4 = 2NaHSO 4 + 2ClO 2 .

    Диоксид хлора является смешанным ангидридом 2-х кислот: хлоритой и хлорноватой:

    2ClO 2 + H 2 O = HClO 2 + HClO 3 .

    Аналогично диспропорционирование идет в щелочах:

    2ClO 2 + 2NaОH = NaClO 2 + NaClO 3 + Н 2 О.

    При окислительно-восстановительной двойственности преобладают окислительные свойства:

    2ClO 2 + 10FeSO 4 + 5H 2 SO 4 = 5Fe 2 (SO 4) 3 + 2HCl + 4H 2 O,

    PbO + 2ClO 2 + 2NaOH = PbO 2 + 2NaClO 2 + H 2 O.

    Применяется для отбелки бумажной массы и в некоторых других технологических процессах.

    Соединения хлора (+5)

    Из соединений, в которых хлор проявляет степень окисления +5, известны пентафторид ClF 5 , оксотрифторид ClOF 3 , диоксофторид ClO 2 F и производные триоксохлорат (V)-аниона [СlOз] – , триоксофторохлорат(V)-аниона 2– , оксотетрафторохлорат (V)-аниона – .

    Молекула ClF 5 имеет формулу тетрагональной пирамиды. Пентафторид хлора это малодиосоциирующая жидкость, устойчив до 200°С. Его получают фторированием ClF 3:

    ClF 3 + F 2 = ClF 5 .

    Оксотрифторид хлора ClOF 3 образуется при действии на смесь ClF 3 и OF 2 ультрафиолетовых лучей:

    2ClF 3 + OF 2 = ClF 5 + ClOF 3 .

    Это соединение легко разлагается на ClF 3 и O 2 . Является кислотным соединением.

    Диоксофторид хлора ClO 2 F (хлорилфторид) – бесцветный довольно устойчивый газ. Получают его фторированием СlO 2 . Хлорилфторид – кислотное соединение; его гидролиз идет по схеме:

    ClO 2 F + Н 2 O = НСlO 3 + HF.

    Оксид хлора (V) неизвестен. Производные [ СlO 3 ] – называют хлоратами. Наибольшее практическое значение имеет хлорат калия КСlO 3 (бертолетова соль). Его получают пропусканием хлора через горячий раствор КОН:

    6KОН + 3Сl 2 = 5KСl + KСlO 3 + 3Н 2 O

    или электролизом горячего раствора KСl. Поскольку KСlO 3 мало растворим в воде, его легко отделяют от KСl охлаждением раствора.

    Триоксохлорат (V) водорода НСlO 3 в свободном состоянии не выделен. В отличие от НСlO и НСlO 2 известны его концентрированные растворы (до 40 %). В водных растворах НСlO 3 – сильная кислота, называемая хлорноватой. Ее обычно получают обменной реакцией:

    Ва(СlO 3) 2 (р) + H 2 SО 4 (p) = BaSО 4 (т) + 2НСlO 3 (р).

    Хлорноватая кислота по свойствам напоминает азотную кислоту, в частности, ее смесь с соляной кислотой – сильный окислитель, напоминающий по свойствам «царскую водку».


    При нагревании хлораты диспропорционируют:

    4KСlO 3 = 3KСlO 4 + KСl,

    а в присутствии катализатора (MnO 2) распадаются с выделением кислорода:

    2KСlO 3 = 2КСl + 3O 2 .

    При нагревании триоксохлораты (V) – сильные окислители. В смеси с восстановителями они образуют легко взрывающиеся составы. Бертолетову соль используют в производстве спичек и смеси для фейерверков. Хлорат натрия NaClO 3 применяется в качестве средства для борьбы с сорняками.

    Cоединения хлора (+6)

    Триоксид хлора ClO 3 – неустойчивый короткоживущий радикал, который самопроизвольно димеризуется в Cl 2 O 6 .

    Оксид Cl 2 O 6 в обычных условиях – темно-красная маслообразная жидкость, замерзающая при +3 °С.

    При обычных условиях Сl 2 О 6 постепенно разлагается. Энергично взаимодействует с водой, образуя за счет дисропорционирования хлорноватую и хлорную кислоты:

    Сl 2 О 6 + Н 2 О = НСlО 3 + HClO 4 .

    Аналогично взаимодействует со щелочами:

    Сl 2 О 6 + 2NaОH = NaСlО 3 + NaClO 4 + H 2 O.

    При соприкосновении с органическими веществами Cl 2 O 6 взрывается.

    Соединения хлора (+7)

    Высшая степень окисления хлора +7 проявляется в его оксиде, ряде оксофторидов и отвечающих им анионных комплексах:

    Cl 2 O 7 ClO 3 F ClO 2 F 3 ClOF 5 ClF 7

    – – – - -

    Оксид хлора (VII) C1 2 O 7 – бесцветная жидкость

    Получается при нагревании смеси оксохлората (VII) водорода и оксида фосфора (V):

    2НСlO 4 + Р 2 O 5 = Сl 2 O 7 + 2Н 3 РO 4 .

    Молекула С1 2 O 7 полярна. В ней согласно электронографическому исследованию два тетраэдра объединены посредством атома кислорода:


    Оксид Сl 2 O 7 относительно устойчив, но при нагревании (выше 120° С) разлагается со взрывом.

    Тетраоксохлорат (VII)-ион имеет тетраэдрическое строение, что в рамках теории валентных связей соответствует sр 3 -гибридизации валентных орбиталей атома хлора, стабилизированной за счет π-связей.

    Тетраоксохлораты (VII) (перхлораты) весьма многочисленны. Большинство их хорошо растворимо в воде. Тетраоксохлорат (VII) водорода НСlO 4 – бесцветная жидкость, способная взрываться. Строение молекулы НСlO 4 приведено ниже:

    Тетраоксохлорат (VII) водорода хорошо растворим в воде. Раствор является хлорной кислотой.

    Хлорная кислота – одна из наиболее сильных кислот. Ее получают действием концентрированной H 2 SO 4 на KСlO 4.

    На западе Фландрии лежит крошечный городок. Тем не менее его название известно всему миру и долго еще будет сохраняться в памяти человечества как символ одного из величайших преступлений против человечества. Этот городок – Ипр. Креси (в битве при Креси в 1346 г. английскими войсками впервые в Европе применено огнестрельное оружие.) – Ипр – Хиросима – вехи на пути превращения войны в гигантскую машину уничтожения.

    В начале 1915 г. на линии западного фронта образовался так называемый Ипрский выступ. Союзные англо-французские войска к северо-востоку от Ипра вклинились на территорию, занятую германской армией. Германское командование решило нанести контрудар и выровнять линию фронта. Утром 22 апреля, когда дул ровный норд-ост, немцы начали необычную подготовку к наступлению – они провели первую в истории войн газовую атаку. На ипрском участке фронта были одновременно открыты 6000 баллонов хлора. В течение пяти минут образовалось огромное, весом в 180 т, ядовитое желто-зеленое облако, которое медленно двигалось по направлению к окопам противника.

    Этого никто не ожидал. Войска французов и англичан готовились к атаке, к артиллерийскому обстрелу, солдаты надежно окопались, но перед губительным хлорным облаком они были абсолютно безоружными. Смертоносный газ проникал во все щели, во все укрытия. Результаты первой химической атаки (и первого нарушения Гаагской конвенции 1907 г. о неприменении отравляющих веществ!) были ошеломляющими – хлор поразил около 15 тысяч человек, причем примерно 5 тысяч – насмерть. И все это – ради того, чтобы выровнять линию фронта длиной в 6 км! Спустя два месяца немцы предприняли хлорную атаку и на восточном фронте. А через два года Ипр приумножил свою печальную известность. Во время тяжелого сражения 12 июля 1917 г. в районе этого города было впервые применено отравляющее вещество, названное впоследствии ипритом. Иприт – это производное хлора, дихлордиэтилсульфид.

    Об этих эпизодах истории, связанных с одним маленьким городком и одним химическим элементом, мы напомнили для того, чтобы показать, как опасен может быть элемент №17 в руках воинствующих безумцев. Это – самая мрачная страница истории хлора.

    Но было бы совершенно неверно видеть в хлоре только отравляющее вещество и сырье для производства других отравляющих веществ...

    История хлора

    История элементарного хлора сравнительно коротка, она ведет начало с 1774 г. История соединений хлора стара, как мир. Достаточно вспомнить, что хлористый натрий – это поваренная соль. И, видимо, еще в доисторические времена была подмечена способность соли консервировать мясо и рыбу.

    Самые древние археологические находки – свидетельства использования соли человеком относятся примерно к 3...4 тысячелетию до н.э. А самое древнее описание добычи каменной соли встречается в сочинениях греческого историка Геродота (V в. до н.э.). Геродот описывает добычу каменной соли в Ливии. В оазисе Синах в центре Ливийской пустыни находился знаменитый храм бога Аммона-Ра. Поэтому-то Ливия и именовалась «Ammonia», и первое название каменной соли было «sal ammoniacum». Позднее, начиная примерно с XIII в. н.э., это название закрепилось за хлористым аммонием.

    В «Естественной истории» Плиния Старшего описан метод отделения золота от неблагородных металлов при прокаливании с солью и глиной. А одно из первых описаний очистки хлористого натрия находим в трудах великого арабского врача и алхимика Джабир ибн-Хайяна (в европейском написании – Гебер).

    Весьма вероятно, что алхимики сталкивались и с элементарным хлором, так как в странах Востока уже в IX, а в Европе в XIII в. была известна «царская водка» – смесь соляной и азотной кислот. В выпущенной в 1668 г. книге голландца Ван-Гельмонта «Hortus Medicinae» говорится, что при совместном нагревании хлористого аммония и азотной кислоты получается некий газ. Судя по описанию, этот газ очень похож на хлор.

    Подробно хлор впервые описан шведским химиком Шееле в его трактате о пиролюзите. Нагревая минерал пиролюзит с соляной кислотой, Шееле заметил запах, характерный для царской водки, собрал и исследовал желто-зеленый газ, порождавший этот запах, и изучил его взаимодействие с некоторыми веществами. Шееле первым обнаружил действие хлора на золото и киноварь (в последнем случае образуется сулема) и отбеливающие свойства хлора.

    Шееле не считал вновь открытый газ простым веществом и назвал его «дефлогистонированной соляной кислотой». Говоря современным языком, Шееле, а вслед за ним и другие ученые того времени полагали, что новый газ – это окисел соляной кислоты.

    Несколько позже Бертоле и Лавуазье предложили считать этот газ окислом некоего нового элемента «мурия». В течение трех с половиной десятилетий химики безуспешно пытались выделить неведомый мурий.

    Сторонником «окиси мурия» был поначалу и Дэви, который в 1807 г. разложил электрическим током поваренную соль на щелочной металл натрий и желто-зеленый газ. Однако, спустя три года, после многих бесплодных попыток получить мурий Дэви пришел к выводу, что газ, открытый Шееле, – простое вещество, элемент, и назвал его chloric gas или chlorine (от греческого χλωροζ – желто-зеленый). А еще через три года Гей-Люссак дал новому элементу более короткое имя – хлор. Правда, еще в 1811 г. немецкий химик Швейгер предложил для хлора другое название – «галоген» (дословно оно переводится как солерод), но это название поначалу не привилось, а впоследствии стало общим для целой группы элементов, в которую входит и хлор.

    «Личная карточка» хлора

    На вопрос, что же такое хлор, можно дать минимум десяток ответов. Во-первых, это галоген; во-вторых, один из самых сильных окислителей; в-третьих, чрезвычайно ядовитый газ; в-четвертых, важнейший продукт основной химической промышленности; в-пятых, сырье для производства пластмасс и ядохимикатов, каучука и искусственного волокна, красителей и медикаментов; в-шестых, вещество, с помощью которого получают титан и кремний, глицерин и фторопласт; в-седьмых, средство для очистки питьевой воды и отбеливания тканей...

    Это перечисление можно было бы продолжить.

    При обычных условиях элементарный хлор – довольно тяжелый желто-зеленый газ с резким характерным запахом. Атомный вес хлора 35,453, а молекулярный – 70,906, потому что молекула хлора двухатомна. Один литр газообразного хлора при нормальных условиях (температура 0°C и давление 760 мм ртутного столба) весит 3,214 г. При охлаждении до температуры –34,05°C хлор конденсируется в желтую жидкость (плотностью 1,56 г/см 3), а при температуре – 101,6°C затвердевает. При повышенном давлении хлор можно превратить в жидкость и при более высоких температурах вплоть до +144°C. Хлор хорошо растворяется в дихлорэтане и некоторых других хлорсодержащих органических растворителях.

    Элемент №17 очень активен – он непосредственно соединяется почти со всеми элементами периодической системы. Поэтому в природе он встречается только в виде соединений. Самые распространенные минералы, содержащие хлор, галит NaCI, сильвинит KCl · NaCl, бишофит MgCl 2 · 6H 2 O, карналлит KCl · MgCl 2 · 6Н 2 O, каинит KCl · МgSO 4 · 3Н 2 О. Это их в первую очередь «вина» (или «заслуга»), что содержание хлора в земной коре составляет 0,20% по весу. Для цветной металлургии очень важны некоторые относительно редкие хлорсодержащие минералы, например роговое серебро AgСl.

    По электропроводности жидкий хлор занимает место среди самых сильных изоляторов: он проводит ток почти в миллиард раз хуже, чем дистиллированная вода, и в 10 22 раз хуже серебра.

    Скорость звука в хлоре примерно в полтора раза меньше, чем в воздухе.

    И напоследок – об изотопах хлора.

    Сейчас известны девять изотопов этого элемента, но в природе встречаются только два – хлор-35 и хлор-37. Первого примерно в три раза больше, чем второго.

    Остальные семь изотопов получены искусственно. Самый короткоживущий из них – 32 Cl имеет период полураспада 0,306 секунды, а самый долгоживущий – 36 Cl – 310 тыс. лет.

    Как получают хлор

    Первое, на что обращаешь внимание, попав на хлорный завод, это многочисленные линии электропередачи. Хлорное производство потребляет много электроэнергии – она нужна для того, чтобы разложить природные соединения хлора.

    Естественно, что основное хлорное сырье – это каменная соль. Если хлорный завод расположен вблизи реки, то соль завозят не по железной дороге, а на баржах – так экономичнее. Соль – продукт недорогой, а расходуется ее много: чтобы получить тонну хлора, нужно примерно 1,7...1,8 т соли.

    Соль поступает на склады. Здесь хранятся трех – шестимесячные запасы сырья – хлорное производство, как правило, многотоннажное.

    Соль измельчают и растворяют в теплой воде. Этот рассол по трубопроводу перекачивается в цех очистки, где в огромных, высотой с трехэтажный дом баках рассол очищают от примесей солей кальция и магния и осветляют (дают ему отстояться). Чистый концентрированный раствор хлористого натрия перекачивается в основной цех хлорного производства – в цех электролиза.

    В водном растворе молекулы поваренной соли превращаются в ионы Na + и Сl – . Ион Сl – отличается от атома хлора только тем, что имеет один лишний электрон. Значит, для того чтобы получить элементарный хлор, необходимо оторвать этот лишний электрон. Происходит это в электролизере на положительно заряженном электроде (аноде). С него как бы «отсасываются» электроны: 2Cl – → Cl 2 + 2ē. Аноды сделаны из графита, потому что любой металл (кроме платины и ее аналогов), отбирая у ионов хлора лишние электроны, быстро корродирует и разрушается .

    Существуют два типа технологического оформления производства хлора: диафрагменный и ртутный . В первом случае катодом служит перфорированный железный лист, а катодное и анодное пространства электролизера разделены асбестовой диафрагмой. На железном катоде происходит разряд ионов водорода и образуется водный раствор едкого натра. Если в качестве катода применяют ртуть, то на нем разряжаются ионы натрия и образуется амальгама натрия, которая потом разлагается водой. Получаются водород и едкий натр. В этом случае разделительная диафрагма не нужна, а щелочь получается более концентрированной, чем в диафрагменных электролизерах.

    Итак, производство хлора – это одновременно производство едкого натра и водорода.

    Водород отводят по металлическим, а хлор по стеклянным или керамическим трубам. Свежеприготовленный хлор насыщен парами воды и потому особенно агрессивен. В дальнейшем его сначала охлаждают холодной водой в высоких башнях, выложенных изнутри керамическими плитками и наполненных керамической насадкой (так называемыми кольцами Рашига), а затем сушат концентрированной серной кислотой. Это единственный осушитель хлора и одна из немногих жидкостей, с которыми хлор не взаимодействует.

    Сухой хлор уже не так агрессивен, он не разрушает, например, стальную аппаратуру.

    Транспортируют хлор обычно в жидком состоянии в железнодорожных цистернах или баллонах под давлением до 10 атм.

    В России производство хлора было впервые организовано еще в 1880 г. на Бондюжском заводе. Хлор получали тогда в принципе тем же способом, каким в свое время получил его Шееле – при взаимодействии соляной кислоты с пиролюзитом. Весь производимый хлор расходовался на получение хлорной извести. В 1900 г. на заводе «Донсода» впервые в России был введен в эксплуатацию цех электролитического производства хлора. Мощность этого цеха была всего 6 тыс. т в год. В 1917 г. все хлорные заводы России выпускали 12 тыс. т хлора. А в 1965 г. в СССР было произведено около 1 млн т хлора...

    Один из многих

    Все многообразие практического применения хлора можно без особой натяжки выразить одной фразой: хлор необходим для производства хлорпродуктов, т.е. веществ, содержащих «связанный» хлор. А вот говоря об этих самых хлорпродуктах, одной фразой не отделаешься. Они очень разные – и по свойствам, и по назначению.

    Рассказать обо всех соединениях хлора не позволяет ограниченный объем нашей статьи, но без рассказа хотя бы о некоторых веществах, для получения которых нужен хлор, наш «портрет» элемента №17 был бы неполным и неубедительным.

    Взять, к примеру, хлорорганические инсектициды – вещества, убивающие вредных насекомых, но безопасные для растений. На получение средств защиты растений расходуется значительная часть производимого хлора.

    Один из самых важных инсектицидов – гексахлорциклогексан (часто называемый гексахлораном). Это вещество впервые синтезировано еще в 1825 г. Фарадеем, но практическое применение нашло только через 100 с лишним лет – в 30-х годах нашего столетия.

    Сейчас гексахлоран получают, хлорируя бензол. Подобно водороду, бензол очень медленно реагирует с хлором в темноте (и в отсутствие катализаторов), но при ярком освещении реакция хлорирования бензола (С 6 Н 6 + 3Сl 2 → С 6 Н 6 Сl 6) идет достаточно быстро.

    Гексахлоран, так же как и многие другие инсектициды, применяется в виде дустов с наполнителями (тальком, каолином), или в виде суспензий и эмульсий, или, наконец, в виде аэрозолей. Гексахлоран особенно эффективен при протравливании семян и при борьбе с вредителями овощных и плодовых культур. Расход гексахлорана составляет всего 1...3 кг на гектар, экономический эффект от его применения в 10...15 раз превосходит затраты. К сожалению, гексахлоран не безвреден для человека...

    Поливинилхлорид

    Если попросить любого школьника перечислить известные ему пластики, он одним из первых назовет поливинилхлорид (иначе, винипласт). С точки зрения химика, ПВХ (так часто поливинилхлорид обозначают в литературе) – это полимер, в молекуле которого на цепочку углеродных атомов «нанизаны» атомы водорода и хлора:

    В этой цепочке может быть несколько тысяч звеньев.

    А с потребительской точки зрения ПВХ – это изоляция для проводов и плащи-дождевики, линолеум и граммпластинки, защитные лаки и упаковочные материалы, химическая аппаратура и пенопласты, игрушки и детали приборов.

    Поливинилхлорид образуется при полимеризации винилхлорида, который чаще всего получают, обрабатывая ацетилен хлористым водородом: HC ≡ CH + HCl → CH 2 = CHCl. Существует и другой способ получения винилхлорида – термический крекинг дихлорэтана.

    CH 2 Cl – CH 2 Сl → CH 2 = CHCl + HCl. Представляет интерес сочетание двух этих методов, когда в производстве винилхлорида по ацетиленовому способу используют HCl, выделяющийся при крекинге дихлорэтана.

    Хлористый винил – бесцветный газ с приятным, несколько пьянящим эфирным запахом, легко полимеризуется. Для получения полимера жидкий винилхлорид под давлением нагнетают в теплую воду, где он дробится на мельчайшие капельки. Чтобы они не сливались, в воду добавляют немного желатины или поливинилового спирта, а чтобы начала развиваться реакция полимеризации, туда же вводят инициатор полимеризации – перекись бензоила. Через несколько часов капельки затвердевают, и образуется суспензия полимера в воде. Порошок полимера отделяют на фильтре или на центрифуге.

    Полимеризация обычно происходит при температуре от 40 до 60°C, причем, чем ниже температура полимеризации, тем длиннее образующиеся полимерные молекулы...

    Мы рассказали только о двух веществах, для получения которых необходим элемент №17. Только о двух из многих сотен. Подобных примеров можно привести очень много. И все они говорят о том, что хлор – это не только ядовитый и опасный газ, но очень важный, очень полезный элемент.

    Элементарный расчет

    При получении хлора электролизом раствора поваренной соли одновременно получаются водород и едкий натр: 2NACl + 2H 2 О = H 2 + Cl 2 + 2NaOH. Конечно, водород – очень важный химический продукт, но есть более дешевые и удобные способы производства этого вещества, например конверсия природного газа... А вот едкий натр получают почти исключительно электролизом растворов поваренной соли – на долю других методов приходится меньше 10%. Поскольку производства хлора и NaOH полностью взаимосвязаны (как следует из уравнения реакции, получение одной грамм-молекулы – 71 г хлора – неизменно сопровождается получением двух грамм-молекул – 80 г электролитической щелочи), зная производительность цеха (или завода, или государства) по щелочи, можно легко рассчитать, сколько хлора он производит. Каждой тонне NaOH «сопутствуют» 890 кг хлора.

    Ну и смазка!

    Концентрированная серная кислота – практически единственная жидкость, не взаимодействующая с хлором. Поэтому для сжатия и перекачивания хлора на заводах используют насосы, в которых роль рабочего тела и одновременно смазки выполняет серная кислота.

    Псевдоним Фридриха Вёлера

    Исследуя взаимодействие органических веществ с хлором, французский химик XIX в. Жан Дюма сделал поразительное открытие: хлор способен замещать водород в молекулах органических соединений. Например, при хлорировании уксусной кислоты сначала один водород метильной группы замещается на хлор, затем другой, третий... Но самым поразительным было то, что по химическим свойствам хлоруксусные кислоты мало чем отличались от самой уксусной кислоты. Обнаруженный Дюма класс реакций был совершенно необъясним господствовавшими в то время электрохимической гипотезой и теорией радикалов Берцелиуса (по выражению французского химика Лорана, открытие хлоруксусной кислоты было подобно метеору, который разрушил всю старую школу). Берцелиус, его ученики и последователи бурно оспаривали правильность работ Дюма. В немецком журнале «Annalen der Chemie und Pharmacie» появилось издевательское письмо знаменитого немецкого химика Фридриха Вёлера под псевдонимом S.С.Н. Windier (по немецки «Schwindler» значит «лжец», «обманщик»). В нем сообщалось, что автору удалось заместить в клетчатке (С 6 Н 10 O 5) и все атомы углерода. водорода и кислорода на хлор, причем свойства клетчатки при этом не изменились. И что теперь в Лондоне делают теплые набрюшники из ваты, состоящей... из чистого хлора.

    Хлор и вода

    Хлор заметно растворяется в воде. При 20°C в одном объеме воды растворяется 2,3 объема хлора. Водные растворы хлора (хлорная вода) – желтого цвета. Но со временем, особенно при хранении на свету, они постепенно обесцвечиваются. Объясняется это тем, что растворенный хлор частично взаимодействует с водой, образуются соляная и хлорноватистая кислоты: Cl 2 + H 2 O → HCl + HOCl. Последняя неустойчива и постепенно распадается на HCl и кислород. Поэтому раствор хлора в воде постепенно превращается в раствор соляной кислоты.

    Но при низких температурах хлор и вода образуют кристаллогидрат необычного состава – Cl 2 · 5 3 / 4 H 2 O. Эти зеленовато-желтые кристаллы (устойчивые только при температурах ниже 10°C) можно получить, пропуская хлор через воду со льдом. Необычная формула объясняется структурой кристаллогидрата, а она определяется в первую очередь структурой льда. В кристаллической решетке льда молекулы Н 2 О могут располагаться таким образом, что между ними появляются закономерно расположенные пустоты. Элементарная кубическая ячейка содержит 46 молекул воды, между которыми есть восемь микроскопических пустот. В этих пустотах и оседают молекулы хлора. Точная формула кристаллогидрата хлора поэтому должна быть записана так: 8Сl 2 · 46Н 2 О.

    Отравление хлором

    Присутствие в воздухе уже около 0,0001% хлора раздражающе действует на слизистые оболочки. Постоянное пребывание в такой атмосфере может привести к заболеванию бронхов, резко ухудшает аппетит, придает зеленоватый оттенок коже. Если содержание хлора в воздухе составляет 0,1°/о, то может наступить острое отравление, первый признак которого – приступы сильнейшего кашля. При отравлении хлором необходим абсолютный покой; полезно вдыхать кислород, или аммиак (нюхая нашатырный спирт), или пары спирта с эфиром. По существующим санитарным нормам содержание хлора в воздухе производственных помещений не должно превышать 0,001 мг/л, т.е. 0,00003%.

    Не только яд

    «Что волки жадны, всякий знает». Что хлор ядовит – тоже. Однако в небольших дозах ядовитый хлор иногда может служить и противоядием. Так, пострадавшим от сероводорода дают нюхать нестойкую хлорную известь. Взаимодействуя, два яда взаимно нейтрализуются.

    Анализ на хлор

    Для определения содержания хлора пробу воздуха пропускают через поглотители с подкисленным раствором йодистого калия. (Хлор вытесняет йод, количество последнего легко определяется титрованием с помощью раствора Nа 2 S 2 O 3). Для определения микроколичеств хлора в воздухе часто применяется колориметрический метод, основанный на резком изменении окраски некоторых соединений (бензидина, ортотолуидина, метилоранжа) при окислении их хлором. Например, бесцветный подкисленный раствор бензидина приобретает желтый цвет, а нейтральный – синий. Интенсивность окраски пропорциональна количеству хлора.

    _____________________________________

    В настоящее время "золотым стандартом" анодов для хлорного производства считаются аноды из диоксида титана, модифицированного оксидами платиновых металлов, прежде всего диоксидом рутения RuO 2 . Оксидные рутениево-титановые аноды (ОРТА) в англоязычной литературе известны под названиями MMO (mixed metal oxide) или DSA (dimensionally stable anode). Пленку легированного диоксида титана получают непосредственно на поверхности основы из металлического титана. Несмотря на высокую стоимость, ОРТА обладают неоспоримыми преимуществами по сравнению с графитовыми анодами:

    В несколько раз большая допустимая плотность тока позволяет уменьшить размеры аппаратуры;
    - практически отсутствуют продукты коррозии анода, что резко упрощает очистку электролита;
    - аноды обладают отличной коррозионной стойкостью, способны работать в промышленных условиях более года без замены (ремонта).

    Для изготовления анодов хлорного производства перспективы и другие материалы. Однако это - тема отдельной (и большой) публикации (- прим. ред.).


    В связи с токсичностью и высокой стоимостью ртути активно развивается третий вариант электролизеров - мембранный, в настоящее время являющийся основным в развитых странах. В этом варианте катодное и анодное пространства разделены ионоонообменной мембраной, проницаемой для ионов натрия, но не пропускающей анионы. При этом, как и в ртутном процессе, исключается загрязнение щелочного католита хлоридом.

    Материалом для изготовления мембран хлорного производства является Нафион (Nafion) - иономер на основе политетрафторэтилена с привитыми группами перфторвинилсульфонового эфира. Этот материал, разработанный в 60-е годы прошлого века фирмой DuPont, отличается превосходной химической, термической и механической стойкостью и удовлетворительной проводимостью. До настоящего времени он остается материалом выбора при построении множества электрохимических установок (- прим. ред.).

    Цель урока: Сформировать представление о хлоре как химическом элементе и простом веществе.

    Задачи урока:

    Образовательные:

    1. Рассмотреть положение галогенов в Периодической системе химических элементов Д.И. Менделеева.
    2. Ознакомить учащихся с нахождением хлора в природе и способами его получения.
    3. Сформировать знания о физических и химических свойствах хлора.
    4. Охарактеризовать области применения хлора и отметить его токсичность.

    Воспитательные:

    1. Воспитание чувства сопереживания, взаимопомощи через работу в группах.
    2. Формирование экологической грамотности через учебный материал о применении хлора.

    Развивающие:

    1. Развитие коммуникативных, эмоциональных качеств личности через работу в группе.
    2. Развивать способность делать выводы через выполнение заданий групп.

    Тип урока: изучение нового материала.

    Форма обучения: групповая, индивидуальная, фронтальная.

    Методы урока: словесные, наглядные, самостоятельные.

    План урока.

    1. Организационный момент – 1 мин.
    2. Актуализация знаний – 4 мин.
    3. Изучение нового материала – 25 мин.
    4. Закрепление изученного – 12 мин.
    5. Подведение итогов урока и домашнее задание – 3 мин.

    Ход урока:

    Организационный момент

    • Приветствие.

    Вводное слово учителя:

    – Ребята, чем пахнет водопроводная вода?

    – А чем пахнет на кухне, когда раковину чистят “белизной”?

    – Чем мы солим суп?

    – Что находится в желудке для переваривания пищи?

    Таким образом, с каким элементом мы сегодня познакомимся на уроке? (Хлором).

    Хлор является представителем галогенов (от греч halos – соль и genes – рождающий).

    Актуализация знаний

    1. Определите местоположение галогенов в ПС Д.И. Менделеева, назовите их.
    2. Охарактеризуйте особенности строения атомов галогенов и электронную конфигурацию внешнего слоя.
    3. Какие свойства проявляют галогены в химических реакциях?
    4. Как изменяется окислительная способность галогенов с увеличением порядкового номера?
    5. Назвать самый активный галоген-неметалл? Почему?

    Изучение нового материала

    Постановка цели урока учащимися (с чем на уроке мы сегодня познакомимся?).

    Новый материал изучается при работе в группах по инструктивным карточкам (12 минут). Приложение 1

    Отчёт о работах в группах..

    Заполнение таблицы в тетради (13 мин).

    Закрепление изученного материала

  • Чему равна степень окисления хлора в соединениях с металлами и водородом?
  • Чему равна степень окисления атомов хлора в следующих соединениях: HCL, Сl 2 О 7 , НClO 4 , KClO 3 , НClO?
  • Какой вид химической связи и тип кристаллической решетки характерны для Сl 2, NaCL HCL?
  • Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:
  • CL 2 ->HCL->NaCL->AgCL

    Тест “Хлор”

    Тест выдан каждому ученику.

    Вариант 1

    1. Какая электронная конфигурация внешнего энергетического уровня соответствует атому хлора?
    а) 2s 22p 6; б) 2s 22p 3; в) 3s 23p 5; г) 2s 22p 5.

    2. Хлор впервые получил
    а) А. Авогадро; б) А.Беккерель; в) К. Шееле; г) Г. Кавендиш.

    3. Галоген, обладающий наибольшим значением электроотрицательности - это
    а) I; б) Br; в) CL; г) F.

    4. Положительную степень окисления хлор проявляет в соединении
    а) HCLO; б) KCLO 3 ; в) HCL; г) Cl 2 O 7 .

    5. Объём хлороводорода (н.у.) полученного при сжигании 10л водорода в хлоре, равен
    а) 22,4 л; б) 10 л; в) 20 л; г) 44,8 л.

    Вариант 2

    1. Степень окисления –1 хлор проявляет в соединении:
    а) HCL; б) CL 2 ; в) Cl 2 O 7 ; г) KCLO 3 .

    2. Хлор при обычных условиях:
    а) бесцветный газ с резким удушливым запахом;
    б) газ жёлто-зелёного цвета с резким удушливым запахом;
    в) жидкость красно-бурого цвета;
    г) кристаллы темно-фиолетового цвета.

    3. На наружном энергетическом уровне атомов галогенов находится:
    а) два s-электрона и пять р-электронов;
    б) один s-электрон;
    в) пять р-электронов;
    г) два s-электрона и шесть р-электронов.

    4. Объём хлора (н.у) затраченного на получение 2л хлороводорода, равен
    а) 2 л; б) 22.4 л; в) 1 л; г) 44,8 л.

    5. Галоген, обладающий наименьшим значением электроотрицательности-это
    а) I; б) Br; в) CL; г) F.

    6. Установите соответствие между химической формулой соединения и степенью окисления хлора в нем.

    Тесты сдают на проверку учителю.

    Домашнее задание.

    П. 46, 47, стр. 164 задача №2 (учебник Г.Е Рудзитис и Ф.Г.Фельдман химия 8).

    Подведение итогов урока. Рефлексия.

    На партах лежат сигнальные карточки трех цветов: красная – “всё понятно”, зеленая – “есть затруднения”, синяя – “нужна помощь”. Выберите карточки по мере вашего усвоения материала, подпишите их и сдайте.

    В данном разделе рассматриваются свойства, использование хлора, действие его на организм человека, поведение в атмосфере при выбросе, поражающие действия и классификация АХОВ, поведение хлора в зависимости от способа хранения, рассмотрены примеры аварий на станциях водоподготовки.

    1.3.1 Хлор как ахов, его свойства и применение

    Хлор к настоящему времени утратил значение как отравляющее вещество, однако весьма широко используется в различных отраслях производства. По токсическим свойствам хлор относится к аварийно-химическим опасным веществам (АХОВ). АХОВ - химические вещества или соединения, которые при проливе или выбросе из емкости в окружающую среду способны вызвать массовое поражение людей и животных, заражение воздуха, почвы, воды, растений и различных материальных ценностей выше допустимых значений. Таких АХОВ по мере расширения производства с каждым годом становится все больше. На сегодняшний день в системе РСЧС в перечень АХОВ включены более 34 веществ.

    Согласно клинической классификации хлор является АХОВ первой группы – веществом, обладающим преимущественно удушающим поражающим действием с выраженным прижигающим действием.

    Физико-химические свойства. Хлор – зеленовато желтый газ с резким удушающим запахом. Плохо растворяется в воде, хорошо – в некоторых органических растворителях. В практических условиях растворимость хлора в воде незначительна и составляет 3 кг на 1 т воды. При обычном давлении сжижается при температуре – 34°С, образуя маслянистую жидкость желтовато зелёного цвета, затвердевающую при минус 101°С. Твёрдый хлор это бледно жёлтые кристаллы. Под давлением хлор сжижается уже при обычных температурах. Температура кипения сжиженного хлора –34,1°С, следовательно, даже зимой хлор находится в газообразном состоянии. При испарении образует с водяными парами белый туман. Один килограмм жидкого хлора дает 0,315 м 3 газа. Хорошо адсорбируется активным углём. Химически очень активен.

    Пожаро- и взрывоопасность хлора. Негорюч, но пожароопасен, поддерживает горение многих органических веществ. В смеси с водородом взрывоопасен. При нагревании ёмкости взрывается.

    Действие хлора на организм. По физиологическому действию на организм хлор относится к группе веществ удушающего действия. В момент контакта он оказывает сильное раздражающее действие на слизистую оболочку дыхательных путей и глаза. Признаки поражения наступают сразу после воздействия, поэтому хлор является быстродействующим АХОВ. Проникая в глубокие дыхательные пути, хлор разрушает лёгочную ткань, вызывая отёк лёгких. В зависимости от концентрации (токсодозы) хлора степень тяжести отравления может быть различной. При воздействии хлора уже в незначительных концентрациях наблюдается покраснение коньюктивы глаз, мягкого нёба и глотки, а также бронхит, лёгкая одышка, охриплость, чувство сдавливания в груди. Пребывание в атмосфере, содержащей хлор в концентрациях 1,5–2 г/м 3 , сопровождается появлением болевых ощущений в верхних дыхательных путях, жжением и болью за грудиной (чувство сильного сдавливания в груди), жжением и резью в глазах, слезотечением, мучительным сухим кашлем. Через 2–4 ч появляются признаки отёка лёгких. Увеличивается одышка, учащается пульс, начинается отделение пенистой жёлтоватой или красноватой мокроты. Воздействие высоких концентраций хлора в течение 10–15 мин может привести к развитию химического ожога лёгких и смерти. При вдыхании хлора в очень высоких концентрациях смерть наступает в течение нескольких минут из за паралича дыхательного центра. Антидота против хлора не существует. Предельно допустимая концентрация хлора в воздухе рабочей зоны производственного помещения составляет 1 мг/м 3 , однако человек начинает ощущать хлор в атмосферном воздухе при превышении концентрации 3 мг/м 3 . Следовательно, если чувствуется резкий удушливый запах хлора, то работать без средств защиты уже опасно. Раздражающее действие возникает при концентрации около 10 мг/м 3 . Воздействие 100–200 мг/м 3 хлора в течение 30–60 минут опасно для жизни. Предельно допустимая концентрация хлора в атмосферном воздухе населённых пунктов равна: среднесуточная 0,03 мг/м 3 ; максимальная разовая 0,1 мг/м 3 .

    Признаки поражения хлором. Сильное жжение, резь в глазах; слезотечение; учащённое дыхание; мучительный сухой кашель; сильное возбуждение; страх; в тяжёлых случаях остановка дыхания. При утечке или розливе хлора нельзя прикасаться к пролитому веществу, так как оставшийся в проливе хлор захолаживается до температуры -34°С.

    Использование. Находит широкое применение для отбеливания тканей и бумажной массы, в производстве пластмасс, каучука, пестицидов, дихлорэтана, в цветной металлургии, а также в коммунально-бытовом хозяйстве для обеззараживания воды. Хлор хранят и перевозят к местам потребления только в сжиженном состоянии. Наиболее распространённым способом хранения и транспортировки жидкого хлора является хранение под давлением, соответствующим давлению насыщенных паров хлора при температуре окружающей среды. Обычно он хранится в цилиндрических (10–250 м 3) и шаровых (600–2000 м 3) резервуарах в сжиженном состоянии под давлением собственных паров, величина которого зависит от температуры жидкого хлора. При температуре 25°С оно составляет 8 кгс/см 2 , а при температуре 60°С – 18 кгс/см 2 . Сжиженный хлор перевозят в железнодорожных цистернах, контейнерах и баллонах, которые одновременно могут являться временными хранилищами.

    Поведение в атмосфере. При разрушении емкости происходит бурное (в зависимости от давления) испарение хлора. Доля мгновенно испарившегося хлора зависит от температуры хранящегося жидкого хлора. Чем выше его температура, тем большая доля хлора практически мгновенно испаряется при аварийном выбросе (20% при 20° С и 30% при 40°С). При этом образуется так называемое первичное облако с концентрациями, значительно превышающими смертельные концентрации. Продолжительность поражающего действия первичного облака хлора на небольших удалениях от места аварии будет составлять от нескольких десятков секунд до нескольких минут. Вторичное облако, образующееся при испарении хлора с площади розлива, характеризуется концентрацией этого вещества в нем на 2–3 порядка ниже, чем в первичном облаке. Однако продолжительность действия в этом облаке хлора значительно больше и определяется временем испарения разливающейся жидкости. Испарение идет за счет тепла поддона или подстилающей поверхности, а также окружающего воздуха. Время испарения зависит от количества вещества, характера разлива: в поддон или свободно (в обваловку) и от метеорологических условий. Испарение может длиться несколько часов и даже суток. Газообразный хлор в 2,5 раза тяжелее воздуха, поэтому облако хлора перемещается по направлению ветра близко к земле. Обладает хорошей проникающей способностью в негерметичные сооружения. Может скапливаться в низких участках местности, подвалах домов, колодцах, тоннелях и защитных сооружениях, не оборудованных в противохимическом отношении. За внешнюю границу зоны заражения принимается линия средней пороговой токсодозы, вызывающей начальные симптомы поражения (составляет 0,6 ).

    В промышленных масштабах хлор получают вместе с гидроксидом натрияиводородомпутёмэлектролизараствораповаренной соли:

    2NaCl + 2H 2 О → H 2 + Cl 2 + 2NaOH

    Анод: 2Cl - - 2е - → Cl 2 0

    Катод: 2H 2 O + 2e - → H 2 + 2OH -

    На станциях водоподготовки хлор хранится в специальных «танках», или закачивается в стальные баллоны высокого давления. Баллоны с жидким хлором под давлением имеют специальную окраску - болотный цвет. Следует отметить, что при длительной эксплуатации баллонов с хлором, в них накапливается чрезвычайно взрывчатый треххлористый азот, и поэтому время от времени баллоны с хлором должны проходить плановую промывку и очистку от хлорида азота.

    ПДК хлора в атмосферном воздухе следующие: среднесуточная - 0,03 мг/м³; максимально разовая - 0,1 мг/м³; в рабочих помещениях промышленного предприятия - 1 мг/м³.