Как чертится изометрия. Прямоугольная изометрическая проекция

Инструкция

Постройте с помощью линейки и транспортира или циркуля и линейки для прямоугольной (отрогональной) изометрической проекции. В этой разновидности аксонометрической проекции все три оси - OX, OY, OZ - между собой углы в 120°, при этом ось ОZ имеет вертикальную направленность.

Для простоты чертите изометрическую проекцию без искажений по осям, так как принято изометрический коэффициент искажения приравнивать к единице. Кстати, само «изометрический» в переводе «равный размер». На самом деле при отображении трехмерного объекта на плоскость отношение длины любого спроецированного отрезка, параллельного координатной оси, к действительной длине этого отрезка равно для всех трех осей 0,82. Поэтому линейные размеры предмета в изометрии (при принятом коэффициенте искажения) увеличиваются в 1,22 раза. При этом изображение остается правильным.

Начните проецировать предмет на аксонометрическую плоскость с его верхней грани. Отмерьте по оси OZ от центра пересечения осей координат высоту детали. Проведите тонкими линиями оси Х и Y через эту точку. Из этой же точки отложите половину отрезка длины детали по одной оси (например, по оси Y). Проведите через найденную точку отрезок нужного размера (ширина детали) параллельно другой оси (OX).

Теперь вдоль другой оси (OX) отложите половину ширины. Через эту точку проведите отрезок нужной величины (длина детали) параллельно первой оси (OY). Два начерченных отрезка должны пересечься. Достройте оставшуюся часть верхней грани.

Если в этой грани имеется круглое отверстие, начертите его. В изометрии окружность изображается в виде эллипса, потому что мы смотрим на нее под углом. Размеры осей этого эллипса рассчитайте исходя из диаметра окружности. Они равны: a = 1,22D и b = 0,71D. Если окружность располагается на горизонтальной плоскости, ось а эллипса всегда горизонтальная, ось b - вертикальная. При этом расстояние между точками эллипса на оси Х или Y всегда равно диаметру окружности D.

Начертите из трех углов верхней грани вертикальные ребра, равные высоте детали. Соедините ребра через их нижние точки.

Если у фигуры есть прямоугольное отверстие, начертите его. Отложите из центра ребра верхней грани вертикальный (параллельно оси Z) отрезок нужной длины. Через полученную точку начертите отрезок требуемого размера параллельно верхней грани, а значит и оси X. Из крайних точек этого отрезка начертите вертикальные ребра нужной величины. Соедините их нижние точки. Проведите от нижней правой точки нарисованного ромба внутреннее ребро отверстия, которое должно быть параллельно оси Y.

Источники:

  • Как начертить изометрию?
  • деталь в изометрической проекции

Сложно представить себе, какой была бы современная компьютерная игра без трехмерных объектов и объемных панорам. Но чтобы создать даже самый незначительный объект компьютерной игры, к примеру, маленькое строение, нужно знать, как нарисовать изометрию.

Вам понадобится

  • Персональный компьютер, программа Adobe ImageReady или Photoshop.

Инструкция

Постройте основной контур куба, который будет основой изометрического строения.

Достройте сверху этого прямоугольника несколько параллельно расположенных по отношению друг к другу квадратов, края которых соедините между собой. Эта верхушка станет крышей объекта.

Залейте получившуюся форму строения однородным цветом на ваш выбор.

Закрасьте каждую сторону строения, используя три цвета: базовый цвет, его темный оттенок и светлый оттенок.

Видео по теме

Обратите внимание

При закрашивании моделируемого изометрического объекта тремя оттенками не ошибитесь с углом падения света. Неправильный выбор угла падения света испортит изображаемый объект, то есть, вы не сможете правильно смоделировать это строение. Представьте себе, что источник света расположен в верхнем левом углу монитора и, отталкиваясь от этого, выбирайте соответствующий оттенок для заливки той либо иной грани строения.

Полезный совет

При освещении внутренних граней строения создается холодный эффект. Несмотря на то, что рисование черных краев создает эффект поглощения, использование такого приема при рисовании изометрии позволяет добиться эффекта завершенности моделируемого объекта.

Источники:

  • Урок построения изометрического дома.

Выполнение чертежей сложных деталей и узлов часто сопровождается введением дополнительных видов, разрезов, сечений, которые необходимо разместить на свободном поле чертежа таким образом, чтобы его можно было легко прочесть и найти всю необходимую информацию об изделии.

Инструкция

Перед выполнением чертежа проанализируйте, какое количество видов объекта вам понадобится для его корректного изображения. Оцените масштаб, в котором вы будете выполнять чертеж. Не забудьте о технических требований, который также нужно будет расположить на поле чертежа. Иногда такой занимает практически весь лист, на котором изображен чертеж. Исходя из этой информации подберите необходимый формат листа (А4, А3, А2 и т.д.).

Начертите основные виды с необходимыми разрезами и сечениями. Проставьте размеры. Расположите текст технических требований над основной надписью чертежа. Длина строки по величине не должна превышать длину рамки, в которую заключена основная надпись (не более 185мм). При выполнении чертежа старайтесь оставлять около 20% свободного места, если это возможно.

Для того, чтобы на имеющемся чертеже расположить другой чертеж, определите, что именно вы хотите изобразить. Скорее всего, под другим чертежом подразумевается дополнительный вид изображаемого объекта, разрез или сечение, которые дают информации о детали или узле. Помните, что разместить дополнительный чертеж на подписанной и сданной конструкторской документации вы сможете только выпустив извещение об изменении. До подписания чертежей в них можно вносить изменения.

Проанализируйте количество свободного места на поле основного чертежа, которое понадобится для размещения дополнительного вида. Примените масштаб уменьшения для дополнительного чертежа, если его при этом можно будет прочесть. Иногда свободного места на чертеже не хватает, тогда вводите еще один лист чертежа и располагайте дополнительный вид на нем. При этом не забудьте в графе «Листов» основной надписи чертежа указать на один лист больше.

Часто дополнительным чертежом бывает рисунок, на котором могут изображаться различные этапы выполнения проектируемого изделия: заделка и расположение выводов, клемм, схемы, установка объекта на испытательном стенде и т.д. В этом случае располагайте рисунок также на свободном поле чертежа в удобном масштабе.

Одна из самых увлекательных задач начертательной геометрии – построение третьего вида при заданных двух. Она требует вдумчивого подхода и педантичного измерения расстояний, поэтому не всегда дается с первого раза. Тем не менее, если тщательно следовать рекомендованной последовательности действий, построить третий вид вполне возможно, даже без пространственного воображения.

Вам понадобится

  • - лист бумаги;
  • - карандаш;
  • - линейка или циркуль.

Инструкция

В первую очередь постарайтесь по двум имеющимся видам определить форму отдельных частей изображенного предмета. Если на виде сверху изображен треугольник, то это может быть призма, конус вращения, треугольная или . Форму четырехугольника могут принять цилиндр, или треугольная призма или другие предметы. Изображение в форме круга может означать шар, конус, цилиндр или другие поверхности вращения. Так или иначе, попытайтесь представить общую форму предмета в целом.

Расчертите границы плоскостей, для удобства переноса линий. Начните с самого удобного и понятного элемента. Возьмите любую точку, которую вы точно «видите» на обоих видах и перенесите ее на третий вид. Для этого опустите перпендикуляр на границы плоскостей и продолжите его на следующей плоскости. При этом учтите, что при переходе с вида слева на вид сверху (или наоборот), необходимо пользоваться циркулем или отмерять расстояние при помощи линейки. Таким образом, на месте вашего третьего вида пересекутся две прямые. Это и будет проекция выбранной точки на третий вид. Таким же образом можно сколько угодно точек, пока вам не станет понятным общий вид детали.

Проверьте правильность построения. Для этого измерьте размеры тех частей детали, которые отражаются полностью (например, стоящий цилиндр будет одного «роста» на виде слева и виде спереди). Для того, чтобы понять, ничего ли вы не забыли, постарайтесь посмотреть на вид спереди с позиции наблюдателя сверху и пересчитать (хотя бы примерно), сколько должно быть видно границ отверстий и поверхностей. Каждая прямая, каждая точка должны иметь отражение на всех видах. Если деталь симметрична, не забудьте отметить ось симметрии и проверить равенство обеих частей.

Удалите все вспомогательные линии, проверьте, чтобы все невидимые линии были отмечены пунктирной линией.

Построение изометрической проекции детали позволяет получить максимально подробное представление о пространственных характеристиках объекта изображения. Изометрия с вырезом части детали дополнительно к внешнему виду показывает внутреннее устройство предмета.

Вам понадобится

  • - набор чертежных карандашей;
  • - линейка;
  • - угольники;
  • - транспортир;
  • - циркуль;
  • - ластик.

Инструкция

Начертите оси тонкими линиями так, чтобы изображение разместилось по центру листа. В прямоугольной изометрии углы между осями составляют сто градусов. В горизонтальной косоугольной изометрии углы между осями X и Y составляют девяносто градусов. А между осями X и Z; Y и Z - сто тридцать пять градусов.

Начните выполнять с верхней поверхности изображаемой детали. От углов горизонтальных поверхностей проведите вниз вертикальные линии и отложите на этих линиях соответствующие линейные размеры с чертежа детали. В изометрии линейные размеры по всем трем осям остаются кратными единице. Последовательно соедините полученные точки на вертикальных линиях. Внешний контур детали готов. Выполните изображения имеющихся на гранях детали отверстий, пазов и пр.

Помните, что при изображении предметов в изометрии видимость криволинейных элементов будет искажаться. Окружность в изометрии изображается как эллипс. Расстояние между точками эллипса по осям изометрии равно диаметру окружности, а оси эллипса не совпадают с осями изометрии.

Если у предмета имеются скрытые полости или сложное внутреннее строение, выполните изометрическую проекцию с вырезом части детали. Вырез может быть простым или ступенчатым в зависимости от сложности детали.

Все действия должны выполняться с помощью чертежных инструментов - линейки, карандаша, циркуля и транспортира. Используйте несколько карандашей разной твердости. Твердый - для тонких линий, твердо-мягкий - для пунктирных и штрихпунктирных линий, мягкий - для основных линий. Не забудьте начертить и заполнить основную надпись и рамку в соответствии с ГОСТ. Также построение изометрии можно выполнять в специализированном программном обеспечении, таком как Компас, AutoCAD.

Источники:

  • черчение в изометрии

Все объекты окружающей действительности существуют в трехмерном пространстве. На чертежах их приходится изображать в двухмерной системе координат, и это не дает зрителю достаточного представления о том, как предмет выглядит в реальности. Поэтому в техническом черчении применяются проекции, позволяющие передать объем. Одна из них называется изометрической.

Вам понадобится

  • - бумага;
  • - чертежные принадлежности.

Инструкция

Построение изометрической проекции начните с расположения осей. Одна из них всегда будет вертикальной, и на чертежах она обычно как ось Z, Начальную ее точку принято обозначать как О. Продолжите ось ОZ вниз.

Положение остальных двух осей можно определить двумя способами, в зависимости от того, какие чертежные у вас есть. Если у вас имеется транспортир, отложите от оси ОZ в обе стороны углы, равные 120º. Проведите оси X и Y.

Если в вашем распоряжении только циркуль, начертите окружность произвольного радиуса с центром в точке О. Продолжите ось ОZ до ее второго пересечения с окружностью и поставьте точку, например, 1. Разведите ножки циркуля на расстояние, равное радиусу. Проведите дугу с центром в точке 1. Отметьте точки ее пересечения с окружностью. Они и обозначают направления осей Х и Y. В левую сторону от оси Z отходит ось Х, вправо - Y.

Постройте изометрическую проекцию . Коэффициенты искажения в по всем осям принимаются за 1. Чтобы построить квадрат со стороной а, отложите это расстояние от точки О по осям Х и Y и сделайте засечки. Проведите через полученные точки прямые, параллельные обеим указанным осям. Квадрат в этой проекции выглядит как параллелограмм с углами в 120º и 60º.

Чтобы построить треугольник, необходимо продолжить ось Х так, чтобы часть луча расположилась между осями Z м Y. Разделите сторону треугольника пополам и отложите полученный размер от точки О по оси Х в обе стороны. По оси Y отложите высоту треугольника. Соедините концы отрезка, расположенного на оси X, с полученной точкой на оси Y.

Похожим способом строится в изометрической проекции и трапеция. На оси Х в одну и в другую сторону от точки О отложите половину основания этой геометрической фигуры, а по оси Y - высоту. Через засечки на оси Y проведите прямую, параллельную оси Х, и отложите на ней в обе стороны половину второго основания. Соедините полученные точки с засечками на оси Х.

Окружность в изометрии выглядит как эллипс. Ее можно построить как с учетом коэффициента искажений, так и без. В первом случае большой диаметр будет равен диаметру самой окружности, а малый составит 0,58 от него. При построении без учета этого коэффициента оси эллипса будут равняться соответственно 1,22 и 0,71 диаметра исходной окружности.

Рассмотрите рис. 92. На нем дана фронтальная диметрическая проекция куба с вписанными в его грани окружностями.

Окружности, расположенные на плоскостях, перпендикулярных к осям х и z, изображаются эллипсами. Передняя грань куба, перпендикулярная к оси у, проецируется без искажения, и окружность, расположенная на ней, изображается без искажения, т. е. описывается циркулем. Поэтому фронтальная диметрическая проекция удобна для изображения предметов с криволинейными очертаниями, подооных представленными на рис. 93.

Построение фронтальной диметрической проекции плоской детали с цилиндрическим отверстием . Фронтальную диметрическую проекцию плоской детали с цилиндрическим отверстием выполняют следующим образом.

1. Строят очертания передней грани детали, пользуясь циркулем (рис. 94, а).

2. Через центры окружности и дуг параллельно оси у проводят прямые, на которых откладывают половину толщины детали. Получают центры окружности и дуг, расположенных на задней поверхности детали (рис. 94, б). Из этих центров проводят окружность и дуги, радиусы которых должны быть равны радиусам окружности и дуг передней грани.

3. Проводят касательные к дугам. Удаляют лишние линии и обводят видимый контур (рис. 94, в).

Изометрические проекции окружностей. Квадрат в изометрической проекции проецируется в ромб. Окружности, вписанные в квадраты, например, расположенные на гранях куба (рис. 95), в изометрической проекции изображаются эллипсами. На практике эллипсы заменяют овалами, которые вычерчивают четырьмя дугами окружностей.

Построение овала, вписанного в ромб.

1. Строят ромб со стороной, равной диаметру изображаемой окружности (рис. 96, а). Для этого через точку О проводят изометрические оси х и у и на них от точки О откладывают отрезки, равные радиусу изображаемой окружности. Через точки a, w, с и d проводят прямые, параллельные осям; получают ромб. Большая ось овала располагается на большой диагонали ромба.

2. Вписывают в ромб овал. Для этого из вершин тупых углов (точек А и В) описывают дуги радиусом R, равным расстоянию от вершины тупого угла (точек А и В) до точек a, b или с, d соответственно. Через точки В и а, В и b проводят прямые (рис. 96, б); пересечение этих прямых с большей диагональю ромба дает точки С и D, которые будут центрами малых дуг; радиус R 1 малых дуг равен Са (Db). Дугами этого радиуса сопрягают большие дуги овала. Так строят овал, лежащий в плоскости, перпендикулярной к оси z (овал 1 на рис. 95). Овалы, находящиеся в плоскостях, перпендикулярных к осям х (овал 3) и у (овал 2), строят так же, как овал 1., только построение овала 3 ведут на осях у и z (рис. 97, а), а овала 2 (см. рис. 95) - на осях х и z (рис. 97, б).

Построение изометрической проекции детали с цилиндрическим отверстием.

Как применить рассмотренные построения на практике?

Дана изометрическая проекция детали (рис. 98, а). Нужно изобразить сквозное цилиндрическое отверстие, просверленное перпендикулярно передней грани.

Построения выполняет следующим образом.

1. Находят положение центра отверстия на передней грани детали. Через найденный центр проводят изометрические оси. (Для определения их направления удобно воспользоваться изображением куба на рис. 95.) На осях от центра откладывают отрезки, равные радиусу изображаемой окружности (рис. 98, а).

2. Строят ромб, сторона которого равна диаметру изображаемой окружности; проводят большую диагональ ромба (рис. 98, б).

3. Описывают большие дуги овала; находят центры для малых дуг (рис. 98, в).

4. Проводят малые дуги (рис. 98, г).

5. Строят такой же овал на задней грани детали и проводят касательные к обоим овалам (рис. 98, д).

Ответьте на вопросы


1. Какими фигурами изображаются во фронтальной диме-трической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х и у?

2. Искажается ли во фронтальной диметрической проекции окружность, если ее плоскость перпендикулярна оси у?

3. При изображении каких деталей удобно применять фронтальную диметрическую проекцию?

4. Какими фигурами изображаются в изометрической проекции окружности, расположенные на плоскостях, перпендикулярных к осям х, у, z?

5. Какими фигурами в практике заменяют эллипсы, изображающие окружности в изометрической проекции?

6. Из каких элементов состоит овал?

7. Чему равны диаметры окружностей, изображенных овалами, вписанными в ромбы на рис. 95, если стороны этих ромбов равны 40 мм?

Задания к § 13 и 14

Упражнение 42


На рис. 99 проведены оси для построения трех ромбов, изображающих квадраты в изометрической проекции. Рассмотрите рис. 95 и запишите, на какой грани куба - верхней, правой боковой или левой боковой будет расположен каждый ромб, построенный на осях, данных на рис. 99. Какой оси (х, у или z) будет перпендикулярна плоскость каждого ромба?

Рис. 24, а.

Коэффициенты искажения по осям x, y, z равны 0,82.

Изометрическую проекцию, как правило, выполняют без искажения по осям, используя так называемый приведенный коэффициент искажения равный 1 (при этом изображение получается увеличенным в 1,22 раза).

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в изометрии в равновеликие эллипсы. Ориентация эллипсов в различных плоскостях показана на Рис. 24а большая ось эллипса, лежащего в плоскости x,z перпендикулярна оси y; большая ось эллипса, лежащего в плоскости x, y перпендикулярна оси z; большая ось эллипса, лежащего в плоскости z, y перпендикулярна оси x.

Если изометрическую проекцию выполняют без искажения по осям x, y, z, то большие оси эллипсов равны 1,22 диаметра окружности, а малые оси – 0,71 диметра окружности.

Пример построения предмета в прямоугольной изометрии с вырезом передней четверти показан на Рис. 17 (штриховка фигур производится параллельно диагоналям квадратов, построенных в соответствующих аксонометрических плоскостях).

Рисунок 24 (а, б, в) – Аксонометрические проекции (а – прямоугольная изометрия, б – прямоугольная диметрия, в – косоугольная фронтальная диметрия)

Прямоугольная диметрия

Положение аксонометрических осей приведено на Рис. 24, б.

Коэффициенты искажения по осям x, z равны 0,94, а по оси y - 0,47.

Диметрическую проекцию, как правило, выполняют без искажения по осям x, z и с коэффициентом искажения 0,5 по оси y (в этом случае изображение получается увеличенным в 1,06 раза).

Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на аксонометрические плоскости проекций эллипсами. Ориентация эллипсов в различных плоскостях показана на Рис. 24, б : большая ось эллипса, лежащего в плоскости x,z перпендикулярна оси y; большая ось эллипса, лежащего в плоскости x, y перпендикулярна оси z; большая ось эллипса, лежащего в плоскости z, y перпендикулярна оси x.



Величины осей эллипсов даны на Рис. 24, б.

Косоугольная фронтальная диметрия

Положение аксонометрических осей приведено на Рис. 24, в.

Коэффициенты искажения по осям x, z равны 1, а по оси y - 0,5.

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрические плоскости проекций в окружности.

Окружности, лежащие в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, проецируются на аксонометрические плоскости проекций эллипсами.

Величины осей эллипсов приведены на Рис. 24, в.

Рисунок 25 (а, б) – Построение овалов в аксонометрии (а – прямоугольная изометрия, б – прямоугольная диметрия)

Методическое руководство содержит варианты для трех графических заданий.

Количество заданий, входящих в контрольную работу, зависит от специальности обучающегося и определяется преподавателем на установочной лекции.

Номер варианта, который должен быть выполнен студентом, определяется по последней цифре учебного шифра. Всего вариантов 20.

Например, если учебный шифр 13 – СМТ – 7, студент выполняет вариант № 7.

Если учебный шифр 13 – СМТ – 32, номер варианта получится 32 – 20 = 12.

Если учебный шифр 13 – СМТ – 41, номер варианта получится 41 – 2 х20 = 1 и т. д.

Задание 1. Формат А3, масштаб 1:1.

Перечертить два вида предмета, построить вид слева, выполнить рациональные разрезы. Проставить размеры. Выполнить аксонометрию с вырезом передней четверти.

Рис. 17, варианты задания в Приложении А.

Задание 2. Формат А3, масштаб 1:1.

Перечертить два вида предмета, построить вид слева, выполнить ступенчатый разрез указанными плоскостями. Проставить размеры.

Пример выполнения задания приведен на Рис. 18 варианты задания в Приложении Б

Задание 3. Формат А3, масштаб 1:1

По наглядному изображению вала выполнить его чертеж, который должен содержать главный вид (направление взгляда показано стрелкой А), три сечения указанными плоскостями и другие изображения, необходимые для прочтения конструкции вала. Нанести размеры.

Пример выполнения задания приведен на Рис. 23, варианты задания в Приложении В.

ПРИЛОЖЕНИЯ

Приложение А Варианты задания "Простые разрезы"

Приложение Б Варианты задания "Сложные разрезы"


Приложение Д Варианты задания "Сечения"





















Литература

1. ЕСКД. Общие правила выполнения чертежей. ГОСТ 2.301-68-2.321-84. – М., 1991. –237 с.

2. Инженерная графика: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений /Фролов С.А., Бубенников А.В., Левицкий В.С., Овчинникова И.С. – М.: Высшая школа, 1982. – 80 с.

3. Окунцова Е.А. Проекционное черчение: Учебное пособие. – Новосибирск: Западно-Сибирское книжное издательство, 1965. – 119 с.

4. Миронов Б.Г. Сборник заданий по инженерной графике с примерами выполнения чертежей на компьютере: Учебное пособие /Б.Г. Миронов, Д.А.Пяткина, А.А.Пузиков. – 3-е изд., испр. и доп.- М.: Высшая школа, 2004. – 355 с.: ил.

5. Практикум по черчению (Геометрическое и проекционное черчение). Учеб.пособие для студентов пед. институтов по спец. "Черчение и труд" / Е.А. Василенко, Е.П. Гордеева, М.А. Косолапов и др.; Под общ. ред. Е.А. Василенко. – М.: Просвещение, 1982. – 175 с.
Оглавление

1. Изображения в ортогональных проекциях. Основные положения. 3

2.1 Основные виды .. 6

2.2 Дополнительные виды.. 8

2.3 Местные виды.. 9

3. Разрезы.. 10

3.1 Классификация разрезов. Основные определения. 12

3.2 Обозначение разрезов. 13

3.3 Расположение разрезов на чертеже. 14

3.4 Соединение части разреза и части соответствующего вида. 17

3.5 Когда разрезы не обозначаются. 19

3.6 Выбор рациональных разрезов. Примеры выполнения разрезов. 20

4. Сечения. 24

4.1 Классификация сечений. Основные определения. 26

4.2 Симметричные сечения. 26

4.3 Несимметричные сечения. 27

4.4 Особенности выполнения сечений. 28

5. Аксонометрические проекции. 31

5.1 Прямоугольная изометрия. 32

5.2 Прямоугольная диметрия. 34

5.3 Косоугольная фронтальная диметрия. 34

ПРИЛОЖЕНИЯ. 38

Приложение А Варианты задания "Простые разрезы". 38

Приложение Б Варианты задания "Сложные разрезы". 43

Приложение Д Варианты задания "Сечения". 48

Наибольшее распространение получили прямоугольные изометрические проекции, поэтому рассмотрим их более детально.

Положение аксонометрических осей приведено на рис. 70 Ось z" расположена вертикально, а оси х" и у" составляют с осью z" углы по 120°.

Показатели искажения для всех осей одинаковы и равны 0,82(по теории), но для удобства p = k = q = 1.

Для упрощения построений (во избежание лишних пересчетов) выполняют не точную изометрию, а подобно увеличенную - приведенную (практическую). Показатели искажения, равные 0,82, приводят к 1. Коэффициент приведения в этом случае равен 1/0,82»1,22 и приведенная изометрическая проекция получается увеличенной в 1,22 раза по сравнению с точной. Умение строить аксонометрическую проекцию точки является базой для построения аксонометрических проекций любых геометрических образов.
Рассмотрим, например, построение приведенной изометрической проекции треугольника ABC (рис. 71 а ). Для упрощения построений свяжем систему координатных плоскостей с треугольником ABC таким образом, чтобы его вершины оказались расположенными в координатных плоскостях. В данном примере – вершины А и С в плоскости хОу, вершина В в плоскости yOz. Построим аксонометрические оси (рис. 71 б ). Из рис. 71 а видно, что точка А принадлежит оси х (А / принадлежит х / , а А 2 принадлежит х 2). Следовательно, координаты у и z точки А равны нулю, и для построения аксонометрической проекции А" точки А достаточно отложить от О" только координату х точки А. Для построения точки В используют две координаты у и z, для построения точки С х и у.

Рис. 71 Построение плоскости треугольника в прямоугольной изометрии

При построении аксонометрических проекций предметов, имеющих плоскости симметрии, за координатные плоскости принимают плоскости симметрии предметов.

Например, на рис. 72,а за координатные плоскости хОz и yOz приняты плоскости симметрии правильной шестигранной призмы.

Построим приведенную изометрическую проекцию призмы. Построение начнем с нижнего основания призмы, лежащего в плоскости хОу (рис. 72,б). Находим изометрические проекции точек 1 и 2,принадлежащих оси х, и точек 3 и 4,принадлежащих оси у. Через найденные точки 3" и 4"проводим линии, параллельные аксонометрической оси х", и откладываем на них координаты х точек 5,6,7 и 8.Из точек 1", 2", 5", 6", 7", 8"проводим вертикальные линии, параллельные оси z", и откладываем на них отрезки, равные по величине высоте призмы. Соединив найденные точки прямыми, получим приведенную изометрическую проекцию призмы. Можно начать построение и с верхнего основания призмы.

Начнем с того, что определимся с направлением осей в изометрии.

Возьмем для примера не очень сложную деталь. Это параллелепипед 50х60х80мм, имеющий сквозное вертикальное отверстие диаметром 20 мм и сквозное прямоугольное отверстие 50х30мм.

Начнем построение изометрии с вычерчивания верхней грани фигуры. Расчертим на требуемой нам высоте тонкими линиями оси Х и У. Из получившегося центра отложим вдоль оси Х 25 мм (половина от 50) и через эту точку проведем отрезок параллельный оси У длиной 60 мм. Отложим по оси У 30 мм (половина от 60) и через полученную точку проведем отрезок параллельный оси Х длиной 50 мм. Достроим фигуру.

Мы получили верхнюю грань фигуры.

Не хватает только отверстия диаметром 20 мм. Построим это отверстие. В изометрии окружность изображается особым образом - в виде эллипса. Это связано с тем, что мы смотрим на нее под углом. Изображение окружностей на всех трех плоскостях я описал в отдельном уроке , а пока лишь скажу, что в изометрии окружности проецируются в эллипсы с размерами осей a=1,22D и b=0,71D. Эллипсы, обозначающие окружности на горизонтальных плоскостях в изометрии изображаются с осью а расположенной горизонтально, а ось b - вертикально. При этом расстояние между точками расположенными на оси Х или У равно диаметру окружности (смотри размер 20 мм).

Теперь, из трех углов нашей верхней грани начертим вниз вертикальные ребра - по 80 мм и соединим их в нижних точках. Фигура почти полностью начерчена - не хватает только прямоугольного сквозного отверстия.

Чтобы начертить его опустим вспомогательный отрезок 15 мм из центра ребра верхней грани (указан голубым цветом). Через полученную точку проводим отрезок 30 мм параллельный верхней грани (и оси Х). Из крайних точек чертим вертикальные ребра отверстия - по 50 мм. Замыкаем снизу и проводим внутреннее ребро отверстия, оно параллельно оси У.

На этом простая изометрическая проекция может считаться завершенной. Но как правило, в курсе инженерной графики выполняется изометрия с вырезом одной четверти. Чаще всего, это четверть нижняя левая на виде сверху - в этом случае получается наиболее интересный с точки зрения наблюдателя разрез (конечно же все зависит от изначальной правильности компоновки чертежа, но чаще всего это так). На нашем примере эта четверть обозначена красными линиями. Удалим ее.

Как видим из получившегося чертежа, сечения полностью повторяют контур разрезов на видах (смотри соответствие плоскостей обозначенных цифрой 1), но при этом они вычерчены параллельно изометрическим осям. Сечение же второй плоскостью повторяет разрез выполненный на виде слева (в данном примере этот вид мы не чертили).

Надеюсь, этот урок оказался полезным, и построение изометрии вам уже не кажется чем-то совершенно неведомым. Возможно, некоторые шаги придется прочитать по два, а то и по три раза, но в конечном итоге понимание должно будет прийти. Удачи вам в учебе!

Как начертить окружность в изометрии?

Как вы наверняка знаете, при построении изометрии окружность изображается в виде эллипса. Причем вполне конкретного: длина большой оси эллипса AB=1.22*D, а длина малой оси CD=0.71*D (где D - диаметр той самой исходной окружности, которую мы хотим начертить в изометрической проекции). Как начертить эллипс зная длину осей? Об этом я рассказывал в отдельном уроке . Там рассматривалось построение больших эллипсов. Если же исходная окружность имеет диаметр где-то до 60-80 мм, то скорее всего мы сможем начертить ее и без лишних построений, используя 8 опорных точек. Рассмотрим следующий рисунок:

Это фрагмент изометрии детали, полный чертеж которой можно увидеть ниже. Но сейчас мы говорим о построении эллипса в изометрии. На данном рисунке AB - большая ось эллипса (коэффициент 1.22), CD - малая ось (коэффициент 0.71). На рисунке половина короткой оси (ОD) попала в вырезанную четверть и отсутствует - используется полуось СО (не забудьте об этом, когда будете откладывать значения по короткой оси - полуось - имеет длину равную половине короткой оси). Итак, мы уже имеем 4 (3) точки. Теперь отложим по двум оставшимся изометрическим осям точки 1,2,3 и 4 - на расстоянии равном радиусу исходной окружности (таким образом 12=34=D). Через полученные восемь точек уже можно провести достаточно ровный эллипс, либо аккуратно от руки, либо по лекалу.

Для лучшего понимания направления осей эллипсов в зависимости от того, какое направление имеет циллиндр, рассмотрим три разных отверстия в детали, имеющей форму параллелепипеда. Отверстие - тот же цилиндр, только из воздуха:) Но для нас это особого значения не имеет. Полагаю, что ориентируясь на эти примеры вы без труда сможете правильно расположить оси своих эллипсов. Если же обобщить, то получится так: большая ось эллипса перпендикулярна той оси, вокруг которой образован цилиндр (конус).