Платоновы тела в многомерной медицине. Построение графических примитивов

Стахов А.П.

«Код да Винчи», Платоновы и Архимедовы тела, квазикристаллы, фуллерены, решетки Пенроуза и художественный мир Матюшки Тейи Крашек

Аннотация

Творчество словенской художницы Матюшки Тейи Крашек мало известно русскоязычному читателю. В то же время на Западе ее называют «Восточно-европейским Эшером» и «Словенским подарком» мировому культурному сообществу. Ее художественные композиции навеяны новейшими научными открытиями (фуллеренами, квазикристаллами Дана Шехтмана, плитками Пенроуза), которые, в свою очередь, основаны на правильных и полуправильных многоугольниках (телах Платона и Архимеда), Золотом Сечении и числах Фибоначчи.

Что такое «Код да Винчи»?

Наверняка каждый человек не раз задумывался над вопросом, почему Природа способна создавать такие удивительные гармоничные структуры, которые восхищают и радуют глаз. Почему художники, поэты, композиторы, архитекторы создают восхитительные произведения искусства из столетия в столетие. В чем же секрет их Гармонии и какие законы лежат в основе этих гармоничных созданий?

Поиски этих законов, «Законов Гармонии Мироздания», начались еще в античной науке. Именно в этот период человеческой истории ученые приходят к ряду удивительных открытий, которые пронизывают всю историю науки. Первым из них по праву считается чудесная математическая пропорция, выражающая Гармонию. Ее называют по-разному: «золотая пропорция», «золотое число», «золотое среднее», «золотое сечение» и даже «божественная пропорция». Золотое Сечение называется также числом PHI в честь великого древнегреческого скульптора Фидия (Phidius), который использовал это число в своих скульптурах.

Триллер «Код да Винчи», написанный популярным английским писателем Дэном Брауном, стал бестселлером 21-го века. Но что означает «Код да Винчи»? Существуют различные ответы на этот вопрос. Известно, что знаменитое «Золотое Сечение» было предметом пристального внимания и увлечения Леонардо да Винчи. Более того, само название «Золотое Сечение» было введено в европейскую культуру именно Леонардо да Винчи. По инициативе Леонардо знаменитый итальянский математик и ученый монах Лука Пачоли, друг и научный советник Леонардо да Винчи, опубликовал книгу «Divina Proportione», первое в мировой литературе математическое сочинение о Золотом Сечении, которое автор назвал «Божественной пропорцией». Известно также, что сам Леонардо иллюстрировал эту знаменитую книгу, нарисовав к ней 60 замечательных рисунков. Именно эти факты, которые не очень известны широкой научной общественности, дают право выдвинуть гипотезу о том, что «Код да Винчи» – есть ни что иное, как «Золотое Сечение». И подтверждение этой гипотезе можно найти в лекции для студентов Гарвардского университета, о которой вспоминает главный герой книги «Код да Винчи» проф. Лэнгдон:

«Несмотря на почти мистическое происхождение, число PHI сыграло по-своему уникальную роль. Роль кирпичика в фундаменте построения всего живого на земле. Все растения, животные и даже человеческие существа наделены физическими пропорциями, приблизительно равными корню от соотношения числа PHI к 1. Эта вездесущность PHI в природе... указывает на связь всех живых существ. Раньше считали, что число PHI было предопределено Творцом вселенной. Ученые древности называли одну целую шестьсот восемнадцать тысячных «божественной пропорцией».

Таким образом, знаменитое иррациональное число PHI = 1,618, которое Леонардо да Винчи назвал «Золотым Сечением», и есть «Код да Винчи»!

Другим математическим открытием античной науки являются правильные многогранники , которые получили название «Платоновых тел» и «полуправильные многогранники» , получившие название «Архимедовых тел». Именно эти удивительно красивые пространственные геометрические фигуры лежат в основе двух крупнейших научных открытий 20-го века – квазикристаллов (автор открытия – израильский физик Дан Шехтман) и фуллеренов (Нобелевская премия 1996 г.). Эти два открытия являются наиболее весомыми подтверждениями того факта, что именно Золотая Пропорция является Универсальным Кодом Природы («Кодом да Винчи»), который и лежит в основе Мироздания.

Открытие квазикристаллов и фуллеренов вдохновили многих современных художников на создание произведений, отображающих в художественной форме важнейшие физические открытия 20-го века. Одним из таких художников является словенская художница Матюшка Тейя Крашек. Настоящая статья вводит в художественный мир Матюшки Тейи Крашек сквозь призму новейших научных открытий.

Платоновы тела

Человек проявляет интерес к правильным многоугольникам и многогранникам на протяжении всей своей сознательной деятельности – от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа.

Что такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой – столько же, сколько существует правильных многоугольников. Однако это не так. В «Началах Евклида» мы находим строгое доказательство того, что существует только пять выпуклых правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники , квадраты и пентагоны (правильные пятиугольники) .

Теории многогранников посвящено много книг. Одной из наиболее известных является книга английского математика М. Венниджера «Модели многогранников». В русском переводе эта книга опубликована издательством «Мир» в 1974 г. Эпиграфом к книге выбрано высказывание Бертрана Рассела: «Математика владеет не только истиной, но и высокой красотой – красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».

Книга начинается с описания так называемых правильных многогранников , то есть многогранников, образованных простейшими правильными многоугольниками одного типа. Эти многогранники принято называть Платоновыми телами (Рис. 1), названными так в честь древнегреческого философа Платона, который использовал правильные многогранники в своей космологии.

Рисунок 1. Платоновы тела: (а) октаэдр («Огонь»), (б) гексаэдр или куб («Земля»),

(в) октаэдр («Воздух»), (г) икосаэдр («Вода»), (д) додекаэдр («Вселенский разум»)

Мы начнем наше рассмотрение с правильных многогранников , гранями которых являются равносторонние треугольники. Первый из них – это тетраэдр (Рис.1-а). В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (Рис.1-б). В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями – октаэдр .

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями – икосаэдр (Рис.1-г).

Следующая правильная форма многоугольника – квадрат. Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (Рис. 1-в).

Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника – пентагона . Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (Рис.1-д).

Следующим правильным многоугольником является шестиугольник . Однако если соединить три шестиугольника в одной точке, то мы получим поверхность, то есть из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

Существуют удивительные геометрические связи между всеми правильными многогранниками . Так, например, куб (Рис.1-б) и октаэдр (Рис.1-в) дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны икосаэдр (Рис.1-г) идодекаэдр (Рис.1-д). Тетраэдр (Рис.1-а) дуален сам себе. Додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру, то есть из куба могут быть получены все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен — ведь правильных многоугольников на плоскости бесконечно много!

Числовые характеристики Платоновых тел

Основными числовыми характеристиками Платоновых тел является число сторон грани m, число граней, сходящихся в каждой вершине, m, число граней Г , число вершин В, число ребер Р и число плоских углов У на поверхности многогранника Эйлер открыл и доказал знаменитую формулу

В — Р + Г = 2,

связывающего числа вершин, ребер и граней любого выпуклого многогранника. Указанные выше числовые характеристики приведены в Табл. 1.

Таблица 1

Числовые характеристики Платоновых тел


Многогранник

Число сторон грани, m

Число граней, сходящихся в вершине, n

Число граней

Число вершин

Число ребер

Число плоских углов на поверхности

Тетраэдр

Гексаэдр (куб)

Икосаэдр

Додекаэдр

Золотая пропорция в додекаэдре и икосаэдре

Додекаэдр и двойственный ему икосаэдр (Рис.1-г,д) занимают особое место среди Платоновых тел . Прежде всего необходимо подчеркнуть, что геометрия додекаэдра и икосаэдра непосредственно связана с золотой пропорцией. Действительно, гранями додекаэдра (Рис.1-д) являются пентагоны , т.е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр (Рис.1-г), то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон . Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух Платоновых тел .

Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотая пропорция в икосаэдре и додекаэдре . Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через R i . Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через R m . Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через R c . В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра , имеющего ребро единичной длины, выражается через золотую пропорцию t (Табл.2).

Таблица 2

Золотая пропорция в сферах додекаэдра и икосаэдра

Икосаэдр

Додекаэдр

Заметим, что отношение радиусов = одинаково, как для икосаэдра , так и для додекаэдра . Таким образом, если додекаэдр и икосаэдр имеют одинаковые вписанные сферы, то их описанные сферы также равны между собой. Доказательство этого математического результата дано в Началах Евклида.

В геометрии известны и другие соотношения для додекаэдра и икосаэдра , подтверждающие их связь с золотой пропорцией. Например, если взять икосаэдр и додекаэдр с длиной ребра, равной единице, и вычислить их внешнюю площадь и объем, то они выражаются через золотую пропорцию (Табл.3).

Таблица 3

Золотая пропорция во внешней площади и объеме додекаэдра и икосаэдра

Икосаэдр

Додекаэдр

Внешняя площадь

Таким образом, существует огромное количество соотношений, полученных еще античными математиками, подтверждающих замечательный факт, что именно золотая пропорция является главной пропорцией додекаэдра и икосаэдра , и этот факт является особенно интересным с точки зрения так называемой «додекаэдро-икосаэдрической доктрины», которую мы рассмотрим ниже.

Космология Платона

Рассмотренные выше правильные многогранники получили название Платоновых тел , так как они занимали важное место в философской концепции Платона об устройстве мироздания.

Платон (427-347 годы до н.э.)

Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал Огонь , так как его вершина устремлена вверх; Икосаэдр — Воду , так как он самый «обтекаемый» многогранник; Куб — Землю , как самый «устойчивый» многогранник; Октаэдр — Воздух , как самый «воздушный» многогранник. Пятый многогранник, Додекаэдр , воплощал в себе «все сущее», «Вселенский разум», символизировал все мироздание и считался главной геометрической фигурой мироздания.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь. Атомы «стихий» настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомним, что консонансом называется приятное созвучие. В связи с этими телами уместно будет сказать, что такая система элементов, включавшая четыре элемента — землю, воду, воздух и огонь, — была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества — твердым, жидким, газообразным и плазменным.

Таким образом, представление о «сквозной» гармонии бытия древние греки связывали с ее воплощением в Платоновых телах. Влияние знаменитого греческого мыслителя Платона сказалось и на Началах Евклида. В этой книге, которая на протяжении веков была единственным учебником геометрии, дано описание «идеальных» линий и «идеальных» фигур. Самая «идеальная» линия – прямая , а самый «идеальный» многоугольник – правильный многоугольник, имеющий равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничивать часть плоскости. Интересно, что Начала Евклида начинаются описанием построения правильного треугольника и заканчиваются изучением пяти Платоновых тел. Заметим, что Платоновым телам посвящена заключительная, то есть, 13-я книга Начал Евклида. Кстати, этот факт, то есть размещение теории правильных многогранников в заключительной (то есть как бы самой главной) книге Начал Евклида, дало основание древнегреческому математику Проклу, который был комментатором Евклида, выдвинуть интересную гипотезу об истинных целях, которые преследовал Евклид, создавая свои Начала . Согласно Проклу, Евклид создавал Начала не с целью изложения геометрии как таковой, а чтобы дать полную систематизированную теорию построения «идеальных» фигур, в частности пяти Платоновых тел , попутно осветив некоторые новейшие достижения математики!

Не случайно, что один из авторов открытия фуллеренов, Нобелевский лауреат Гарольд Крото в свой Нобелевской лекции начинает свой рассказ о симметрии как «основе нашего восприятия физического мира» и ее «роли в попытках его всестороннего объяснения» именно с Платоновых тел и «элементов всего сущего»: «Понятие структурной симметрии восходит к античной древности...» Наиболее известные примеры можно, конечно, обнаружить в диалоге «Тимей» Платона, где в разделе 53, относящемся к «Элементам», он пишет: «Во-первых, каждому (!), разумеется, ясно, что огонь и земля, вода и воздух суть тела, а всякое тело - сплошное» (!!) Платон обсуждает проблемы химии на языке этих четырех элементов и связывает их с четырьмя Платоновыми телами (в то время только четырьмя, пока Гиппарх не открыл пятый - додекаэдр). Хотя на первый взгляд такая философия может показаться несколько наивной, она указывает на глубокое понимание того, каким образом в действительности функционирует Природа».

Архимедовы тела

Полуправильные многогранники

Известно еще множество совершенных тел, получивших название полуправильных многогранников илиАрхимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду.

Архимед (287 г. до н.э. – 212 г. до н.э)

Множество Архимедовых тел можно разбить на несколько групп. Первую из них составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Усеченное тело – это тело с отрезанной верхушкой. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками. К примеру, тетраэдр (Рис. 1-а) можно усечь так, что его четыре треугольные грани превратятся в четыре гексагональные, и к ним добавятся четыре правильные треугольные грани. Таким путем могут быть получены пять Архимедовых тел : усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр (Рис. 2).

(а) (б) (в)
(г) (д)

Рисунок 2. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр

В своей Нобелевской лекции американский ученый Смолли, один из авторов экспериментального открытия фуллеренов, говорит об Архимеде (287-212 гг. до н.э.) как о первом исследователе усеченных многогранников, в частности, усеченного икосаэдра , правда, оговариваясь, что возможно Архимед присваивает себе эту заслугу и, возможно, икосаэдры усекали задолго до него. Достаточно упомянуть найденные в Шотландии и датированные около 2000 г. до н.э. сотни каменных предметов (по всей видимости, ритуального назначения) в форме сфер и различных многогранников (тел, ограниченных со всех сторон плоскими гранями ), включая икосаэдры и додекаэдры. Оригинальная работа Архимеда, к сожалению, не сохранилась, и ее результаты дошли до нас, что называется, «из вторых рук». Во времена Возрождения всеАрхимедовы тела одно за другим были «открыты» заново. В конце концов, Кеплер в 1619 г. в своей книге «Мировая гармония» («Harmonice Mundi») дал исчерпывающее описание всего набора архимедовых тел - многогранников, каждая грань которых представляет собой правильный многоугольник , а все вершины находятся в эквивалентном положении (как атомы углерода в молекуле С 60). Архимедовы тела состоят не менее, чем из двух различных типов многоугольников, в отличие от 5 Платоновых тел , все грани которых одинаковы (как в молекуле С 20 , например).

Рисунок 3. Конструирование Архимедового усеченного икосаэдра
из Платонового икосаэдра

Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэдра ? Ответ иллюстрируется с помощью рис. 3. Действительно, как видно из Табл. 1, в любой из 12 вершин икосаэдра сходятся 5 граней. Если у каждой вершины отрезать (отсечь) 12 частей икосаэдра плоскостью, то образуется 12 новых пятиугольных граней. Вместе с уже имеющимися 20 гранями, превратившимися после такого отсечения из треугольных в шестиугольные, они составят 32 грани усеченного икосаэдра. При этом ребер будет 90, а вершин 60.

Другую группу Архимедовых тел составляют два тела, именуемые квазиправильными многогранниками. Частица «квази» подчеркивает, что грани этих многогранников представляют собой правильные многоугольники всего двух типов, причем каждая грань одного типа окружена многоугольниками другого типа. Эти два тела носят название ромбокубооктаэдром и икосододекаэдром (Рис. 4).

Рисунок 5. Архимедовы тела: (а) ромбокубооктаэдр, (б) ромбоикосододекаэдр

Наконец, существуют две так называемые «курносые» модификации – одна для куба (курносый куб ), другая – для додекаэдра (курносый додекаэдр ) (Рис. 6).

(а) (б)

Рисунок 6. Архимедовы тела: (а) курносый куб, (б) курносый додекаэдр

В упомянутой книге Венниджера «Модели многогранников» (1974) читатель может найти 75 различных моделей правильных многогранников. «Теория многогранников, в частности выпуклых многогранников, — одна из самых увлекательных глав геометрии» — таково мнение русского математика Л.А. Люстернака, много сделавшего именно в этой области математики. Развитие этой теории связано с именами выдающихся ученых. Большой вклад в развитие теории многогранников внес Иоганн Кеплер (1571-1630). В свое время он написал этюд «О снежинке», в котором высказал такое замечание: «Среди правильных тел самое первое, начало и прародитель остальных – куб, а его, если позволительно так сказать, супруга – октаэдр, ибо у октаэдра столько углов, сколько у куба граней». Кеплер первым опубликовал полный список тринадцати Архимедовых тел и дал им те названия, под которыми они известны поныне.

Кеплер первым начал изучать так называемые звездчатые многогранники, которые в отличие от Платоновых и Архимедовых тел являются правильными выпуклыми многогранниками. В начале прошлого столетия французский математик и механик Л. Пуансо (1777-1859), геометрические работы которого относятся к звездчатым многогранникам, в развитие работ Кеплера открыл существование еще двух видов правильных невыпуклых многогранников. Итак, благодаря работам Кеплера и Пуансо стали известными четыре типа таких фигур (Рис.7). В 1812 г. О. Коши доказал, что других правильных звездчатых многогранников не существует.

Рисунок 7. Правильные звездчатые многогранники (тела Пуансо)

У многих читателей может возникнуть вопрос: «А зачем вообще изучать правильные многогранники? Какая от них польза?». На этот вопрос можно ответить: «А какова польза от музыки или поэзии? Разве все красивое полезно?». Модели многогранников, приведенные на Рис. 1-7, прежде всего, производят на нас эстетическое впечатление и могут использоваться в качестве декоративных украшений. Но на самом деле широкое проявление правильных многогранников в природных структурах послужило причиной огромного интереса к этому разделу геометрии в современной науке.

Тайна Египетского календаря

Что такое календарь?

Русская пословица гласит: «Время – око истории». Все, что существует во Вселенной: Солнце, Земля, звезды, планеты, известные и неизвестные миры, и все, что есть в природе живого и неживого, все имеет пространственно-временное измерение. Время измеряется путем наблюдения периодически повторяющихся процессов определенной длительности.

Еще в глубокой древности люди заметили, что день всегда сменяется ночью, а времена года проходят строгой чередой: за зимой наступает весна, за весной лето, за летом осень. В поисках разгадки этих явлений человек обратил внимание на небесные светила – Солнце, Луну, звезды – и на неукоснительную периодичность их перемещения по небосводу. Это были первые наблюдения, которые предшествовали зарождению одной из самых древних наук – астрономии.

В основу измерения времени астрономия положила движение небесных тел, которое отражает три фактора: вращение Земли вокруг своей оси, обращение Луны вокруг Земли и движение Земли вокруг Солнца. От того, на каком из этих явлений основывается измерение времени, зависят и разные понятия времени. Астрономия знает звездное время, солнечное время, местное время, поясное время, декретное время, атомное время и т.д.

Солнце, как и все остальные светила, участвует в движении по небосводу. Кроме суточного движения, Солнце обладает так называемым годичным движением, а весь путь годичного движения Солнца по небосводу называется эклиптикой. Если, например, заметить расположение созвездий в какой-нибудь определенный вечерний час, а затем повторять это наблюдение через каждый месяц, то перед нами предстанет иная картина неба. Вид звездного неба изменяется непрерывно: каждому времени года свойственна своя картина вечерних созвездий и каждая такая картина через год повторяется. Следовательно, по истечении года Солнце относительно звезд возвращается на прежнее место.

Для удобства ориентировки в звездном мире астрономы разделили весь небосвод на 88 созвездий. Каждое из них имеет свое наименование. Из 88 созвездий особое место в астрономии занимают те, через которые проходит эклиптика. Эти созвездия, кроме собственных имен, имеют еще обобщенное название – зодиакальные (от греческого слова «zoop» — животное), а также широко известные во всем мире символы (знаки) и разнообразные аллегорические изображения, вошедшие в календарные системы.

Известно, что в процессе перемещения по эклиптике Солнце пересекает 13 созвездий. Однако астрономы сочли нужным разделить путь Солнца не на 13, а на 12 частей, объединив созвездия Скорпион и Змееносец в единое — под общим названием Скорпион (почему?).

Проблемами измерения времени занимается специальная наука, называемая хронологией. Она лежит в основе всех календарных систем, созданных человечеством. Создание календарей в древности являлось одной из важнейших задач астрономии.

Что же такое «календарь» и какие существуют системы календарей ? Слово календарь происходит от латинского слова calendarium , что буквально означает «долговая книга»; в таких книгах указывались первые дни каждого месяца –календы, в которые в Древнем Риме должники платили проценты.

С древнейших времен в странах Восточной и Юго-Восточной Азии при составлении календарей большое значение придавали периодичности движения Солнца, Луны, а также Юпитера и Сатурна , двух гигантских планет Солнечной системы. Есть основание предполагать, что идея создания юпитерианского календаря с небесной символикой 12-летнего животного цикла связана с вращением Юпитера вокруг Солнца, который делает полный оборот вокруг Солнца примерно за 12 лет (11,862 года). С другой стороны вторая гигантская планета Солнечной системы – Сатурн делает полный оборот вокруг Солнца примерно за 30 лет (29, 458 года). Желая согласовать циклы движения гигантских планет, древние китайцы пришли к идее введения 60-летнего цикла Солнечной системы. В течение этого цикла Сатурн делает 2 полных обороты вокруг Солнца, а Юпитер — 5 оборотов.

При создании годичных календарей используются астрономические явления: смена дня и ночи, изменение лунных фаз и смена времен года. Использование различных астрономических явлений привело к созданию у различных народов трех типов календарей: лунные, основанные на движении Луны, солнечные, основанные на движении Солнца, и лунно-солнечные.

Структура египетского календаря

Одним из первых солнечных календарей был египетский , созданный в 4-м тысячелетии до н.э. Первоначально египетский календарный год состоял из 360 дней. Год делился на 12 месяцев ровно по 30 дней в каждом. Однако позже было обнаружено, что такая длительность календарного года не соответствует астрономическому. И тогда египтяне добавили к календарному году еще 5 дней, которые однако не были днями месяцев. Это были 5 праздничных дней, соединявших соседние календарные годы. Таким образом, египетский календарный год имел следующую структуру: 365 = 12ґ 30 + 5. Заметим, что именно египетский календарь является прообразом современного календаря.

Возникает вопрос: почему египтяне разделили календарный год на 12 месяцев? Ведь существовали календари с другим количеством месяцев в году. Например, в календаре майя год состоял из 18 месяцев по 20 дней в месяце. Следующий вопрос, касающийся египетского календаря: почему каждый месяц имел ровно 30 дней (точнее суток)? Можно поставить некоторые вопросы и по поводу египетской системы измерения времени, в частности по поводу выбора таких единиц времени, как час, минута, секунда. В частности, возникает вопрос: почему единица часа была выбрана таким образом, чтобы она ровно 24 раза укладывалась в сутки, то есть, почему 1 сутки = 24 (2ґ 12) часа? Далее: почему 1 час = 60 минут, а 1 минута = 60 секунд? Эти же вопросы относятся и к выбору единиц угловых величин, в частности: почему окружность разбита на 360° , то есть, почему 2p =360° =12ґ 30° ? К этим вопросам добавляются и другие, в частности: почему астрономы признали целесообразным считать, что существует 12 зодиакальных знаков, хотя на самом деле в процессе своего движения по эклиптике Солнце пересекает 13 созвездий? И еще один «странный» вопрос: почему вавилонская система счисления имела весьма необычное основание – число 60?

Связь египетского календаря с числовыми характеристиками додекаэдра

Анализируя египетский календарь, а также египетские системы измерения времени и угловых величин, мы обнаруживаем, что в них с удивительным постоянством повторяются четыре числа: 12, 30, 60 и производное от них число 360 = 12ґ 30. Возникает вопрос: не существует ли какой-то фундаментальной научной идеи, которая могла бы дать простое и логичное объяснение использованию этих чисел в египетских системах?

Для ответа на это вопрос еще раз обратимся к додекаэдру , изображенному на Рис. 1-д. Напомним, что все геометрические соотношения додекаэдра основаны на золотой пропорции.

Знали ли египтяне додекаэдр? Историки математики признают, что древние египтяне обладали сведениями о правильных многогранниках. Но знали ли они все пять правильных многогранников, в частности додекаэдр и икосаэдр , как наиболее сложные из них? Древнегреческий математик Прокл приписывает построение правильных многогранников Пифагору. Но ведь многие математические теоремы и результаты (в частности Теорему Пифагора ) Пифагор позаимствовал у древних египтян в период своей весьма длительной «командировки» в Египет (по некоторым сведениям Пифагор прожил в Египте в течение 22 лет!). Поэтому мы можем предположить, что знание о правильных многогранниках Пифагор, возможно, также позаимствовал у древних египтян (а возможно, у древних вавилонян, потому что согласно легенде Пифагор прожил в древнем Вавилоне 12 лет). Но существуют и другие, более веские доказательства того, что египтяне владели информацией о всех пяти правильных многогранниках. В частности, в Британском Музее хранится игральная кость эпохи Птоломеев, имеющая форму икосаэдра , то есть «Платонового тела», дуального додекаэдру . Все эти факты дают нам право выдвинуть гипотезу о том, что египтянам был известен додекаэдр. И если это так, то из этой гипотезы вытекает весьма стройная система, позволяющая дать объяснение происхождению египетского календаря, а заодно и происхождению египетской системы измерения временных интервалов и геометрических углов.

Ранее мы установили, что додекаэдр имеет 12 граней, 30 ребер и 60 плоских углов на своей поверхности (Табл. 1). Если исходить из гипотезы, что египтяне знали додекаэдр и его числовые характеристики 12, 30. 60, то каково же было их удивление, когда они обнаружили, что этими же числами выражаются циклы Солнечной системы, а именно, 12-летний цикл Юпитера, 30-летний цикл Сатурна и, наконец, 60-летний цикл Солнечной системы. Таким образом, между такой совершенной пространственной фигурой, как додекаэдр , и Солнечной системой, существует глубокая математическая связь! Такой вывод сделали античные ученые. Это и привело к тому, что додекаэдр был принят в качестве «главной фигуры», которая символизировала Гармонию Мироздания . И тогда египтяне решили, что все их главные системы (календарная система, система измерения времени, система измерения углов) должны соответствовать числовым параметрам додекаэдра ! Поскольку по представлению древних движение Солнца по эклиптике имело строго круговой характер, то, выбрав 12 знаков Зодиака, дуговое расстояние между которыми равнялось ровно 30° , египтяне удивительно красиво согласовали годичное движение Солнца по эклиптике со структурой своего календарного года: один месяц соответствовал перемещению Солнца по эклиптике между двумя соседними знаками Зодиака! Более того, перемещение Солнца на один градус соответствовало одному дню в египетском календарном году! При этом эклиптика автоматически получалась разделенной на 360° . Разделив каждые сутки на две части, следуя додекаэдру, египтяне затем каждую половину суток разделили на 12 частей (12 граней додекаэдра ) и тем самым ввели час – важнейшую единицу времени. Разделив один час на 60 минут (60 плоских углов на поверхности додекаэдра ), египтяне таким путем ввели минуту – следующую важную единицу времени. Точно также они ввели секунду – наиболее мелкую на тот период единицу времени.

Таким образом, выбрав додекаэдр в качестве главной «гармонической» фигуры мироздания, и строго следуя числовым характеристикам додекаэдра 12, 30, 60, египтянам удалось построить чрезвычайно стройный календарь, а также системы измерения времени и угловых величин. Эти системы полностью согласовывалась с их «Теорией Гармонии», основанной на золотой пропорции, поскольку именно эта пропорция лежит в основе додекаэдра .

Вот такие удивительные выводы вытекают из сопоставления додекаэдра с Солнечной системой. И если наша гипотеза правильна (пусть кто-нибудь попытается ее опровергнуть), то отсюда следует, что вот уже много тысячелетий человечество живет под знаком золотого сечения ! И каждый раз, когда мы смотрим на циферблат наших часов, который также построен на использовании числовых характеристик додекаэдра 12, 30 и 60, мы прикасаемся к главной «Тайне Мироздания» — золотому сечению, сами того не подозревая!

Квазикристаллы Дана Шехтмана

12 ноября 1984 г. в небольшой статье, опубликованной в авторитетном журнале «Physical Review Letters» израильским физиком Даном Шехтманом, было предъявлено экспериментальное доказательство существования металлического сплава с исключительными свойствами. При исследовании методами электронной дифракции этот сплав проявил все признаки кристалла. Его дифракционная картина составлена из ярких и регулярно расположенных точек, совсем как у кристалла. Однако эта картина характеризуется наличием «икосаэдрической» или «пентангональной» симметрии, строго запрещенной в кристалле из геометрических соображений. Такие необычные сплавы были названы квазикристаллами. Менее чем за год были открыты многие другие сплавы подобного типа. Их было так много, что квазикристаллическое состояние оказалось намного более распространенным, чем это можно было бы представить.

Израильский физик Дан Шехтман

Понятие квазикристалла представляет фундаментальный интерес, потому что оно обобщает и завершает определение кристалла. Теория, основанная на этом понятии, заменяет извечную идею о «структурной единице, повторяемой в пространстве строго периодическим образом», ключевым понятием дальнего порядка. Как подчеркивается в статье «Квазикристаллы» известного физика Д Гратиа, «это понятие привело к расширению кристаллографии, вновь открытые богатства которой мы только начинаем изучать. Его значение в мире минералов можно поставить в один ряд с добавлением понятия иррациональных чисел к рациональным в математике».

Что же такое квазикристалл? Каковы его свойства и как его можно описать? Как упоминалось выше, согласно основному закону кристаллографии на структуру кристалла накладываются строгие ограничения. Согласно классическим представлениям, кристалл составляется ad infinitum из единственной ячейки, которая должна плотно (грань к грани) «устилать» всю плоскость без каких-либо ограничений.

Как известно, плотное заполнение плоскости может быть осуществлено с помощью треугольников (Рис.7-а), квадратов (Рис.7-б) и шестиугольников (Рис.7-г). С помощью пятиугольников (пентагонов ) такое заполнение невозможно (Рис.7-в).

а) б) в) г)

Рисунок 7. Плотное заполнение плоскости может быть осуществлено с помощью треугольников (а), квадратов (б) и шестиугольников (г)

Таковы были каноны традиционной кристаллографии, которые существовали до открытия необычного сплава алюминия и марганца, названного квазикристаллом. Такой сплав образуется при сверхбыстром охлаждении расплава со скоростью 10 6 К в секунду. При этом при дифракционном исследовании такого сплава на экране упорядоченная картина, характерная для симметрии икосаэдра, обладающего знаменитыми запрещенными осями симметрии 5-го порядка.

Несколько научных групп во всем мире на протяжении нескольких последующих лет изучили этот необычный сплав посредством электронной микроскопии высокого разрешения. Все они подтвердили идеальную однородность вещества, в котором симметрия 5-го порядка сохранялась в макроскопических областях с размерами, близкими к размерам атомов (несколько десятков нанометров).

Согласно современным воззрениям разработана следующая модель получения кристаллической структуры квазикристалла. В основе этой модели лежит понятие «базового элемента». Согласно этой модели, внутренний икосаэдр из атомов алюминия окружен внешним икосаэдром из атомов марганца. Икосаэдры связаны октаэдрами из атомов марганца. В «базовом элементе» имеется 42 атома алюминия и 12 атомов марганца. В процессе затвердевания происходит быстрое формирование «базовых элементов», которые быстро соединяются между собой жесткими октаэдрическими «мостиками». Напомним, что гранями икосаэдра являются равносторонние треугольники. Чтобы образовался октаэдрический мостик из марганца, необходимо, чтобы два таких треугольника (по одному в каждой ячейку) приблизились достаточно близко друг к другу и выстроились параллельно. В результате такого физического процесса и образуется квазикристалличсеская структура с «икосаэдрической» симметрией.

В последние десятилетия было открыто много типов квазикристаллических сплавов. Кроме имеющих «икосаэдрическую» симметрию (5-го порядка) существуют также сплавы с декагональной симметрией (10-го порядка) и додекагональной симметрией (12-го порядка). Физические свойства квазикристаллов начали исследовать лишь недавно.

Каково же практическое значение открытия квазикристаллов? Как отмечается в упомянутой выше статье Гратиа, «механическая прочность квазикристаллических сплавов резко возрастает; отсутствие периодичности приводит к замедлению распространения дислокаций по сравнению с обычными металлами … Это свойство имеет большое прикладное значение: применение икосаэдрической фазы позволит получить легкие и очень прочные сплавы внедрением мелких частиц квазикристаллов в алюминиевую матрицу».

В чем же состоит методологическое значение открытия квазикристаллов? Прежде всего, открытие квазикристаллов является моментом великого торжества «додекаэдро-икосаэдрической доктрины», которая пронизывает всю историю естествознания и является источником глубоких и полезных научных идей. Во-вторых, квазикристаллы разрушили традиционное представление о непреодолимом водоразделе между миром минералов, в котором «пентагональная» симметрия была запрещена, и миром живой природы, где «пентагональная» симметрия является одной из наиболее распространенных. И не следует забывать, что главной пропорцией икосаэдра является «золотая пропорция». И открытие квазикристаллов является еще одним научным подтверждением, что, возможно, именно «золотая пропорция», проявляющая себя как в мире живой природы, так и в мире минералов, является главной пропорцией Мироздания.

Плитки Пенроуза

Когда Дан Шехтман привел экспериментальное доказательство существования квазикристаллов, обладающих икосаэдрическиой симметрией , физики в поисках теоретического объяснения феномена квазикристаллов, обратили внимание на математическое открытие, сделанное на 10 лет раньше английским математиком Роджером Пенроузом. В качестве «плоского аналога» квазикристаллов были выбраны плитки Пенроуза , представляющие собой апериодические регулярные структуры, образованные «толстыми» и «тонкими» ромбами, подчиняющиеся пропорции «золотого сечения». Именно плитки Пенроуза были взяты на вооружение кристаллографами для объяснения феномена квазикристаллов . При этом роль ромбов Пенроуза в пространстве трех измерений начали играть икосаэдры , с помощью которых и осуществляется плотное заполнение трехмерного пространства.

Рассмотрим еще раз внимательно пентагон на Рис. 8.

Рисунок 8. Пентагон

После проведения в нем диагоналей исходный пентагон может быть представлен как совокупность трех типов геометрических фигур. В центре находится новый пентагон, образуемый точками пересечения диагоналей. Кроме того пентагон на Рис. 8 включает в себя пять равнобедренных треугольников, окрашенных в желтый цвет, и пять равнобедренных треугольников, окрашенных в красный цвет. Желтые треугольники являются «золотыми», так как отношение бедра к основанию равно золотой пропорции; они имеют острые углы в 36° при вершине и острые углы в 72° при основании. Красные треугольники также являются «золотыми», так как отношение бедра к основанию равно золотой пропорции; они имеют тупой угол в 108° при вершине и острые углы в 36° при основании.

А теперь соединим два желтых треугольника и два красных треугольника их основаниями. В результате мы получим два «золотых» ромба . Первый из них (желтый) имеет острый угол в 36° и тупой угол в 144° (Рис. 9).

(а) (б)

Рисунок 9. « Золотые» ромбы: а) «тонкий» ромб; (б) «толстый» ромб

Ромб на Рис. 9-а будем называть тонким ромбом, а ромб на Рис. 9-б – толстым ромбом.

Английский математик и физик Роджерс Пенроуз использовал «золотые» ромбы на Рис. 9 для конструирования «золотого» паркета, который был назван плитками Пенроуза. Плитки Пенроуза представляют собой комбинацию толстых и тонких ромбов, показанную на Рис. 10.

Рисунок 10. Плитки Пенроуза

Важно подчеркнуть, что плитки Пенроуза имеют «пентагональную» симметрию или симметрию 5-го порядка, а отношение числа толстых ромбов к тонким стремится к золотой пропорции!

Фуллерены

А теперь расскажем еще об одном выдающемся современном открытии в области химии. Это открытие было сделано в 1985 г., то есть, несколькими годами позже квазикристаллов. Речь идет о так называемых «фуллеренах». Термином «фуллерены» называют замкнутые молекулы типа С 60 , С 70 , С 76 , С 84 , в которых все атомы углерода находятся на сферической или сфероидальной поверхности. В этих молекулах атомы углерода расположены в вершинах правильных шестиугольников или пятиугольников, которые покрывают поверхность сферы или сфероида. Центральное место среди фуллеренов занимает молекула С 60 , которая характеризуется наибольшей симметрией и как следствие наибольшей стабильностью. В этой молекуле, напоминающей покрышку футбольного мяча и имеющую структуру правильного усеченного икосаэдра (Рис.2-д и Рис.3), атомы углерода располагаются на сферической поверхности в вершинах 20 правильных шестиугольников и 12 правильных пятиугольников так что каждый шестиугольник граничит с тремя шестиугольниками и тремя пятиугольниками, а каждый пятиугольник граничит с шестиугольниками.

Термин «фуллерен» берет свое начало от имени американского архитектора Бакминстера Фуллера, который, оказывается использовал такие структуры при конструировании куполов зданий (еще одно применение усеченного икосаэдра!).

«Фуллерены» по существу представляют собой «рукотворные» структуры, вытекающие из фундаментальных физических исследований. Впервые они были синтезированы в учеными Г. Крото и Р. Смолли (получившими в 1996 г. Нобелевскую премию за это открытие). Но в их неожиданно обнаружили в породах докембрийского периода , то есть фуллерены оказались не только «рукотворными», но природными образованиями. Сейчас фуллерены интенсивно изучают в лабораториях разных стран, пытаясь установить условия их образования, структуру, свойства и возможные сферы применения. Наиболее полно изученный представитель семейства фуллеренов - фуллерен-60 (C 60) (его называют иногда бакминстер-фуллерен. Известны также фуллерены C 70 и C 84 . Фуллерен С 60 получают испарением графита в атмосфере гелия. При этом образуется мелкодисперсный, похожий на сажу порошок, содержащий 10% углерода; при растворении в бензоле порошок дает раствор красного цвета, из которого и выращивают кристаллы С 60 . Фуллерены обладают необычными химическими и физическими свойствами. Так, при высоком давлении С 60 становится твердым, как алмаз. Его молекулы образуют кристаллическую структуру, как бы состоящую из идеально гладких шаров, свободно вращающихся в гранецентрированной кубической решетке. Благодаря этому свойству C 60 можно использовать в качестве твердой смазки. Фуллерены обладают также магнитными и сверхпроводящими свойствами.

Российские ученые А.В. Елецкий и Б.М. Смирнов в своей статье «Фуллерены», опубликованной в журнале «Успехи физических наук» (1993, том 163, №2), отмечают, что «фуллерены, существование которых было установлено в середине 80-х, а эффективная технология выделения которых была разработана в 1990 г., в настоящее время стали предметом интенсивных исследований десятков научных групп. За результатами этих исследований пристально наблюдают прикладные фирмы. Поскольку эта модификация углерода преподнесла ученым целый ряд сюрпризов, было бы неразумным обсуждать прогнозы и возможные последствия изучения фуллеренов в ближайшее десятилетие, но следует быть готовым к новым неожиданностям».

Художественный мир словенской художницы Матюшки Тейи Крашек

Матюшка Тейя Крашек (Matjuska Teja Krasek) получила степень бакалавра живописи в Колледже визуальных искусств (Любляна, Словения) и является свободным художником. Живет и работает в Любляне. Ее теоретическая и практическая работа фокусируется на симметрии как связующей концепции между искусством и наукой. Ее художественные работы представлялись на многих международных выставках и опубликованы в международных журналах (Leonardo Journal, Leonardo on-line).

М.Т. Крашек на своей выставке ‘Kaleidoscopic Fragrances’, Любляна, 2005

Художественное творчество Матюшки Тейи Крашек связано с различными видами симметрии, плитками и ромбами Пенроуза, квазикристаллами, золотым сечением как главным элементом симметрии, числами Фибоначчи и др. С помощью рефлексии, воображения и интуиции она пытается подобрать новые отношения, новые уровни структуры, новые и различные виды порядка в этих элементах и структурах. В своих работах она широко использует компьютерную графику как весьма полезное средство для создания художественных работ, которое является связующим звеном между наукой, математикой и искусством.

На Рис. 11 приведена композиция Т.М. Крашек, связанная с числами Фибоначчи. Если мы выберем одно из чисел Фибоначчи (например, 21 см) для длины стороны ромба Пенроуза в этой ощутимо нестабильной композиции, мы можем наблюдать, как длины некоторых отрезков в композиции образуют последовательность Фибоначчи.

Рисунок 11. Матюшка Тейя Крашек «Числа Фибоначчи», холст, 1998.

Большое количество художественных композиций художницы посвящено квазикристаллам Шехтмана и решеткам Пенроуза (Рис. 12).

(а) (б)
(в) (г)

Рисунок 12. Мир Тейи Крашек: (а) Мир квазикристаллов. Компьютерная графика, 1996.
(б) Звезды. Компьютерная графика, 1998 (в) 10/5. Холст, 1998 (г) Квазикуб. Холст, 1999

В композиции Матюшки Тейи Крашек и Клиффорда Пиковера «Биогенезис», 2005 (Рис. 13) представлен декагон, состоящий из ромбов Пенроуза. Можно наблюдать отношения между ромбами Петроуза; каждые два соседние ромба Пенроуза образуют пентагональную звезду.

Рисунок 13. Матюшка Тейя Крашек и Клиффорд Пиковер. Биогенезис, 2005.

В картине Double Star GA (Рис. 14) мы видим, как сочетаются плитки Пенроуза, чтобы сформировать двумерное представление потенциально гиперпространственного объекта c десятиугольным основанием. При изображении картины художница использовала метод жестких ребер, предложенный Леонардо да Винчи. Именно такой способ изображения позволяет увидеть в проекции картины на плоскость большое число пентагонов и пентаклов, которые образуются проекциями отдельных ребер ромбов Пенроуза. Кроме того, в проекции картины на плоскость мы видим декагон, образованный ребрами 10 смежных ромбов Пенроуза. По существу в этой картине Матюшка Тейи Крашек нашла новый правильный многогранник, который вполне возможно реально существует в природе.

Рисунок 14. Матюшка Тейа Крашек. Double Star GA

В композиции Крашек «Stars for Donald» (Рис. 15) мы можем наблюдать бесконечное взаимодействие ромбов Пенроуза, пентаграмм, пятиугольников, уменьшающихся к центральной точке композиции. Отношения золотой пропорции представлены многими различными способами в различных шкалах.

Рисунок 15. Матюшка Тейя Крашек «Stars for Donald», компьютерная графика, 2005.

Художественные композиции Матюшки Тейи Крашек привлекли огромное внимание представителей науки и искусства. Ее искусство приравнивают к искусству Маурица Эшера и называют словенскую художницу «Восточно-европейским Эшером» и «Словенским подарком» мировому искусству.

Стахов А.П. «Код да Винчи», Платоновы и Архимедовы тела, квазикристаллы, фуллерены, решетки Пенроуза и художественный мир Матюшки Тейи Крашек // «Академия Тринитаризма», М., Эл № 77-6567, публ.12561, 07.11.2005


Каждый, изучавший священную геометрию или даже просто обычную геометрию, знает, что существуют пять уникальных форм, и для понимания как священной, так и обычной геометрии они являются решающими. Их именуют Платоновыми телами (Рис.6-15>).

Платоново тело определяется некоторыми характеристиками. Прежде всего, все грани его имеют одинаковый размер. Например, куб, самое известное из Платоновых тел, имеет каждой своей гранью квадрат, и все его грани - одинакового размера. Второе, все рёбра Платонового тела имеют одинаковую длину; все рёбра куба – одной длины. Третьее: все внутренние углы между гранями имеют одинаковую величину. В случае куба, этот угол равен 90 градусам. И четвёртое: если Платоново тело поместить внутрь сферы (правильной формы), то все вершины его будут касаться поверхности сферы. Таким определениям, кроме куба (А), отвечают только четыре формы, обладающие всеми этими характеристиками. Вторым будет тетраэдр (В) (тетра означает «четыре») –это полиэдр, имеющий четыре грани, все - равносторонние треугольники, одинаковую длину рёбер и одинаковый угол, и – все вершины касаются поверхности сферы. Другая простая форма – это октаэдр (С) (окта значит «восемь»), все восемь граней представляют собой равносторонние треугольники одинакового размера, длина рёбер и углов одинакова, и все вершины касаются поверхности сферы.

Остальные два Платоновых тела немного сложнее. Один называется икосаэдром (D) - значит, он имеет 20 граней, имеющих вид равносторонних треугольников при одинаковой длине рёбер и углов; все его вершины тоже касаются поверхности сферы. Последний называется пентагональным додeкаэдром (Е) (додэка - это 12), гранями которого являются 12 пентагонов (пятиугольники) при одинаковой длине рёбер и одинаковых углах; все его вершины касаются поверхности сферы.

Если вы – инженер или архитектор, то вы изучали эти пять форм в колледже, хотя бы поверхностно, потому что они являются базовыми структурами.

Их источник: Куб Метатрона

Если вы изучаете священную геометрию, то неважно, какую вы раскроете книгу: она покажет вам пять Платоновых тел, потому что они являются азбукой священной геометрии. Но если вы прочитаете все эти книги – a я прочитал их почти что все – и спросите специалистов: «Откуда берутся Платоновы тела? Каков их источник?», то почти каждый скажет, что он не знает. Дело в том, что происходят эти пять Платоновых тел из первой информационной системы Плода Жизни. Сокрытые в линиях Куба Метатрона (см.
Рис.6-14>), все эти пять форм там существуют. При разглядывании Куба Метатрона вы смотрите на все пять Платоновых тел одновременно. Чтобы увидеть каждое из них лучше, вам нужно проделать заново тот трюк, где вы стирали некоторые из линий. Стерев все линии за исключением нескольких определённых, вы получите этот куб (Рис.6-16 >).

Ну что, видите куб? В действительности, это куб внутри куба. Некоторые из линий проведены пунктиром, потому что они оказываются за передними гранями. Они невидимы, если куб становится сплошным, непрозрачным телом. Вот непрозрачная форма большего куба (Рис.6-16а>). (Убедитесь в том, что вы его видите, потому что увидеть следующие фигуры по мере нашего продвижения будет всё труднее и труднее).

Стирая некоторые линии и соединяя другие центры (
Рис.6-17>), вы получаете два вставленных друг в друга тетраэдра, которые образуют звёздный тетраэдр. Как и в случае с кубом, на самом деле вы получаете два звёздных тетраэдра, один в другом. Вот сплошная форма большего звёздного тетраэдра (Рис.6-17а>).

Рис.6-18> – это октаэдр внутри другого октаэдра, хотя вы смотрите на них под определённым особым углом. Рис.6-18а> – непрозрачная версия большего октаэдра.

Рис.6-19> – один икосаэдр внутри другого, и Рис.6-19а> – непрозрачная версия большего из них. Это становится как-то проще, если вы рассматриваете его таким образом.

Это - трёхмерные объекты, исходящие из тринадцати кругов Плода Жизни.

Это картина Суламифь Вулфинг – Христос-Младенец внутри икосаэдра (
Рис.6-20>), что очень соответствует истине, поскольку икосаэдр, как вы сейчас увидите, представляет воду, а Христос был крещён в воде, начале нового сознания.

Это пятая и последняя форма – два пентагональных додекаэдра, один в другом (Рис.6-21>) (здесь для простоты показан только внутренний додекаэдр).

Рис. 21 – это сплошная форма.

Как мы видели, все пять Платоновых тел могут быть обнаружены в Кубе Метатрона (Рис.6-22>).

Недостающие линии

Когда я искал последнее Платоново тело в Кубе Метатрона, додекаэдр, у меня ушло на это около двадцати лет. После того, как ангелы сказали: «Они все тут внутри», я начал смотреть, но никак не мог найти додэкаедр. Наконец, однажды один ученик сказал мне: «Эй, Друнвало, ты забыл некоторые линии Куба Метатрона.» Когда он показал их, я посмотрел и сказал: «Ты прав, я забыл». Я думал, что я соединил все центры между собой, но некоторые я, оказывается, забыл. Не удивительно, что я не мог найти этот додекаэдр, потому что его определяли эти недостающие линии! Более двадцати лет я был убеждён, что у меня были проведены все линии, в то время, как у меня их не было.

Это одна из больших проблем науки, когда считается, что задача разрешена; затем она двигается дальше и использует эту информацию для дальнейших своих построений. Сейчас, например, наука имеет такого же рода проблему вокруг тел, падающих в вакууме. Всегда считалось, что они падают с одинаковой скоростью, и многое в нашей передовой науке основывается на этом фундаментальном «законе». Было доказано, что это не так, но наука этим всё равно продолжает пользоваться. Вращающийся шар падает значительно быстрее, чем невращающийся. Когда-то наступит день научной расплаты.

Когда я был женат на Макки, она тоже была очень увлечена священной геометрией. Её работа для меня очень интересна, потому что она представляет женский аспект, там действуют пентагональные энергии правого полушария мозга. Она показывает, как эмоции, цвета и формы - все взаимосвязаны. В действительности она нашла додекаэдр в Кубе Метатрона прежде, чем это сделал я. Она взяла его и сделала нечто такое, до чего я бы никогда не додумался. Видите ли, Куб Метатрона обычно рисуется на плоской поверхности, но в самом деле это трёхмерная форма. Так, однажды я держал в руках это трёхмерную форму и пытался найти там додэкаедр, а Макки сказала: «Дай-ка, я взгляну на эту штуку». Она взяла трёхмерную форму и провернула его на угол пропорции f (phi ratio). (О чём мы ещё не говорили, так это то, что пропорция (ratio) Золотой Середины, именуемая также пропорцией f (phi ratio), равняется точно 1,618) . Вращение формы таким образом было чем-то, до чего я бы никогда не додумался. Проделав это, она обрисовала отбрасываемую этой формой тень и получила такое изображение (
Рис.6-23>).

Макки сначала сама создала это, а затем передала мне. Центр тут находится в пентагоне А. Затем, если вы возьмёте пять пентагонов, выходящих из А (пентагоны В) и ещё по одному пентагону, выходящему из каждого из этих пяти (пентагоны С), вы получаете развёрнутый додекаэдр. Я подумал: «Вау, я впервые нахожу тут вообще какой-то додэкаедр .» Она проделала это за три дня. Я никак не мог найти его целых двенадцать лет.

Однажды мы почти целый день провели за разглядыванием этой картинки. Она была потрясающа, потому что все до единой линии на этой картинке соответствуют пропорции Золотой Середины. И всюду тут – трёхмерные прямоугольники Золотой Середины. Один есть в точке Е, где два ромба, сверху и снизу, являются верхом и низом трёхмерного прямоугольника Золотой Середины, а пунктирные линии являются его рёбрами. Это поразительная штука. Я сказал: «Я не знаю, что это такое, но это, вероятно, очень важно». Так, мы отложили это, чтобы поразмыслить потом.

Квази-кристаллы

Позже я узнал о совершенно новой науке. Эта новая наука полностью изменит мир технологии. При использовании новой технологии металлурги наверняка смогут создать металл в десять раз твёрже алмаза, если вы можете себе такое вообразить. Он будет невероятно прочным.

Долгое время при исследовании металлов для того, чтобы увидеть, где расположены атомы, пользовались методом, именуемым рентгеновской дифракцией. Скоро я покажу фотографию рентгеновской дифракции. Обнаружились некие особые модели, определяющие существование только каких-то определённых атомных структур. Казалось, что это-то и всё, что можно узнать, потому что это было всё, что возможно было обнаружить. Это ограничило возможность изготовления металлов.

Затем, в журнале «Scientific American» проходила игра, которая основывалась на модели Пенроуза. Был такой британский математик и релятивист, Роджер Пенроуз (Roger Penrose), вычислявший, как уложить черепицу, плитки которой имеют форму пентагона, так, чтобы она полностью покрывала плоскую поверхность. Полностью покрыть плоскую поверхность черепицей в форме только лишь пентагонов невозможно – заставить это работать нет никакой возможности. Тогда он предложил две формы ромба, являющиеся производными от пентагона, и, используя эти две формы, ему удавалось создать множество различных моделей, покрывающих плоскую поверхность. В восьмидесятых годах журнал «Scientific American» предложил игру, суть которой сводилась к тому, чтобы сложить уже эти данные модели в новые формы; впоследствии это дало возможность учёным-металлургам, наблюдавшим за игрой, предположить существование чего-то нового в физике.

В конце концов, они обнаружили новую модель атомной решётки. Она существовала всегда; они просто её обнаружили. Эти модели решёток теперь именуются квази-кристаллами; это новое явление (1991). Через металлы они вычисляют, какие формы и модели возможны. Учёные находят способы использования этих форм и моделей для изготовления новых металлических изделий. Я готов биться об заклад, что модель, которую получила Макки из Куба Метатрона, является самой замечательной из всех, и что любая модель Пенроуза является её производной. Почему? Потому, что она вся подчинена закону Золотого Сечения, она основная – она произошла непосредственно из основной модели в Кубе Метатрона. Хотя это не моё дело, но когда-нибудь, вероятно, я определю, так ли это. Я вижу, что вместо того, чтобы использовать две модели Пенроуза и пентагон, тут используется только одна из этих моделей и пентагон (Я как раз подумал, что я предложил бы этот вариант). То, что происходит в этой новой науке сейчас, интересно.

Новейшая информация: Согласно данным Девида Эдейра (David Adair), NАSА только что изготовила в космосе металл, который в 500 раз прочнее титана, лёгок, как пена и прозрачен, как стекло. Основан ли он на этих законах?

По мере того, как будут разворачиваться события в этой книге, вы обнаружите, что священная геометрия может в подробностях объяснить любой, какой бы то ни было, предмет. Не существует ни единого явления, которое вы могли бы произнести своим голосом, чтобы оно не могло бы быть описано целиком, полностью и в совершенстве, с учётом всего возможного знания , священной геометрией. (Мы различаем понятия «знание» и «мудрость»: мудрость нуждается в опыте). Однако же, более важная цель этого труда заключается в напомнинании вам того, что вы сами имеете потенциал живого поля Мер-Ка-Ба вокруг своего тела и в том, чтобы научить вас, как его использовать. Я буду постоянно подходить к местам, где я отклоняюсь ко всякого рода корням и ветвям и говорю на всевозможные мыслимые и немыслимые темы. Но я всегда буду возвращаться назад в колею, потому что я веду всё в одном определённом направлении, к Мер-Ка-Ба, световому телу человека.

Много лет я провёл в изучении священной геометрии, и уверен, что можно узнать всё, что вообще узнать возможно, всё что угодно о любом предмете, стоит только сосредоточить своё внимание на сокрытой за этим предметом геометрии. Всё, что необходимо, это компас и линейка – вам даже компьютер не нужен, хотя, он помогает. Всё знание вы уже имеете внутри себя, и всё, что вам нужно сделать, это раскрыть его. Вы просто исследуете карту движения духа в Великой Пустоте, вот и всё. Вы можете разгадать тайну любого предмета.

Подведём итог: первая информационная система выходит из Плода Жизни через Куб Метатрона. Соединением центров всех сфер вы получаете пять фигур – в действительности шесть, потому что ещё есть центральная сфера, с которой всё начиналось. Так, вы имеете шесть первоначальных форм – тетраэдр, куб, октаэдр, икосаэдр, додекаэдр и сфера.

Новейшая информация: В 1998 году мы начинаем развивать ещё одну новую науку: нанотехнологию . Мы создали микроскопические «машины», способные входить внутрь металла или кристаллических матриц и перестраивать атомы. В 1996 или 1997 годах в Европе при использовании нанотехнологии был создан алмаз из графита. Это алмаз размером около трёх футов в поперечнике, и он – настоящий. Когда соединятся наука о квази-кристаллах и нанотехнология, то наше представление о жизни тоже изменится. Взгляните на конец 1800-ых годов по сревнению с сегодняшним днём.

Платоновы тела и Элементы

Такие древние алхимики и великие души, как Пифагор, отец Греции, считали, что каждая из этих шести фигур представляет собой модель соответствующего элемента (Рис.6-24>).

Тетраэдр считался моделью элемента огня, куб – земли, октаэдр – воздуха, икосаэдр – воды, и додекаэдр – эфира. (Эфир, прана и энергия тахиона) – всё это одно и то же; оно распространено всюду и доступно в любой точке пространства/времени/измерения. Это великая тайна технологии нулевой точки. И сфера представляет Пустоту. Эти шесть элементов являются строительными кирпичиками вселенной. Они создают качества вселенной.

В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир или прана, потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно.

Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаедральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Я могу сказать это потому, что человеческое тело является голограммой вселенной и содержит в себе те же самые основы и законы. Двенадцать созвездий зодиака входят сюда же. Додекаэдр есть завершающая фигура геометрии и она очень важна. На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, планами, по которым построена вся жизнь.

Можно соотнести три столбика на этом изображении (Рис.6-24>) с Древом Жизни и тремя первичными энергиями вселенной: мужской (слева), женской (справа) и детской (в центре). Либо же, если вы вникаете непосредственно в структуру вселенной, то имеете протон слева, электрон справа и нейтрон посередине. Этот центральный столбик, который является созидающим, есть младенец. Помните, чтобы начать процесс выхода из Пустоты, мы шли от октаэдра к сфере. Это начало процесса созидания, и обнаруживается оно в младенце, или центральном столбике.

Левый столбик, содержащий тетраэдр и куб, представляет мужскую составляющую сознания, левое полушарие мозга. Гранями этих полигонов являются треугольники или квадраты. Центральный столбик – это мозолистое тело (corpus callosum), соединяющее левую и правую стороны. Правый столбик, содержащий додекаэдр и икосаэдр представляет женскую составляющую сознания, правое полушарие мозга, и грани этих полигонов составлены из треугольников и пентагонов. Таким образом, полигоны слева имеют трёх- и четырёхрёберные грани, а формы справа имеют трёх- и пятирёберные грани.

Говоря языком Земного сознания, правый столбик является недостающей составляющей. Мы создали мужскую (левую) сторону Земного сознания, и теперь, для достижения целостности и равновесия, мы завершаем создание женской составляющей. Правая сторона связана также с Христовым сознанием или сознанием единства. Додекаэдр является основной формой сетки Христова сознания вокруг Земли. Две формы правого столбика представляют собой друг относительно друга то, что именуется парными фигурами, то есть, если вы соедините центры граней додекаэдра прямыми линиями, то получите икосаэдр, если же вы соедините центры икосаэдра, то получите опять додекаэдр. Многие многогранники имеют пары.

Священные 72

В книге Дан Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру. Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК. Уже определено, что в основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи.

Этот угол в 72 градуса, вращающийся в нашей ДНК, связан с планом/назначением Великого Белого Братства. Как вам, быть может, известно, с Великим Белым Братством связано 72 ордена. Многие говорят о 72 ангельских орденах, а Иудеи упоминают 72 названия Бога. Причина, почему именно 72, имеет отношение к строению Платоновых тел, что связано также с сеткой Христова сознания вокруг Земли.

Если взять два тетраэдра и наложить их друг на друга (но в различных положениях), то получится звёздный тетраэдр, который при рассмотрении под определённым углом будет выглядеть никак иначе, как куб (Рис.6-25>). Вы можете увидеть, как они взаимосвязаны. Таким же образом можно сложить вместе пять тетраэдров и получить икосаэдральный колпачок (Рис.6-26).

Если создать двенадцать икосаэдральных колпачков и наложить по одному на каждую грань додекаэдра (на создание додекаэдра потребуется 5 раз 12 или 60 тетраэдров), то это будет звёздный – stellated – додекаэдр, потому что каждая его вершина оказывается точно над центром каждой грани додекаэдра. Парная ему фигура будет составлена из 12 вершин в центре каждой грани додекаэдра и окажется икосаэдром. Эти 60 тетраэдров плюс 12 точек в центрах составят в сумме 72 – опять число орденов, связанных с Белым Братством. Братство в действительности действует через физические взаимоотношения этой звёздной формы додекаэдра/икосаэдра, которая является основой сетки Христова сознания вокруг мира. Иными словами, Братство предпринимает попытки выявления сознания правого полушария мозга планеты.

Первоначальный орден был Альфой и Омегой – Орден Мелхизедек, который был основан Мачивентой Мелхизедек (Machiventa Melchizedek) около 200200 лет назад. С тех пор были основаны другие ордена, всего 71. Самый молодой – это Братство Семи Лучей в Перу/Боливия, семьдесят второй орден.

Каждый из 72 орденов имеет ритм жизни, подобный синусоиде, где некоторые из них проявляются в течение какого-то отрезка времени, затем на некоторое время исчезают. У них есть биоритмы точно также, как имеет их человеческое тело. Цикл Ордена Розенкрейцеров, например, составляет столетие. Они проявляются на сто лет, затем на следующие сто лет исчезают совершенно – они буквально исчезают с лица Земли. Спустя сто лет, они опять появляются в этом мире и действуют в течение следующих ста лет.

Все они находятся в различных циклах и все действуют сообща ради достижения одной цели – вернуть Христово сознание назад на эту планету, чтобы восстановить эту утраченную женскую составляющую сознания и привести к равновесию левое и правое полушарие мозга планеты. Есть другой способ рассмотрения этого явления, коорый действительно необычен. Я к этому подойду, когда мы будем говорить об Англии.

Использование бомб и понимание основной модели творения

Вопрос: Что происходит с элементами, когда взрывают атомную бомбу?

Что касается элементов – они превращаются в энергию и другие элементы. Но дело не только в этом. Имеются бомбы двух видов: распада и расплава - термоядерные. Распад расщепляет материю на части, а термоядерная реакция сплавляет её воедино. Со сплавлением воедино всё в порядке – относительно этого никто не жалуется. Все известные солнца во вселенной представляют собой термоядерные реакторы. Я отдаю себе отчёт в том, что произносимое мною сейчас ещё не признано наукой, но - разрывание материи на части здесь, на Земле, воздействует на соответствующую область во внешнем космосе – как вверху, так и внизу. Иными словами, микрокосмос и макрокосмос взаимосвязаны. Вот почему реакция распада находится вне закона во всей вселенной.

Взрывание атомных бомб вызывает также чудовищное нарушение равновесия на Земле. Например, если принять во внимание, что созидание уравновешивает землю, воздух, огонь, воду и эфир, то атомная бомба становится причиной проявления огромного количества огня на одном месте. Это приводит к нарушению равновесия и Земля должна на это отреагировать.

Если вылить на город 80 биллионов тонн воды, это тоже будет неуравновешенной ситуацией. Если только где-то оказывается слишком много воздуха, слишком много воды, слишком много чего бы то ни было, то это нарушает равновесие. Алхимия есть знание о том, как все эти явления удерживать в равновесии. Если вы понимаете значение этих геометрических фигур и знаете их взаимоотношения, то вы можете создать то, что хотите. Вся идея заключается в понимании лежащей в основе карты . Помните, карта показывает путь, которым дух движется в Пустоте. Если вы знаете лежащую в основе карту, тогда вы обладаете знанием и пониманием, необходимым для сотворчества с Богом.

Рис.6-27> показывает взаимоотношения всех этих фигур. Каждая вершина связана со следующей и все они находятся в определённых математических соотношениях, связанных с пропорцией f (phi ratio).

Многогранники, двойственные архимедовым телам. Как и архимедовых тел, их 13. Ромбододекаэдр … Википедия

Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия

Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией … Википедия

Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия

Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

Полуправильные многогранники в общем случае это различные выпуклые многогранники, имеющие определённые признаки правильных, такие как одинаковость всех граней или являемость всех граней правильными многоугольниками, а также пространственная … Википедия

Или Архимедовы тела выпуклые многогранники, обладающие двумя свойствами: Все грани являются правильными многоугольниками двух или более типов (если все грани правильные многоугольники одного типа, это правильный многогранник); Для любой пары… … Википедия

Тип Правильный многогранник Грань Правильный пятиугольник Граней 12 Рёбер 30 Вершин 20 … Википедия

Анимация Тип Правильный многогранник Грань Правильный треугольник Граней 20 … Википедия

У этого термина существуют и другие значения, см. Куб (значения). Куб Тип Правильный многогранник Грань квадрат … Википедия

Книги

  • Сакральная геометрия, нумерология, музыка, космология, или КВАДРИВИУМ , Мартино Д., Ланди М. и др.. «Всюду познаешь, насколько возможно, единство природы»(«Золотые стихи» Пифагорейцев)«Мир (космос) был создан не для тебя – но ты для него»(Ямвлих, античный философ)Данная иллюстрированная…
  • Волшебные грани, № 11, 2015 , . Создание моделей многогранников из картона очень увлекательное и доступное занятие, это "магия превращения" листа бумаги в объемную фигуру. Самые простые модели многогранников могут быть…

Еще в далекой древности люди заметили, что некоторые объемные фигуры обладают особыми свойствами. Это так называемые правильные многогранники - все грани у них одинаковые, все углы при вершинах равны. Каждая из этих фигур обладает устойчивостью и может быть вписана в сферу. При всем многообразии различных форм существуют всего лишь 5 видов правильных многогранников (рис. 1).

Тетраэдр - правильный четырехгранник, грани представляют собой равносторонние треугольники (рис. 1а).

Куб - правильный шестигранник, грани представляют собой квадраты (рис. 1б).

Октаэдр - правильный восьмигранник, грани представляют собой равносторонние треугольники (рис. 1в).

Додекаэдр - правильный двенадцатигранник, грани представляют собой правильные пятиугольники (рис. 1г).

Икосаэдр - правильный двадцатигранник, грани представляют собой равносторонние треугольники (рис. 1д).

Древнегреческий философ Платон полагал, что каждый из правильных многогранников соответствует одному из 5 первичных элементов. Согласно Платону, куб соответствует земле, тетраэдр - огню, октаэдр - воздуху, икосаэдр - воде, додекаэдр - эфиру. Кроме этого греческие философы выделяли еще один первоэлемент - пустоту. Ему соответствует геометрическая форма сферы, в которую могут быть вписаны все платоновы тела.

Все шесть первоэлементов являются строительными блоками Вселенной. Некоторые из них встречаются часто - земля, вода, огонь и воздух. Сегодня доподлинно известно, что правильные многогранники, или платоновы тела, составляют основу строения кристаллов, молекул различных химических веществ.

Энергетическая оболочка человека также представляет собой пространственную конфигурацию. Внешняя граница энергетического поля человека - сфера, самая близкая к ней фигура додекаэдр. Затем фигуры энергетического поля сменяют друг друга в определенном порядке, повторяясь в разных циклах. Например, в молекуле ДНК чередуются икосаэдры и додекаэдры.

Обнаружено, что платоновы тела способны оказывать благотворное воздействие на человека. Эти формы обладают свойством видоизменять, организовывать энергию в чакрах человеческого тела. Причем каждая кристаллическая форма благотворно воздействует на ту чакру, первоэлементу которой она соответствует.

Дисбаланс энергий в Муладхаре исчезает при использовании куба (элемент земля), Свадхистхана реагирует на воздействие икосаэдра (элемент вода), на Манипуру благотворно влияет тетраэдр (элемент огонь), функции Анахаты восстанавливаются с помощью октаэдра (элемент воздух). Эта же фигура способствует нормальной работе Вишудхи. Обе верхние чакры - Адж-на и Сахасрара - поддаются коррекции додекаэдром.

Для того чтобы использовать свойства платоновых тел, необходимо изготовить из медной проволоки эти фигуры (размер от 10 до 30 см в поперечнике). Можно нарисовать их на бумаге или склеить из картона, но каркасы из медной проволоки действуют эффективнее. Модели платоновых тел нужно прикрепить на проекции соответствующих чакр и полежать немного в глубоком расслаблении.

Правильным многоугольником называется ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Ясно, что таких фигур бесконечно много. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. На первый взгляд может показаться, что многогранников также бесконечно много, но на самом деле их, как выразился однажды Льюис Кэррол, "вызывающе мало". Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр (рис. 90).

Первое систематическое исследование пяти правильных тел было, по-видимому, предпринято еще в глубокой древности пифагорейцами. Согласно их воззрениям, тетраэдр, куб, октаэдр и икосаэдр лежат в основе традиционных четырех элементов: огня, земли, воздуха и воды. Додекаэр пифагорейцы по непонятным соображениям отождествляли со всей вселенной. Поскольку взгляды пифагорейцев подробно изложены в диалоге Платона "Тимей", правильные многогранники принято называть Платоновыми телами. Красота и удивительные математические свойства пяти правильных тел неоднократно привлекали к себе внимание ученых и после Платона. Анализ Платоновых тел является кульминационным пунктом заключительной книги "Элементов" Евклида. Иоганн Кеплер в юности считал, что расстояния между орбитами шести известных в его время планет можно получить, вписывая в определенном порядке пять правильных тел в орбиту Сатурна. В наши дни математики не приписывают Платоновым телам мистических свойств, а изучают свойства симметрии правильных многогранников методами теории групп. Платоновы тела играют заметную роль и в занимательной математике. Рассмотрим, хотя бы бегло, несколько связанных с ними задач.

Существуют четыре различных способа, как разрезать запечатанный конверт и сложить из него тетраэдр. Вот простейший из них. На обеих сторонах конверта у одного и того же края) начертим равносторонний треугольник (рис. 91) и разрежем конверт по пунктирной прямой. Правая его половина нам не нужна, а левую мы перегнем по сторонам нарисованного треугольника (на обеих сторонах конверта) и совместим точки А и В. Тетраэдр готов!

Головоломка, изображенная на рис. 92, также связана с тетраэдром. Развертку, изображенную на рис. 92 слева, можно вырезать из пластика или плотной бумаги. Сделайте две такие развертки. (На чертеже все пунктирные линии, кроме одной, которая заметно длиннее других, имеют одинаковую длину.) Сложим развертку, перегнув ее по указанным на чертеже линиям. Грани, пересекающиеся между собой вдоль ребер, показанных на чертеже сплошной линией, склеим липкой лентой. В результате у нас получится геометрическое тело, показанное на рис. 92 справа. Из двух таких тел нужно попытаться сложить тетраэдр. Один мой знакомый математик любит приставать к своим друзьям с довольно плоской шуткой. Он собирает из двух разверток две модельки, составляет из них тетраэдр и ставит его на стол, а третью развертку незаметно зажимает в руке. Затем ударом руки он расплющивает тетраэдр и в то же время кладет на стол третью развертку. Вполне очевидно, что его друзьям никак не удается собрать тетраэдр из трех блоков.

Из различных занимательных задач, связанных с кубом, я упомяну лишь головоломку с вычислением полного сопротивления электрической цепи, образованной ребрами проволочного куба, и тот удивительный факт, что куб может проходить через отверстие в меньшем кубе. В самом деле, стоит вам взять куб так, чтобы одна из его вершин была направлена прямо на вас, а ребра образовали правильный шестиугольник, как вы увидите, что в сечении, перпендикулярном лучу зрения, есть достаточно места для квадратного отверстия, которое чуть больше грани самого куба. В электрической головоломке речь идет о цепи, изображенной на рис. 93. Сопротивление каждого ребра куба равно одному ому. Чему равно сопротивление всей цепи, если ток течет от А к В? Инженеры-электрики извели немало бумаги, пытаясь решить эту задачу, хотя при надлежащем подходе найти ее решение совсем несложно.

Все пять Платоновых тел использовались в качестве игральных костей. После куба наибольшую популярность приобрели игральные кости в форме октаэдра. Как сделать такую кость, показано на рис. 94. Начертив и вырезав полоску и перенумеровав грани, ее перегибают вдоль ребер, а "открытые" ребра склеивают прозрачной лентой. Получается миниатюрный октаэдр. Сумма очков на противоположных гранях октаэдрической игральной кости, как и у обычной кубической, равна семи. При желании с помощью новой кости вы можете показать забавный фокус с отгадыванием задуманного числа. Попросите кого-нибудь загадать любое число от 0 до 7. Положите октаэдр на стол так, чтобы загадавший мог видеть только грани с цифрами 1, 3, 5 и 7, и спросите, не видит ли он задуманного им числа. Если он отвечает утвердительно, вы запоминаете про себя число 1. Затем вы переворачиваете октаэдр так, чтобы загадавшему были видны грани с цифрами 2, 3, 6 и 7, и снова задаете тот же вопрос. На этот раз утвердительный ответ означает, что вы должны запомнить число 2. В третий (и последний раз) вы повторяете свой вопрос, повернув октаэдр так, чтобы загадавший мог видеть грани с цифрами 4, 5, 6 и 7. Утвердительный ответ в этом случае оценивается числом 4. Сложив оценки всех трех ответов, вы получите задуманное вашим приятелем число. Этот фокус без труда объяснит всякий, кто знаком с двоичной системой счисления. Чтобы легче было отыскать нужные положения октаэдра, как-нибудь пометьте три вершины, которые должны быть обращены к вам, когда вы стоите лицом к зрителю (задумавшему число).

Существуют и другие не менее интересные способы нумерации граней октаэдрической игральной кости. Например, числа от 1 до 8 можно расположить так, что сумма чисел на четырех гранях, сходящихся в общей вершине, будет постоянна. Эта сумма всегда равна 18, однако существует три различных способа нумерации граней (мы не считаем различными кости, которые переходят друг в друга при поворотах и отражениях), удовлетворяющих заданному выше условию.

Изящный способ построения додекаэдра предложен книге Гуго Штейнгауза "Математический калейдоскоп" * . Из плотного картона нужно вырезать две фигуры, показанные на рис. 95. Стороны пятиугольников должны быть около 2,5-3 см. Лезвием ножа осторожно надрежем картон вдоль сторон внутреннего пятиугольника, с тем чтобы развертка легко сгибалась в одну сторону. Подготовив таким же образом вторую развертку, наложим ее на первую так, чтобы выступы второй развертки пришлись против вырезов первой. Придерживая обе развертки рукой, скрепим их резинкой, пропуская ее попеременно то над выступающим концом одной развертки, то под выступающим концом другой. Ослабив давление руки на развертки, вы увидите, как на ваших глазах, словно по волшебству, возникнет додекаэдр.

* (Эта игрушка была приложена лишь к первому изданию книги Г. Штейнгауза . В дальнейших изданиях, в том числе и в русском (1949), ее нет.- Прим. ред. )

Раскрасим модель додекаэдра таким образом, чтобы каждая грань была выкрашена только одним цветом. Чему равно наименьшее число красок, которыми можно раскрасить додекаэдр, если требуется, чтобы любые две смежные грани были разного цвета? Ответ: наименьшее число красок равно четырем. Нетрудно убедиться, что существуют четыре различных способа наиболее экономной раскраски додекаэдра (при этом два раскрашенных додекаэдра будут зеркальными отражениями двух других). Для раскраски тетраэдра также требуется четыре краски, но существует лишь два варианта раскраски, при этом один тетраэдр переходит в другой при зеркальном отражении. Куб можно раскрасить тремя, а октаэдр - двумя красками. Для каждого из этих тел существует лишь один способ наиболее экономной раскраски. Раскрасить икосаэдр можно всего лишь тремя красками, но сделать это можно не менее чем 144 способами. Лишь в 6 из них раскрашенные икосаэдры совпадают со своими зеркальными отражениями.

Рассмотрим еще одну задачу. Предположим, что муха, разгуливая по 12 ребрам икосаэдра, ползает по каждому из них по крайней мере один раз. Каков наименьший путь, который должна проделать муха, чтобы побывать на всех ребрах иксаэдра? Возвращаться в исходную точку не обязательно; некоторые ребра мухе придется пройти дважды (из всех пяти Платоновых тел только октаэдр обладает тем свойством, что его ребра можно обойти, побывав на каждом из них лишь по одному разу). Решению задачи может помочь проекция икосаэдра на плоскость (рис. 96). Только следует иметь в виду, что длина всех ребер одинакова.

Поскольку и поныне встречаются чудаки, все еще пытающиеся найти решение задач о трисекции угла и квадратуре круга, хотя давно уже доказано, что ни то, ни другое невозможно, кажется странным, что никто не предпринимает попыток найти новые правильные многогранники сверх уже известных пяти Платоновых тел. Одна из причин такого парадоксального положения заключается в том, что понять, почему не существует более пяти правильных тел, крайне несложно. Следующее простое доказательство существования не более пяти правильных тел восходит к Евклиду.

Многогранный угол правильного тела должен быть образован по крайней мере тремя гранями. Рассмотрим простейшую из граней: равносторонний треугольник. Многогранный угол можно построить, приложив друг к другу три, четыре или пять таких треугольников. При числе треугольников свыше пяти сумма плоских углов, примыкающих к вершине многогранника, составляет 360° или даже больше, и, следовательно, такие треугольники не могут образовывать многогранный угол. Итак, существует лишь три способа построения правильного выпуклого многогранника с треугольными гранями. Пытаясь построить многогранный угол из квадратных граней, мы убедимся, что это можно сделать лишь из трех граней. Аналогичными рассуждениями нетрудно показать, что в одной вершине правильного многоугольника могут сходиться три и только три пятиугольные грани. Грани не могут иметь форму многоугольников с числом сторон больше 5, так как, приложив, например, друг к другу три шестиугольника, мы получим в сумме угол в 360 0 .

Приведенное только что рассуждение не доказывает возможности построения пяти правильных тел, оно лишь объясняет, почему таких тел не может быть больше пяти. Более тонкие рассуждения заставляют прийти к выводу, что в четырехмерном пространстве имеется лишь шесть правильных политопов (так называются аналоги трехмерных правильных тел). Любопытно отметить, что?в пространстве любого числа измерений, большем 4, существует лишь три правильных политопа: аналоги тетраэдра, куба и октаэдра.

Невольно напрашивается вывод. Математика в значительной мере ограничивает многообразие структур, которые могут существовать в природе. Обитатели далее самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. Некоторые теологи честно признали, что даже сам господь бог не смог бы построить шестое платоново тело в трехмерном пространстве. Точно так же геометрия ставит непреодолимые границы разнообразию структуры кристаллов. Может быть, наступит день, когда физики откроют математические ограничения, которым должно удовлетворять число фундаментальных частиц и основных законов природы. Разумеется, никто сейчас не имеет ни малейшего представления о том, каким образом математика делает невозможной ту или иную структуру, называемую "живой" (если только математика вообще причастна к этому кругу явлений). Вполне допустимо, например, что наличие углеродных соединений является непременным условием возникновения жизни. Как бы то ни было, человечество заранее готовит себя к мысли о возможности существования жизни на других планетах. Платоновы же тела служат напоминанием о том, что на Марсе и Венере может не оказаться многого из того, о чем думают наши мудрецы.

Ответы

Полное сопротивление цепи, образованной ребрами куба (сопротивление каждого ребра 1 ом ) составляет 5 / 6 ома . Соединим накоротко три ближайшие к А вершины куба и проделаем то же самое с тремя вершинами, ближайшими к В. Мы получим две треугольные цепи. Ни в одной из них тока не будет, так как они соединяют эквипотенциальные точки. Нетрудно заметить, что между вершиной А и ближайшей к ней треугольной цепью параллельно включены три сопротивления по 1 ому (общее сопротивление 1 / 3 ома ), между двумя треугольными цепями в параллель соединено 6 сопротивлений по 1 ому (общее сопротивление этого участка цепи 1 / 6 ома ) и между второй треугольной цепью и точкой В имеется 3 параллельно соединенных проводника по 1 ому (то есть всего 1 / 3 ома ). Таким образом, полное сопротивление цепи между точками А и В равно 5 / 6 ома .

И условие задачи, и метод решения нетрудно обобщить на случай цепи, образованной ребрами четырех остальных Платоновых тел.

Перечислим три способа нумерации граней октаэдра, удовлетворяющих условию: сумма чисел на гранях, примыкающих к любой вершине, должна быть равна 18. Числа, встречаемые при обходе (по часовой стрелке или против нее) одной вершины: 6, 7, 2, 3; при обходе противоположной вершины: 1, 4, 5, 8 (6 рядом с 1, 7 рядом с 4 и т. д.); при обходе остальных вершин: 1, 7, 2, 8 и 4, 6, 3, 5; 4, 7, 2, 5 и 6, 1, 8, 3. Простое доказательство того, что октаэдр - единственное из пяти правильных тел, чьи грани можно пронумеровать так, чтобы сумма чисел на гранях, примыкающих к любой вершине, была постоянна, можно найти в книге У. У. Роуза Болла * .

* (W. W. Rouse Ball, Mathematical recreations and essays, London, MacMillan, New York, St. Martin"s Press, 1956, p. 418. )

Кратчайшее расстояние, которое должна преодолеть муха для того, чтобы побывать на всех ребрах икосаэдра, равно 35 единицам (единица - длина ребра икосаэдра). Стерев пять ребер икосаэдра (например, ребра FM, BE, JA, ID и НС на рис. 96), мы получим граф, на котором нечетное число ребер сходится только в двух точках G и К. Поэтому муха может обойти весь этот граф (начав свой путь к точке G и закончив его в точке К), пройдя по каждому ребру лишь один раз. Пройденное мухой расстояние равно 25 единицам. Это самый длинный путь, все участки которого проходятся по одному разу. Если муха на своем пути встречает стертые ребра, мы просто добавляем их к пути из G в К, считая, что муха проходит их дважды (в противоположных направлениях). Пять стертых ребер, проходимых дважды, составляют добавку в 10 единиц к уже пройденному пути. В сумме это и составляет 35 единиц.