Постоянные уравнения ван дер ваальса. Уравнение Ван-дер-Ваальса

Реальным называется газ, между молекулами которого действуют силы межмолекулярного взаимодействия, состоящие из сил притяжения и сил отталкивания .

Для получения уравнения состояния реального газа необходимо учесть собственный объем молекул и энергию взаимодействия молекул на расстоянии. Наличие собственного объема молекул приводит к уменьшению объема, предоставленного молекулам, на некоторую величину. Силы притяжения между молекулами газа вызывают уменьшение давления молекул газа на стенки сосуда на некоторую величину р i .

Это уравнение может получено путем соответствующего изменения уравнения Менделеева-Клапейрона путем внесения в него поправок.

Уравнение состояния реального газа (уравнение Ван-дер-Ваальса) для одного моля имеет вид:

где р - давление, оказываемое на стенки сосуда, V М – объем одного моля газа, а и b - постоянные Ван-дер-Ваальса, имеющие для разных газов различные значения, определяемые опытным путем. Поправка – внутреннее давление, обусловленное силами взаимного притяжения между молекулами. Поправка b характеризует ту часть объем, которая недоступна для движения молекул. Она равна учетверенному собственному объему молекул, содержащихся в моле газа:

b = N A .

Уравнение Ван-дер-Ваальса для произвольной массы газа имеет вид:

Уравнение Ван-дер-Ваальса позволяет построить теоретические изотермы реального газа и сравнить их с изотермами идеального газа и экспериментальными изотермами реального газа.

Уравнение Ван-дер-Ваальса после нескольких преобразований можно записать в виде:

.

Это уравнение третьей степени относительно V. Кубическое уравнение может иметь либо три вещественных корня, либо один вещественный и два мнимых.

Первому случаю соответствуют изотермы при низких температурах – кривые для Т 1 и Т 2 (рис.9.1.) Второму случаю изотермы при высоких температурах (одно значение объема V отвечает одному значению давления р ), то есть любая изотерма начиная от изотермы для Т к.

Совпадение изотерм идеального и реального газа наблюдается при малых давлениях и больших объемах (так как при этих условиях газ можно считать идеальным). Для семейства изотерм Ван-дер-Ваальса характерно так называемой критической изотермы (при температуре Т к) имеющий точку перегиба при некотором давлении р к и объеме V к; при Т>Т к все изотермы идут монотонно, при Т < Т к все изотермы имеют минимум и максимум.

Экспериментальные изотермы, снятые при температурах выше критической, отражают монотонное увеличение давлений газа при уменьшении его объема. При температурах, меньше критической, эксперимент показывает, что изотермы на участке 2,6 имеют «полочку». Часть 6–7 отвечает газообразному состоянию, а часть 1–2 – жидкому. В состояниях, соответствующих горизонтальному участку изотермы 6-2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном состоянии при температуре ниже критической называется паром, а пар, находящийся в равновесии со своей жидкостью, называется насыщенным.

Состояния на участке 3–4–5 не наблюдаются экспериментально; состояния 2–3 и 5–6 могут быть реализованы при особых условиях. Участок 2–3 соответствует т.н. перегретой жидкости . Участок 5-6 – пересыщенному пару (рис.9.2). Эти неустойчивые состояния называются метастабильными . Горизонтальный участок реальной изотермы расположен так, что площади, ограниченные им и теоретической изотерме. В обоих случаях работа должна быть одинакова, следовательно, указанные выше площади должны быть равновелики.

ВАН-ДЕР-ВААЛЬСА УРАВНЕНИЕ – модельное уравнение состояния реального газа, учитывающее, в отличие от уравнения состояния идеального газа, взаимодействие молекул между собой, а именно: мощное отталкивание на малых расстояниях R между центрами масс молекул

() и их притяжение на больших

(R > R 12) расстояниях. Здесь R 1 и R 2 – газокинетические радиусы молекул. В ряде случаев, для простоты, используется средний газокинетический диаметр взаимодействующих молекул , очевидно для одинаковых молекул .

Уравнение состояния является функциональной связью между четырьмя термодинамическими параметрами состояния физической системы. Для описания однокомпонентных (состоящих из частиц одного сорта) физических систем достаточно четырех параметров. Для систем, состоящих из различных частиц (например, воздух – смесь азота, кислорода, аргона, углекислого газа и др.), полный перечень необходимых параметров включает относительные концентрации компонент смеси. Для простоты, будут рассмотрены только однокомпонентные системы. Традиционный и наиболее употребительный набор параметров состояния состоит из массы системы m , давления p , объема V и температуры T . Использование массы системы в качестве одного из ее параметров предполагает, что известна молярная масса вещества , из которого она состоит. Набор параметров состояния «продиктован» экспериментом, так как все входящие в него величины достаточно просто и непосредственно измеряются. Здесь число молей. Разумеется, возможны и другие наборы параметров состояния: число частиц в системе , объем, энтропия и внутренняя энергия (N A – число Авогадро).

Уравнение состояния идеального газа (газа невзаимодействующих материальных точек) было получено Э.Клапейроном (1834) в результате объединения трех экспериментально установленных газовых законов: 1) Р.Бойля (1662) и Э.Мариотта (1676); 2) Шарля (1785); 3) Гей-Люссака (1802). Сейчас это уравнение (здесь R – универсальная газовая постоянная)

называют уравнением Клапейрона – Менделеева.

В данном частном случае заслуга Д.И.Менделеева в том, что он вывел написанное выше универсальное уравнение состояния идеальных газов. В частности, при исследовании явлений, не укладывающихся в модель идеального газа и обусловленных взаимодействием молекул между собой (поверхностное натяжение жидкостей и сопутствующие капиллярные явления, непрерывные и скачкообразные фазовые переходы жидкость – газ), Менделеев ввел понятие температуры «абсолютного» кипения, которая впоследствии была названа Эндрюсом критической температурой – температурой критического состояния вещества, это уже сфера непосредственных применений уравнения Ван-дер-Ваальса.

Учет взаимодействия между молекулами газа при расчете его термодинамических характеристик впервые был выполнен в 1873 голландским физиком Я.Д.Ван-дер-Ваальсом, именем которого названо полученное им уравнение состояния такого газа. Строго говоря, ван-дер-ваальсовским можно называть газ, потенциальная энергия притяжения молекул которого на больших расстояниях убывает с ростом R по закону

его, например, нет места в плазме состоящей из заряженных частиц, потенциальная энергия взаимодействия которых на больших расстояниях убывает в соответствии с законом Кулона

т.е существенно медленнее.

Силы Ван-дер-Ваальса (R > d0)

для молекулярных и атомарных газов носят достаточно универсальный характер. Квантовомеханическое усреднение потенциальной энергии по взаимным ориентациям взаимодействующих объектов практически во всех случаях приводит к асимптотическому закону (1), (3).

Во-первых, это взаимодействие полярных молекул, т.е. молекул с собственным электрическим дипольным моментом (молекулы типа HCl, H 2 O и т.п.). Соответствующие силы называют ориентационными.

Во-вторых, взаимодействие полярной и неполярной молекулы (не имеющей собственного электрического дипольного момента): He, Ar, … N 2 , O 2 … . Такое взаимодействие принято называть индукционным.

Наконец, взаимодействие неполярных атомов и молекул – дисперсионное взаимодействие. Происхождение дисперсионных сил строго объясняется только в рамках квантовой механики. Качественно возникновение этих сил можно объяснить – в результате квантовомеханических флуктуаций у неполярной молекулы возникает мгновенный дипольный момент, его электрическое поле поляризует другую неполярную молекулу и у неё появляется наведенный мгновенный дипольный момент. Энергия взаимодействия неполярных молекул – это квантовомеханическое среднее энергии взаимодействия таких мгновенных диполей. Дисперсионные силы не зависят от наличия или отсутствия собственных дипольных моментов у атомов и молекул и потому всегда имеют место. В случае неполярных атомов и молекул дисперсионные силы в десятки и даже сотни раз больше сил ориентационных и индукционных. В случае молекул с большим собственным дипольным моментом, например, молекул воды H 2 O, дисперсионная сила в три раза меньше ориентационной. Все эти силы имеют асимптотику (3), таким образом, в общем случае усредненная потенциальная энергия

Мощное отталкивание молекул на малых расстояниях возникает при перекрытии внешних заполненных электронных оболочек и обусловлено принципом запрета Паули . Зависимость этих сил от R нельзя объяснить в рамках чисто классической электродинамики. Силы отталкивания в большей мере, чем силы притяжения, зависят от конкретных особенностей строения электронных оболочек взаимодействующих молекул и требуют для своего определения громоздких квантовомеханических расчетов. Хорошее согласие с экспериментом дает следующая модель

Из (5) видно, что уменьшение расстояния в два раза приводит к увеличению силы отталкивания 15 более чем в 8 тысяч раз, что и позволяет говорить о «мощных» силах отталкивания.

При практических расчетах широко используется модельный потенциал Ленард – Джонса, (с учетом (1) и (5))

показанный на рис. 1. Видно, что параметр D имеет смысл глубины потенциальной ямы, а параметр
определяет ее размер: абсцисса минимума .

Уравнение состояния ван-дер-ваальсовского газа, само по себе приближенное, может быть, тем не менее, точно получено в рамках модели притягивающихся твердых шаров. В этой модели весьма большие, но конечные силы отталкивания на малых расстояниях заменяются бесконечно большими силами, что означает замену близкого к вертикали криволинейного потенциального ба­­рь­ера левее точки минимума (рис. 1) вертикальной потенциальной стенкой в соответствующей точке: R = d 0 , что показано на рис. 2. При расстояниях сохраняется зависимость от R по формуле (6).

Вертикальная потенциальная стенка ставится именно в точке R = d 0 = 2R 0 , т.к. минимальное расстояние между центрами двух твердых шаров равно их диаметру.

Притяжение молекул на расстояниях дает поправку к внутренней энергии газа, равную энергии их взаимодействия: U вз . При достаточной разреженности газа с хорошей точностью справедливо предположение о попарном взаимодействии молекул, что приводит к выражению для Uвз :

Конечность объема молекул приводит к тому, что не весь объем сосуда V доступен для их движения – уменьшается «свобода» размещения молекул газа в его фазовом пространстве, что, в свою очередь, уменьшает статистический вес макросостояния и энтропию газа. Энтропия идеального (молекулы – материальные точки) одноатомного газа с температурой, занимающего сосуд объемом V , имеет вид

Если объем недоступный для движения молекул – шариков реального газа, равен V 0 , то его энтропия

Для двух молекул радиуса R 0 с минимальным расстоянием между центрами 2R 0 , объем, недоступный для движения, – это объем сферы, равный

В рамках рассматриваемой модели параметры а и b (вторые формулы в (8) и (12)) являются атомными константами (диаметр молекулы d 0 считается фиксированной величиной, не зависящей от температуры, хотя, строго говоря, это не так), не зависящими параметров термодинамического состояния вещества.

Основное термодинамическое тождество имеет вид

(12) dU = TdS pdV ,

это первое начало термодинамики, в которое для квазистатических процессов подставлены выражения для получаемой системой теплоты и (–pdV ) для совершаемой над системой работы, оно позволяет получить уравнение состояния Ван-дер-ваальсовского газа с выражения для давления, следующего из (12)

В (13) индекс S указывает на то, что дифференцировать нужно при постоянной энтропии. Подстановка (8) и (11) в (13) приводит к уравнению состояния реального газа Ван-дер-Ваальса

Переход от числа молекул в газе N к числу молей осуществляется с помощью замены , где N A – число Авогадро и соответствующего этой замене переопределения постоянных Ван-дер-Ваальса

В этих переменных уравнение Ван-дер-Ваальса имеет вид (универсальная газовая постоянная):

Главное значение уравнения Ван-дер-Ваальса состоит, во-первых, в простоте и физической понятности его аналитической структуры: поправка a учитывает притяжение молекул на больших расстояниях, поправка b – их отталкивание на малых расстояниях. Уравнение состояния идеального газа получается из (16) путем предельного перехода a → 0, b → 0. стрелки

Во-вторых, уравнение Ван-дер-Ваальса обладает (несмотря на приближенность модели) широким спектром качественных, а в ряде случаев и полуколичественных предсказаний о поведении реального вещества, которые следуют из анализа уравнения (16) и вида соответствующих ему изотерм и касаются поведения вещества не только в достаточно разреженном газообразном состоянии, но и в жидком и двухфазном состояниях, т.е. в состояниях, далеких от априорной области применимости модели Ван-дер-Ваальса.

Рис. 3. Изотермы Ван-­дер-Ваальса . Цифры, указывают отношение температуры, соответствующей данной изотерме, к критической тем­пературе вещества. Единица соответствует критической изотерме T = T кр.

Уравнение (16) имеет особую точку – точку перегиба, в которой

это соответствует реальной физической особенности – критическому состоянию вещества, в котором исчезает различие между жидкостью и ее паром (жидкой и газовой фазами), находящимися в состоянии термодинамического равновесия. Критическая точка является одним из концов кривой равновесия жидкость – пар на диаграмме (p , T ), другим концом этой кривой является тройная точка, в которой в термодинамическом равновесии находятся все три фазы: газовая, жидкая и кристаллическая. Критической точке соответствуют критическая температура T кр., критическое давление pкр. и критический объем V кр. При температурах выше критической переход «жидкость – пар» происходит без скачка плотности, в критической точке исчезает мениск в капилляре, обращается в нуль теплота испарения и в бесконечность изотермическая сжимаемость (пропорциональная производной ).

Решение уравнений (17) дает связь критических параметров с постоянными Ван-дер-Ваальса a и b :

Формулы (18) позволяют найти константы а и b по экспериментально определенным параметрам критического состояния. Одним из показателей количественной точности уравнения Ван-дер-Ваальса является результат критического коэффициента , следующего из (18) c его экспериментальным значением

Вещество K кр, эксперимент Вещество K кр, эксперимент
H 2 3,03 SO 2 3,60
He 3,13 C 6 H 6 3,76
N 2 3,42 H 2 O 4,46
O 2 3,42 CO 2 4,49

Равенство нулю интегралов в правой части (19) есть следствие замкнутости процесса и того, что энтропия S и внутренняя энергия U – функции состояния. Равенство нулю интеграла означает, что двухфазный участок следует расположить так, чтобы площади S 1 и S 2 (рис. 4) были равны (правило Максвелла).

Участки 2–3 и 5–6 соответствуют реальным метастабильным состояниям вещества, а именно: 2–3 – перегретая жидкость, 6–5 – переохлажденный (пересыщенный) пар. В этих состояниях жидкость или пар могут существовать в течение некоторого времени, если нет центров парообразования и конденсации. Появление в жидкости центров парообразования ведет к немедленному возникновению и росту на их месте пузырьков пара. Аналогично, появление центров конденсации в переохлажденном паре ведет к немедленному возникновению и росту на их месте капель жидкости. Оба явления используются для регистрации треков заряженных частиц: первое в пузырьковой камере, второе в камере Вильсона (туманной камере). Роль центров парообразования (конденсации) играют ионы, которые оставляет на своем пути заряженная частица в результате ионизации молекул жидкости (пара) при столкновениях с ними. Пузырьки (капли) существуют достаточное для их фотографирования время, что делает видимой траекторию, по которой двигалась заряженная частица. Исследование трека частицы позволяет определить ее энергию и импульс, соответственно, вычислить ее массу, что является одной из важнейших задач физики элементарных частиц.

При температуре , что для воды составляет 273° C, минимум ван-дер-ваальсовской изотермы достигает нуля давления. При более низких температурах (рис. 3, кривые 0,8 и 0,7) давление в окрестности минимума становится отрицательным, что означает, что жидкость из-за действия сил притяжения между ее молекулами может «сопротивляться растяжению» (подобно пружине). Растянутую жидкость (например, ртуть) можно получить экспериментально, беря запаянную с одного конца стеклянную трубку длиной около метра и погружая ее в горизонтальную кювету с ртутью. После заполнения трубки ртутью трубку медленно, без встряхиваний поднимают в вертикальное положение, при этом в трубке наблюдается столб ртути, длина которого заметно превышает длину, соответствующую внешнему давлению, например, 760 мм.

Валериан Гервидс

Уравнение Ван–дер–Ваальса (7.1.2) – одно из первых уравнений состояния реального газа. Данное уравнение учитывает конечные размеры всех молекул, что становится существенным при больших давлениях, а также притяжение молекул в результате межмолекулярного взаимодействия.

Уравнение состояния реального газа, предложенное Ван–дер–Ваальсом можно получить из следующих рассуждений. Учтем влияние конечных размеров молекул на уравнение состояния реального газа. Давление определяется средней кинетической энергией теплового движения всех молекул Р = nkT. 7.2.1 При конечных размерах молекул, имеющих радиус r, область 4p(2r) 3 /3 вокруг каждой из молекул будет недоступна для попадания в нее другой неточечной молекулы. В результате в сосуде, содержащем N молекул конечных размеров, область объемом (N/2)4p(2r) 3 /3 = 4NV молек (V молек = 4pr 3 /3 – объем одной молекулы) будет недоступна для столкновений. Поэтому можно считать, что половина всех молекул занимает объем b = 4NV молек и покоится, а другая половина представляет собой точечные молекулы и движется с удвоенной кинетической энергией, обладая температурой Т´ = 2Т. Объем, доступный точечным молекулам, будет равен V - b , а давление, оказываемое на стенки сосуда, определяется точечными подвижными молекулами (N´ = N/2):

Р = n´kT´ =

Если в сосуде находится один моль газа, то уравнение состояния примет вид (N = N A , N A k = R, b = 4N A V молек):

P(V - b) = RT.

Для v = m/m молей газа уравнение состояния газа с учетом конечного размера молекул примет вид

P(V - nb) = nRT.

Отметим, что это уравнение является приближенным и выведено в предположении только парных столкновений. При больших давлениях это условие уже не выполняется, и возможно одновременное соприкосновение трех и более частиц, а такие случаи были исключены из рассмотрения.

Рассмотрим теперь влияние сил притяжения на уравнение состояния идеального газа. Будем считать для простоты частицы газа точечными. Наличие сил притяжения между ними, действующих на больших расстояниях, приводит к появлению дополнительного внутреннего воздействия на газ. Это обусловлено тем, что в то время как в объеме газа действие сил притяжения между молекулами в среднем уравновешивается, на границе «газ – стенка сосуда» действие сил притяжения со стороны газа остается не скомпенсированным, и появляется избыточная сила, направленная в сторону газа (рис. 7.3).


Рис. 7.3

Дополнительное внутреннее давление пропорционально числу частиц, приходящихся на единицу площади границы n S и силе взаимодействия этих частиц с другими частицами газа, находящимися в единице объема n V .

В результате избыточное внутреннее давление P i (i - intrinsic) будет пропорционально квадрату концентрации числа частиц

P i ~ n S n V ~ N 2 /V 2 ,

где N – полное число частиц в сосуде объема V . Если N = N A – в сосуде находится один моль газа, то запишем

P i = a/V 2 ,
где а – постоянная величина, своя для каждого сорта газа. В случае v -молей имеем

P i = v 2 a/V 2 .

С учетом внутреннего давления уравнение состояния примет вид

P + P i = nkT.

Давление P i не зависит от материала стенки, в противном случае удалось бы создать вечный двигатель первого рода. Роль стенки может играть и сам газ. Достаточно для этого выполнить мысленное сечение произвольной плоскостью любой внутренней области объема газа. Полученное уравнение, с учетом выражения для P i переходит в новое уравнение состояния реального газа при наличии сил притяжения:

(P + v 2 a/V 2)V = vRT.

Учитывая совместное действие сил притяжения и сил отталкивания и полученные поправки для объема и давления в уравнении Менделеева – Клапейрона, получим уравнение Ван–дер–Ваальса для реального газа:

(P + v 2 a/V 2)(V - vb) = vRT , (7.2.3)

или для одного моля:

. 7.2.4

Данное уравнение справедливо при условии vb и v 2 a/V 2 Помимо этого предполагается, что частицы газа сферически симметричны. Поскольку реально это не так, то даже для неплотных газов величины а и b зависят от температуры. Константы Ван–дер–Ваальса и критические данные приведены в таблице 7.1

Таблица 7.1.

Pk ,
атм

Vk ,
м 3 /кмоль

Т k ,
К

а ,
ат×м 6 /кмоль2

b ,
м 3 /кмоль

R /N A k

HCl
H 2
He
H 2 O
O 2
N 2
CO 2

86
13,2
2,34
225
51,4
34,8
75

0,060
0,065
0,058
0,055
0,075
0,090
0,096

324,6
33,2
5,2
647,3
154,3
126,0
304,1

0,922
0,194
0,035
5,65
1,40
1,39
3,72

0,020
0,022
0,024
0,031
0,032
0,039
0,043

0,469
0,813
0,821
0,602
0,768
0,782
0,745

Примечание. Константы а и b выбраны таким образом, чтобы получить оптимальное согласование уравнения Ван–дер–Ваальса с измеренными изотермами для комнатной температуры. Для плотных газов уравнение Ван–дер–Ваальса как количественное соотношение не годится. Однако качественно оно позволяет описывать поведение газов при высоких давлениях, конденсацию газов и переход газов в критическое состояние.

Как мы уже упоминали, при низких температурах и высоких давлениях уравнение состояния идеального газа Менделеева – Клапейрона непригодно.

Учитывая собственный объём молекул и силы межмолекулярного взаимодействия, голландский физик И. Ван – дер – Ваальс (1837 – 1923 г.г.) вывел уравнение " реального газа ", используя две поправки для уравнения Менделеева – Клапейрона.

Учёт собственного объёма молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объём других молекул, приводит к тому, что фактический свободный объём, в котором могут двигаться молекулы реального газа, будет равен не V μ (как в уравнении Менделеева – Клапейрона для одного моля газа), а V = (V μ -b) , где b – поправка на собственный объём молекул.

Можно показать, что поправка b равна учетверённому объёму молекул. Действительно, если, например, сближаются две молекулы, то центр любой из них не может приблизиться к центру другой молекулы на расстояние, меньшее диаметра d молекулы (оболочки молекул считаются непроницаемыми). Это означает, что для центров обеих молекул оказывается недоступным сферический объём радиуса d, т.е. объём, равный восьми объёмам молекулы или учетверённому объёму молекулы в расчёте на одну молекулу.

Учёт притяжения молекул. Поскольку при определённых расстояниях между молекулами действуют силы притяжения (а они, как мы уже говорили, проявляются раньше сил отталкивания), то их действие приводит к появлению " дополнительного " действия на молекулы " идеального " газа. Это давление Ван – дер – Ваальс назвал " внутренним " давлением. По модели "реального" газа вычисления показали, что " внутреннее " давление молекул обратно пропорционально квадрату молярного объёма, т.е.:

, (17.6)

где а – вторая постоянная (поправка) Ван – дер – Ваальса, характеризующая действие сил межмолекулярного притяжения, V μ – молярный объём газа.

Вводя эти поправки, получим итоговое уравнение Ван – дер – Ваальса для одного моля газа :

. (17.7)

Для произвольного количества вещества в ν молей газа (т.к. ν = m/M μ ) с учётом того, что V = ν V μ , уравнение Ван – дер – Ваальса примет вид:

, (17.8)

где поправки a и b – постоянные для каждого индивидуального газа величины, вычисляемые из экспериментальных данных (в простейшем случае записываются уравнения Ван – дер – Ваальса для двух известных из опыта состояний газа и решаются относительно величин a и b ).

Поскольку при выводе уравнения для " реального " газа Ван – дер – Ваальсом был сделан ряд весьма существенных упрощений, поэтому оно так же, как и уравнение Менделеева – Клапейрона является достаточно приближённым уравнением, которое, однако, лучше (особенно для не очень сильно сжатых газов) согласуется с опытом, чем уравнение состояния идеального газа.



Для более точного описания опытных данных для реальных газов пользуются эмпирическими уравнениями состояния, чаще всего уравнением Камерлинг – Оннеса, имеющим вид:

, (17.9)

которое построено с таким расчётом, чтобы всегда имелась возможность привести это уравнение к согласию с данными опыта простым вписыванием дополнительных членов без изменения формы уравнения. Коэффициенты B,C, F называются вириальными коэффициентами и представляются в виде многочленов, расположенных по возрастающим степеням Т -1 :

, (17.10)

и аналогично для коэффициентов C,D,E,F .

Как уже указывалось в § 60, для реальных газов необходимо учитывать размеры мо­лекул и их взаимодействие друг с другом, поэтому модель идеального газа и уравнение Клапейрона-Менделеева (42.4) pV m =RT (для моля газа), описывающее иде­альный газ, для реальных газов непри­годны.

Учитывая собственный объем молекул и сил межмолекулярного взаимодействия, голландский физик И. Ван-дер-Ваальса (1837-1923) вывел уравнения состояния реального газа. Ван-дер-Ваальсом в урав­нение Клапейрона-Менделеева введены две поправки.

1. Учет собственного объема молекул. Наличие сил отталкивания, которые про­тиводействуют проникновению в занятый молекулой объем других молекул, сводит­ся к тому, что фактический свободный объем, в котором могут двигаться молеку­лы реального газа, будет не V m , a V m - b , где b - объем, занимаемый самими молекулами. Объем b равен учетверенному соб­ственному объему молекул. Если, напри­мер, в сосуде находятся две молекулы, то центр любой из них не может при­близиться к центру другой молекулы на расстояние, меньшее диаметра d молеку­лы. Это означает, что для центров обеих молекул оказывается недоступным сфери­ческий объем радиуса d, т. е. объем, рав­ный восьми объемам молекулы, а в расче­те на одну молекулу - учетверенный объем молекулы.

2. Учет притяжения молекул. Действие сил притяжения газа приводит к появле­нию дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутрен­нее давление обратно пропорционально квадрату молярного объема, т. е.

p" = a/V 2 m , (61.1)

где а- постоянная Ван-дер-Ваальса, ха­рактеризующая силы межмолекулярного притяжения, V m - молярный объем.

Вводя эти поправки, получим уравне­ние Ван-дер-Ваальса для моля газа (урав­нение состояния реальных газов):

(p+a/V 2 m )(V m -b)=RT. (61.2)

Для произвольного количества вещества v газа (v =т/М) с учетом того, что V = vV m , уравнение Ван-дер-Ваальса примет вид

где поправки а и b - постоянные для каж­дого газа величины, определяемые опыт­ным путем (записываются уравнения Ван-дер-Ваальса для двух известных из опыта состояний газа и решаются относительно а и b ).

При выводе уравнения Ван-дер-Вааль­са сделан целый ряд упрощений, поэтому оно также весьма приближенное, хотя и лучше (особенно для несильно сжатых газов) согласуется с опытом, чем уравне­ние состояния идеального газа.

Уравнение Ван-дер-Ваальса не единствен­ное уравнение, описывающее реальные газы. Существуют и другие уравнения, некоторые из них даже точнее описывают реальные газы, но не рассматриваются из-за их сложности.

§ 62. Изотермы Ван-дер-Ваальса и их анализ

Для исследования поведения реального газа рассмотрим изотермы Ван-дер-Ва­альса - кривые зависимости р от V m при заданных Т, определяемые уравнением Ван-дер-Ваальса (61.2) для моля газа. Эти кривые (рассматриваются для четы­рех различных температур; рис. 89) имеют довольно своеобразный характер. При вы­соких температурах (T>T к) изотерма ре­ального газа отличается от изотермы иде­ального газа только некоторым искажени­ем ее формы, оставаясь монотонно спада­ющей кривой. При некоторой температуре Т к на изотерме имеется лишь одна точка перегиба К . Эта изотерма называется кри­тической, соответствующая ей температу­ра T к - критической температурой. Кри­тическая изотерма имеет лишь одну точку перегиба К, называемую критической точ­кой; в этой точке касательная к ней па­раллельна оси абсцисс. Соответствующие этой точке объем V к и давление р к на­зываются также критическими. Состояние с критическими параметрами (р к, V к , Т к ) называется критическим состоянием. При низких температурах (Т<Т к ) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Для пояснения характера изотерм пре­образуем уравнение Ван-дер-Ваальса (61.2) к виду

pV 3 m -(RT+pb) V 2 m +aV m -ab=0.

Уравнение (62.1) при заданных р и Т является уравнением третьей степени относительно V m ; следовательно, оно мо­жет иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь ве­щественные положительные корни. Поэто­му первому случаю соответствуют изотер­мы при низких температурах (три значения объема газа V 1 , V 2 и V 3 отвечают (символ «т» для простоты опускаем) одному зна­чению давления р 1 ), второму случаю- изотермы при высоких температурах.

Рассматривая различные участки изо­термы при Т<Т к (рис.90), видим, что на участках 1 -3 и 5-7 при уменьшении объема V m давление р возрастает, что естественно. На участке 3-5 сжатие ве­щества приводит к уменьшению давления; практика же показывает, что такие со­стояния в природе не осуществляются. Наличие участка 3-5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное измене­ние состояния и распад вещества на две фазы. Таким образом, истинная изотерма будет иметь вид ломаной линии 7-6-2-1. Часть 7-6 отвечает газообразному со­стоянию, а часть 2-1 - жидкому. В со­стояниях, соответствующих горизонталь-

ному участку изотермы 6-2, наблюдается равновесие жидкой и газообразной фаз вещества. Вещество в газообразном со­стоянии при температуре ниже критиче­ской называется паром, а пар, находящий­ся в равновесии со своей жидкостью, на­зывается насыщенным.

Данные выводы, следующие из анали­за уравнения Ван-дер-Ваальса, были под­тверждены опытами ирландского ученого Т. Эндрюса (1813-1885), изучавшего изо­термическое сжатие углекислого газа. От­личие экспериментальных (Эндрюс) и тео­ретических (Ван-дер-Ваальс) изотерм за­ключается в том, что превращению газа в жидкость в первом случае соответствуют горизонтальные участки, а во втором - волнообразные.

Для нахождения критических пара­метров подставим их значения в уравне­ние (62.1) и запишем

p к V 3 -(RT к +p к b)V 2 +aV-ab= 0

(символ «т» для простоты опускаем). По­скольку в критической точке все три корня совпадают и равны V к , уравнение приво­дится к виду

p к (V-V к ) 3 = 0,

p к V 3 -3p к V к V 2 +3p к V 2 к V-p к V к = 0.

Так как уравнения (62.2) и (62.3) тожде­ственны, то в них должны быть равны и коэффициенты при неизвестных соответ­ствующих степеней. Поэтому можно за­писать

ркV 3 к =ab, 3р к V 2 к =а, 3p к V к =RT к +p к b. Решая полученные уравнения, найдем: V к = 3b, р к = а/(27b 2), T к =8a/(27Rb}.

Если через крайние точки горизонталь­ных участков семейства изотерм провести линию, то получится колоколообразная кривая (рис. 91), ограничивающая об­ласть двухфазных состояний вещества. Эта кривая и критическая изотерма делят

диаграмму р, V m под изотермой на три области: под колоколообразной кривой располагается область двухфазных состо­яний (жидкость и насыщенный пар), сле­ва от нее находится область жидкого со­стояния, а справа - область пара. Пар отличается от остальных газообразных со­стояний тем, что при изотермическом сжа­тии претерпевает процесс сжижения. Газ же при температуре выше критической не может быть превращен в жидкость ни при каком давлении.

Сравнивая изотерму Ван-дер-Ваальса с изотермой Эндрюса (верхняя кривая на рис. 92), видим, что последняя имеет пря­молинейный участок 2-6, соответствую­щий двухфазным состояниям вещества. Правда, при некоторых условиях могут быть реализованы состояния, изображае­мые участками ван-дер-ваальсовой изо­термы 5-6 и 2-3. Эти неустойчивые со­стояния называются метастабильными. Участок 2-3 изображает перегретую жидкость, 5-6 - пересыщенный пар. Обе фазы ограниченно устойчивы

При достаточно низких температурах изотерма пересекает ось V m , переходя в область отрицательных давлений (ниж­няя кривая на рис. 92). Вещество под отрицательным давлением находится в со­стоянии растяжения. При некоторых усло­виях такие состояния также реализуются. Участок 8 -9 на нижней изотерме соответ­ствует перегретой жидкости, участок 9 - 10 - растянутой жидкости.