Синтезированные химические элементы. Искусственные элементы

14.1 Этапы синтеза элементов

Для объяснения распространенности в природе различных химических элементов и их изотопов в 1948 году Гамовым была предложена модель Горячей Вселенной. По этой модели все химические элементы образовывались в момент Большого Взрыва. Однако это утверждение впоследствии было опровергнуто. Доказано, что только легкие элементы могли образоваться в момент Большого Взрыва, а более тяжелые возникли в процессах нуклеосинтеза. Эти положения сформулированы в модели Большого Взрыва (см. п. 15).
По модели Большого Взрыва формирование химических элементов началось с первоначального ядерного синтеза легких элементов (Н, D, 3 Не, 4 Не, 7 Li) спустя 100 секунд после Большого Взрыва при температуре Вселенной 10 9 K.
Экспериментальную основу модели составляют расширение Вселенной, наблюдаемое на базе красного смещения, первоначальный синтез элементов и космическое фоновое излучение.
Большим достоинством модели Большого Взрыва является предсказание о распространенности D, Не и Li, отличающихся друг от друга на много порядков.
Экспериментальные данные о распространенности элементов в нашей Галактике показали, что атомов водорода 92%, гелия − 8%, и более тяжелых ядер − 1 атом на 1000, что согласуется с предсказаниями модели Большого Взрыва.

14.2 Ядерный синтез − синтез легких элементов (Н, D, 3 Не, 4 Не, 7 Li) в ранней Вселенной.

  • Распространенность 4 Не или его относительная доля в массе Вселенной Y = 0.23 ±0.02. По крайней мере половина гелия, образованного в результате Большого Взрыва, содержится в межгалактическом пространстве.
  • Первоначальный дейтерий существует только внутри Звезд и быстро превращается в 3 Не.
    Из данных наблюдений получаются следующие ограничения на распространенность дейтерия и Не относительно водорода:

10 -5 ≤ D/H ≤ 2·10 -4 и
1.2·10 -5 ≤ 3 Не/H ≤ 1.5·10 -4 ,

причем наблюдаемое отношение D/H составляет лишь долю ƒ от первоначального значения: D/H = ƒ(D/H) первонач. Поскольку дейтерий быстро превращается в 3 Не, получается следующая оценка для распространенности:

[(D + 3 Не)/H] первонач ≤ 10 -4 .

  • Распространенность 7 Li измерить трудно, однако используются данные по изучению атмосфер звезд и зависимость распространенности 7 Li от эффективной температуры. Оказывается, что, начиная с температуры 5.5·10 3 K, количество 7 Li остается постоянным. Наилучшая оценка средней распространенности 7 Li имеет вид:

7 Li/H = (1.6±0.1)·10 -10 .

  • Распространенность более тяжелых элементов, таких как 9 Be, 10 В и 11 В, меньше на несколько порядков. Так, распространенность 9 Ве/Н < 2.5·10 -12 .

14.3 Синтез ядер в звездах Главной Последовательности при Т < 108 K

Синтез гелия в звездах Главной Последовательности в рр- и CN-циклах происходит при температуре Т ~ 10 7 ÷7·10 7 K. Водород перерабатывается в гелий. Возникают ядра легких элементов: 2 Н, 3 Не, 7 Li, 7 Be, 8 Ве, но их мало из-за того, что в дальнейшем они вступают в ядерные реакции, а ядро 8 Be практически мгновенно распадается из-за малого времени жизни (~ 10 -16 с)

8 Ве → 4 Не + 4 Не.

Процесс синтеза, казалось, должен был бы прекратиться, но природа нашла обходной путь.
Когда Т > 7·10 7 K, гелий "сгорает" , превращаясь в ядра углерода. Происходит тройная гелиевая реакция − "Гелиевая вспышка" − 3α → 12 С, но ее сечение очень мало и процесс образования 12 С идет в два этапа.
Происходит реакция слияния ядер 8 Ве и 4 Не с образованием ядра углерода 12 С* в возбужденном состоянии, которое возможно благодаря наличию у ядра углерода уровня 7.68 МэВ, т.е. происходит реакция:

8 Ве + 4 Не → 12 С* → 12 С + γ.

Существование уровня энергии ядра 12 С (7.68 МэВ) помогает обойти малое время жизни 8 Be. Благодаря наличию этого уровня у ядра 12 С происходит Брейт-Вигнеровский резонанс . Ядро 12 С переходит на возбужденный уровень с энергией ΔW = ΔМ + ε,
где εM = (M 8Be − М 4Hе)− M 12C = 7.4 МэВ, а ε компенсируется за счет кинетической энергии.
Эта реакция была предсказана астрофизиком Хойлом, а затем воспроизведена в лабораторных условиях. Затем начинают идти реакции:

12 С + 4 Не → 16 0 + γ
16 0 + 4 Не → 20 Ne + γ и так до А ~ 20.

Так нужный уровень ядра 12 С позволил пройти узкое место в термоядерном синтезе элементов.
У ядра 16 О нет таких уровней энергии и реакция образования 16 О идет очень медленно

12 С + 4 Не → 16 0 + γ.

Эти особенности протекания реакций привели к важнейшим следствиям: благодаря им оказалось одинаковое число ядер 12 С и 16 0, что создало благоприятные условия для образования органических молекул, т.е. жизни.
Изменение уровня 12 С на 5% привело бы к катастрофе − дальнейший синтез элементов прекратился бы. Но так как этого не произошло, то образуются ядра с A в диапазоне

А = 25÷32

Это приводит к значениям А

Все ядра Fe, Co, Сr образуются за счет термоядерного синтеза.

Можно вычислить распространенность ядер во Вселенной, исходя из существования этих процессов.
Сведения о распространенности элементов в природе получаются из спектрального анализа Солнца и Звезд, а также космических лучей. На рис. 99 представлена интенсивность ядер при разных значениях А.

Рис. 99: Распространенность элементов во Вселенной.

Водород Н − самый распространенный элемент во Вселенной. Лития Li, бериллия Be и бора В на 4 порядка меньше соседних ядер и на 8 порядков меньше, чем Н и Не.
Li, Be, В − хорошее горючее, они быстро сгорают уже при Т ~ 10 7 K.
Труднее объяснить, почему они все же существуют − скорее всего, благодаря процессу фрагментации более тяжелых ядер на стадии протозвезды.
В космических лучах ядер Li, Be, В много больше, что также является следствием процессов фрагментации более тяжелых ядер при взаимодействии их с межзвездной средой.
12 С÷ 16 О − результат Гелиевой вспышки и существования резонансного уровня у 12 С и отсутствия такового у 16 О, ядро которого является также дважды магическим. 12 С − полумагическое ядро.
Таким образом, максимум распространенности у ядер железа 56 Fe, a затем − резкий спад.
Для А > 60 синтез энергетически невыгоден.

14.5 Образование ядер тяжелее железа

Доля ядер с А > 90 невелика − 10 -10 от ядер водорода. Процессы образования ядер связаны с побочными реакциями, происходящими в звездах. Таких процессов известно два:
s (slow) − медленный процесс,
г (rapid) − быстрый процесс.
Оба эти процесса связаны с захватом нейтронов т.е. надо, чтобы возникли такие условия, при которых образуется много нейтронов. Нейтроны образуются во всех реакциях горения.

13 С + 4 Не → 16 0 + n − горение гелия,
12 С + 12 С → 23 Mg + n − углеродная вспышка,
16 O + 16 O → 31 S + n − кислородная вспышка,
21 Ne + 4 Не → 24 Mg + n − реакция с α-частицами.

В результате накапливается нейтронный фон и могут протекать s-и r-процессы − захват нейтронов. При захвате нейтронов образуются нейтроно-избыточные ядра, а затем происходит β-распад. Он превращает их в более тяжелые ядра.

, плутоний), в фотосферах звёзд (технеций и, возможно, прометий), в оболочках сверхновых (калифорний и, вероятно, продукты его распада - берклий , кюрий , америций и более лёгкие).

Последним из элементов, найденным в природе до того, как он был синтезирован искусственно, стал франций (1939 год). Первым синтезированным химическим элементом был технеций в 1937 году . По состоянию на 2012 год , синтезированы ядерным слиянием или распадом элементы до унуноктия с атомным номером 118, а также предпринимались попытки синтеза следующих сверхтяжёлых трансурановых элементов. Синтез новых трансактиноидов и суперактиноидов продолжается.

Наиболее известными лабораториями, синтезировавшими по несколько новых элементов и несколько десятков или сотен новых изотопов , являются Национальная лаборатория им. Лоуренса в Беркли и Ливерморская национальная лаборатория (США), в г. Дубна (СССР /Россия), Европейский (Германия), Кавендишская лаборатория Кембриджского университета (Великобритания), (Япония) и другие В последние десятилетия над синтезом элементов в американских, немецком и российском центрах работают международные коллективы.

Открытие синтезированных элементов по странам

СССР, Россия

США

Германия

Спорные приоритеты и совместные результаты

Для ряда элементов приоритет равноутверждён согласно решению совместной комиссии ИЮПАК и ИЮПАП или остаётся спорным :

США и Италия

Россия и Германия

Россия и Япония

Напишите отзыв о статье "Синтезированные химические элементы"

Примечания

Ссылки

  • О синтезе элементов на сайте «Атомная и космическая отрасли России» , ,
  • О синтезе элементов на сайте «Виртуальная таблица Менделеева» ,
  • О синтезе элементов на сайте , ,

Отрывок, характеризующий Синтезированные химические элементы

– Что будем с делать с ними? – судорожно вздохнув, показала на сбившихся в кучку малышей, Стелла. – Оставлять здесь никак нельзя.
Я не успела ответить, как прозвучал спокойный и очень грустный голос:
– Я с ними останусь, если вы, конечно, мне позволите.
Мы дружно подскочили и обернулись – это говорил спасённый Марией человек... А мы как-то о нём совершенно забыли.
– Как вы себя чувствуете? – как можно приветливее спросила я.
Я честно не желала зла этому несчастному, спасённому такой дорогой ценой незнакомцу. Это была не его вина, и мы со Стеллой прекрасно это понимали. Но страшная горечь потери пока ещё застилала мне гневом глаза, и, хотя я знала, что по отношению к нему это очень и очень несправедливо, я никак не могла собраться и вытолкнуть из себя эту жуткую боль, оставляя её «на потом», когда буду совсем одна, и, закрывшись «в своём углу», смогу дать волю горьким и очень тяжёлым слезам... А ещё я очень боялась, что незнакомец как-то почувствует моё «неприятие», и таким образом его освобождение потеряет ту важность и красоту победы над злом, во имя которой погибли мои друзья... Поэтому я постаралась из последних сил собраться и, как можно искреннее улыбаясь, ждала ответ на свой вопрос.
Мужчина печально осматривался вокруг, видимо не совсем понимая, что же здесь такое произошло, и что вообще происходило всё это время с ним самим...
– Ну и где же я?.. – охрипшим от волнения голосом, тихо спросил он. – Что это за место, такое ужасное? Это не похоже на то, что я помню... Кто вы?
– Мы – друзья. И вы совершенно правы – это не очень приятное место... А чуть дальше места вообще до дикости страшные. Здесь жил наш друг, он погиб...
– Мне жаль, малые. Как погиб ваш друг?
– Вы убили его, – грустно прошептала Стелла.
Я застыла, уставившись на свою подружку... Это говорила не та, хорошо знакомая мне, «солнечная» Стелла, которая «в обязательном порядке» всех жалела, и никогда бы не заставила никого страдать!.. Но, видимо, боль потери, как и у меня, вызвала у неё неосознанное чувство злости «на всех и вся», и малышка пока ещё не в состоянии была это в себе контролировать.
– Я?!.. – воскликнул незнакомец. – Но это не может быть правдой! Я никогда никого не убивал!..
Мы чувствовали, что он говорит чистую правду, и знали, что не имеем права перекладывать на него чужую вину. Поэтому, даже не сговариваясь, мы дружно заулыбались и тут же постарались быстренько объяснить, что же здесь такое по-настоящему произошло.
Человек долгое время находился в состоянии абсолютного шока... Видимо, всё услышанное звучало для него дико, и уж никак не совпадало с тем, каким он по-настоящему был, и как относился к такому жуткому, не помещающемуся в нормальные человеческие рамки, злу...
– Как же я смогу возместить всё это?!.. Ведь никак не смогу? И как же с этим жить?!.. – он схватился за голову... – Скольких я убил, скажите!.. Кто-нибудь может это сказать? А ваши друзья? Почему они пошли на такое? Ну, почему?!!!..
– Чтобы вы смогли жить, как должны... Как хотели... А не так, как хотелось кому-то... Чтобы убить Зло, которое убивало других. Потому, наверное... – грустно сказала Стелла.
– Простите меня, милые... Простите... Если сможете... – человек выглядел совершенно убитым, и меня вдруг «укололо» очень нехорошее предчувствие...
– Ну, уж нет! – возмущённо воскликнула я. – Теперь уж вы должны жить! Вы что, хотите всю их жертву свести на «нет»?! Даже и думать не смейте! Вы теперь вместо них будете делать добро! Так будет правильно. А «уходить» – это самое лёгкое. И у вас теперь нет больше такого права.
Незнакомец ошалело на меня уставился, видимо никак не ожидая такого бурного всплеска «праведного» возмущения. А потом грустно улыбнулся и тихо произнёс:
– Как же ты любила их!.. Кто ты, девочка?
У меня сильно запершило в горле и какое-то время я не могла выдавить ни слова. Было очень больно из-за такой тяжёлой потери, и, в то же время, было грустно за этого «неприкаянного» человека, которому будет ох как непросто с эдакой ношей существовать...
– Я – Светлана. А это – Стелла. Мы просто гуляем здесь. Навещаем друзей или помогаем кому-то, когда можем. Правда, друзей-то теперь уже не осталось...
– Прости меня, Светлана. Хотя наверняка это ничего не изменит, если я каждый раз буду у вас просить прощения... Случилось то, что случилось, и я не могу ничего изменить. Но я могу изменить то, что будет, правда ведь? – человек впился в меня своими синими, как небо, глазами и, улыбнувшись, горестной улыбкой, произнёс: – И ещё... Ты говоришь, я свободен в своём выборе?.. Но получается – не так уж и свободен, милая... Скорее уж это похоже на искупление вины... С чем я согласен, конечно же. Но это ведь ваш выбор, что я обязан жить за ваших друзей. Из-за того, что они отдали за меня жизнь.... Но я об этом не просил, правда ведь?.. Поэтому – это не мой выбор...

С момента возникновения нашей планеты прошло около 4,5 миллиардов лет. Сейчас на Земле сохранились только те элементы, которые не распались за это время, то есть смогли «дожить» до сегодняшнего дня - иными словами, время их полураспада дольше, чем возраст Земли. Названия этих элементов мы можем увидеть в Периодической таблице элементов (до урана).

Все элементы тяжелее урана образовались когда-то в процессе ядерного синтеза, но не дожили до наших дней. Потому что уже распались.

Вот поэтому люди вынуждены воспроизводить их заново.

Например: Плутоний. Период его полураспада всего 25 тысяч лет - совсем немного по сравнению с жизнью Земли. Этот элемент, утверждают эксперты, непременно существовал при зарождении планеты, но уже распался. Плутоний производится искусственно десятками тонн и является, как известно, одним из мощных источников энергии.

Что представляет собой процесс искусственного синтеза?

Ученые не в состоянии воссоздать ситуацию условного «сотворения мира» (т.е. необходимое состояние материи при температурах в миллиарды градусов Цельсия) в лабораторных условиях. «Сотворить» элементы в точности так, как это происходило при образовании Солнечной системы и Земли, невозможно. В процессе искусственного синтеза специалисты действуют доступными здесь на Земле средствами, но получают общее представление о том, как могло это происходить тогда и как, возможно, происходит сейчас на далеких звездах.

В общих чертах эксперимент происходит следующим образом. К ядру природного элемента (к примеру, кальция) добавляются нейтроны до тех пор, пока ядро не перестает принимать их. Последний изотоп, перегруженный нейтронами, проживает очень недолго, а произвести следующий не получается вообще. Это и есть критическая точка: предел существования ядер, перегруженных нейтронами.

Как много новых элементов можно создать?

Неизвестно. Вопрос о границе Периодической системы до сих пор открыт.

Кто придумывает название для новых элементов?

Сама процедура признания нового элемента очень сложна. Одним из ключевых требований является то, что открытие должно быть независимо перепроверено, экспериментально подтверждено. Значит, его надо повторить.

Так, например, для официального признания 112-го элемента, который был получен в Германии в 1996 году, понадобилось 14 лет. Церемония «крещения» элемента прошла только в июле 2010 года.

В мире есть несколько наиболее известных лабораторий , сотрудникам которых удалось синтезировать один или даже несколько новых элементов. Это Объединенный институт ядерных исследований в Дубне (Московская область), Ливерморская национальная лаборатория им. Лоуренса в Калифорнии (США), Национальная лаборатория им. Лоуренса в Беркли (США), Европейский Центр по изучению тяжёлых ионов им. Гельмгольца в Дармштадте (Германия) и др.

После того, как Международный союз теоретической и прикладной химии (ИЮПАК) признает факт синтеза новых химических элементов, право предлагать для них названия получают их официально признанные первооткрыватели.

При подготовке использованы материалы статей и интервью академика Юрия Оганесяна, научного руководителя Лаборатории ядерных реакций имени Флерова Объединенного института ядерных исследований в Дубне.

Синтези́рованные (иску́сственные) хими́ческие эле́менты - элементы, впервые идентифицированные как продукт искусственного синтеза. Часть из них (тяжёлые трансурановые элементы, все трансактиноиды), по-видимому, отсутствует в природе; другие элементы впоследствии были обнаружены в следовых количествах в земной коре (технеций, прометий, астат, нептуний, плутоний, америций, кюрий, берклий, калифорний), в фотосферах звёзд (технеций и, возможно, прометий), в оболочках сверхновых (калифорний и, вероятно, продукты его распада - берклий, кюрий, америций и более лёгкие).

Последним из элементов, найденным в природе до того, как он был синтезирован искусственно, стал франций (1939 год). Первым синтезированным химическим элементом был технеций в 1937 году. По состоянию на 2012 год, синтезированы ядерным слиянием или распадом элементы до унуноктия с атомным номером 118, а также предпринимались попытки синтеза следующих сверхтяжёлых трансурановых элементов. Синтез новых трансактиноидов и суперактиноидов продолжается.

Наиболее известными лабораториями, синтезировавшими по несколько новых элементов и несколько десятков или сотен новых изотопов, являются Национальная лаборатория им. Лоуренса в Беркли и Ливерморская национальная лаборатория в США, Объединённый институт ядерных исследований в СССР/России (Дубна), Европейский Центр по изучению тяжёлых ионов имени Гельмгольца в Германии, Кавендишская лаборатория Кембриджского университета в Великобритании, Институт физико-химических исследований в Японии и другие последние десятилетия над синтезом элементов в американских, немецком и российском центрах работают международные коллективы.

  • 1 Открытие синтезированных элементов по странам
    • 1.1 СССР, Россия
    • 1.2 США
    • 1.3 Германия
    • 1.4 Спорные приоритеты и совместные результаты
      • 1.4.1 США и Италия
      • 1.4.2 СССР и США
      • 1.4.3 Россия и Германия
      • 1.4.4 Россия и Япония
  • 2 Примечания
  • 3 Ссылки

Открытие синтезированных элементов по странам

СССР, Россия

В СССР и России были синтезированы элементы нобелий (102), флеровий (114), унунпентий (115), ливерморий (116), унунсептий (117), унуноктий (118).

США

В США были синтезированы элементы прометий (61), астат (85), нептуний (93), плутоний (94), америций (95), кюрий (96), берклий (97), калифорний (98), эйнштейний (99), фермий (100), менделевий (101), сиборгий (106).

Германия

В Германии были синтезированы элементы хассий (108), мейтнерий (109), дармштадтий (110), рентгений (111), коперниций (112).

Спорные приоритеты и совместные результаты

Для ряда элементов приоритет равноутверждён согласно решению совместной комиссии ИЮПАК и ИЮПАП или остаётся спорным:

США и Италия

Технеций (43) - в результате совместной работы получен на ускорителе в Беркли, Калифорния и химически идентифицирован в Палермо, Сицилия.

СССР и США

Лоуренсий (103), резерфордий (104), дубний (105).

Россия и Германия

Борий (107).

Россия и Япония

Унунтрий (113).

Примечания

  1. Emsley John. Nature"s Building Blocks: An A-Z Guide to the Elements. - New. - New York, NY: Oxford University Press, 2011. - ISBN 978-0-19-960563-7.
  2. Институт в Дубне стал четвёртым в мире по количеству открытых изотопов
  3. Isotope ranking reveals leading labs англ.
  4. http://flerovlab.jinr.ru/rus/elements.html
  5. Временное название для 115-го элемента; предложено название ланжевений.
  6. Временное название для 117-го элемента;
  7. Временное название для 118-го элемента; предложено название московий.
  8. R. C. Barber et al. Discovery of the transfermium elements (англ.) // Pure and Applied Chemistry. - 1993. - Т. 65. - № 8. - С. 1757-1814.
  9. последнее время мне неоднократно приходилось писать о ситуации с попранием приоритета советских ученых в синтезе сверхтяжелых
  10. О защите приоритета
  11. Chemistry: Periodic Table: darmstadtium: historical information
  12. http://element114.narod.ru/Projects/ao-iupac.html
  13. О защите приоритета
  14. Временное название для 113-го элемента; предложены названия беккерелий, японий, рикений, нихоний.
  • 7.Естествознание как феномен общечеловеческой культуры. Фундамен-тальные естественнонаучные направления: предмет и методы исследо-вания.
  • 8.Причины, по которым знания, накопленные древними цивилизациями Вавилона, Египта, Китая, не могут считаться научными.
  • 9.Природные и социальные катаклизмы, способствовавшие зарождению истоков научного знания в Древней Греции.
  • 10.Принципы и правила истинного познания, заложенные Фалесом Милет-ским. Поиск первоначал и концепция атомистики (Левкипп и Демокрит).
  • 12.Основы учения о движении тел по Аристотелю. Первая система мироздания Аристотеля – Птолемея.
  • 14.Причины угасания интереса к научному знанию, расцвет монотеистических религий, роль арабских и восточных народов в сохранении и развитии древнегреческих знаний
  • 15.Причины разработки критериев научного знания в Средние века. По-следующие вехи в развитии научного метода, его составляющие и его творцы
  • 20.Типы и механизмы фундаментальных взаимодействий в природе.
  • 21.Проявления фундаментальных взаимодействий в механике, термодинамике, ядерной физике, химии, космологии.
  • 22.Проявления фундаментальных взаимодействий и структурные уровни организации материи.
  • 26.Специфика законов природы в физике, химии, биологии, геологии, космологии.
  • 27.Базовые принципы, лежащие в основе картин мироздания от Аристотеля до наших дней.
  • 32.Современная реализация атомистической концепции Левкиппа – Демокрита. Поколения кварков и лептонов. Промежуточные бозоны как переносчики фундаментальных взаимодействий.
  • 34.Строение химических элементов, синтез трансурановых элементов.
  • 35.Атомно-молекулярный «конструктор» строения вещества. Различие физического и химического подходов в изучении свойств вещества.
  • 40.Основные задачи космологии. Решение вопроса о происхождении Вселенной на разных этапах развития цивилизации.
  • 41.Физические теории, послужившие основой для создания теории «горячей» Вселенной г.А. Гамова.
  • 42.Причины незначительной продолжительности во время начальных «эр» и «эпох» в истории Вселенной.
  • 43.Основные события, происходившие в эру квантовой гравитации. Проблемы «моделирования» этих процессов и явлений.
  • 44.Объяснить с энергетической точки зрения, почему Эпоха адронов предшествовала Эпохе лептонов.
  • 45.Энергии (температуры), при которых произошло отделение излучения от вещества, и Вселенная стала «прозрачной».
  • 46.Строительный материал для формирования крупномасштабной структуры Вселенной.
  • 49.Cвойства черных дыр и их обнаружения себя во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.
  • 51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.
  • 34.Строение химических элементов, синтез трансурановых элементов.

    В 1861 году выдающийся русский химик А.М.Бутлеров

    создал и обосновал теорию химического строения вещества, согласно

    которой свойства веществ определяются порядком связей атомов в

    молекулах и их взаимным влиянием. В 1869 году Д.И.Менделеев открыл9

    один из фундаментальных законов естествознания - периодический закон

    химических элементов, современная формулировка которого такова:

    свойства химических элементов находятся в периодической зависимости от электрического заряда их ядер.

    35.Атомно-молекулярный «конструктор» строения вещества. Различие физического и химического подходов в изучении свойств вещества.

    Атомом называется наименьшая частица данного химического элемента. Все существующие в природе атомы представлены в периодической системе элементов Менделеева.

    Атомы соединяются в молекулу за счет химических связей, основанных на электрическом взаимодействии. Число атомов в молекуле может быть разным. Молекула может состоять из одного атома, из двух, трех и даже нескольких сотен атомов.

    Примером двухатомных молекул могут служить СО, NO, O 2 , H 2 , трехатомных – CO 2 , H 2 O, SO 2 , четырехатомных – NH 3 . Таким образом, молекула состоит из одного или нескольких атомов одного или разных химических элементов.

    Можно определить молекулу как наименьшую частицу данного вещества, обладающую его химическими свойствами. Между молекулами любого тела существуют силы взаимодействия – притяжения и отталкивания. Силы притяжения обеспечивают существование тела как целого. Для того чтобы разделить тело на части, необходимо приложить значительные усилия. Существование сил отталкивания между молекулами обнаруживается при попытке сжать тело.

    40.Основные задачи космологии. Решение вопроса о происхождении Вселенной на разных этапах развития цивилизации.

    Космология занимается изучением физических свойств Вселенной как целого. В частности, ее целью является создание теории всей охваченной астрономическими наблюдениями области пространства, которую принято называть Метагалактикой.

    Как известно, теория относительности приводит к выводу о том, что присутствие больших масс влияет на свойства пространства - времени. Свойства привычного на евклидова пространства (например, сумма углов треугольника, свойства параллельных линий) вблизи больших масс изменяются или, как говорят, пространство "искривляется". Это искривление пространства, создаваемое отдельными массами (например, звездами), очень мало.

    Так, следует ожидать, что вследствие искривления пространства луч света вблизиСолнца должен изменить свое направление. Точные измерения положений звезд вблизи Солнца но время полных солнечных затмений позволяют уловить этот эффект, правда, на пределе точности измерений.

    Однако суммарное действие гравитирующих (т.е. обладающих притяжением) масс всех галактик и сверхгалактик может вызвать определенную кривизну пространства в целом, что существенным образом повлияет на его свойства, а следовательно, и на эволюцию всей Вселенной.

    Даже сама постановка задачи определения (на основе законов теории относительности) свойств пространства и времени при произвольном распределении масс чрезвычайно трудна. Поэтому обычно рассматриваются некоторые приближенные схемы, называемые моделями Вселенной.

    Самые простые из них основаны на предположении, что вещество во Вселенной в больших масштабах распределено одинаково (однородность), а свойства пространства одинаковы по всем направлениям (изотропность). Такое пространство должно обладать некоторой кривизной, а соответствующие ему модели называются

    однородными изотропными моделями Вселенной.

    Решения эйнштейновских уравнений тяготения для случая однородной изотропной

    модели показывают, что расстояния между отдельными неоднородностями, если

    исключить их индивидуальные хаотические движения (пекулярные скорости), не могут сохраняться постоянными: Вселенная должна либо сжиматься, либо, что

    соответствует наблюдениям, расширяться. Если отвлечься от пекулярных скоростей

    галактик, то скорость взаимного удаления любых двух тел во Вселенной тем больше, чем больше расстояние между ними. Для относительно малых расстояний эта зависимость линейна, причем коэффициентом пропорциональности служит постоянная Хаббла. Из сказанного следует, что расстояние между любой парой тел есть функция времени. Вид этой функции зависит от знака кривизны пространства. Если кривизна отрицательна, то "Вселенная" все время расширяется. При нулевой кривизне, соответствующей; евклидову пространству, расширение происходит с замедлением, причем скорость расширения стремится к нулю. Наконец, расширение "Вселенной", обладающей положительной кривизной, в некоторую эпоху должно смениться сжатием.

    В последнем случае в силу неевклидовой геометрии пространство должно быть

    конечным, т.е. иметь в любой момент времени определенный конечный объем,

    конечное число звезд, галактик и т.д. Однако "границ" у Вселенной, естественно,

    не может быть ни в каком случае.

    Двумерной моделью такого замкнутого трехмерного пространства является

    поверхность раздуваемого шара. Галактики в такой модели изображаются плоскими

    фигурами, начерченными на поверхности. При растяжении шара увеличивается площадь поверхности и расстояние между фигурами. Хотя в принципе такой шар может неограниченно расти, площадь его поверхности конечна в каждый момент времени.

    Тем не менее в его двумерном пространстве (поверхности) границ нет. Кривизна пространства в однородной изотропной модели за-висит от значения средней плотности вещества Если плотность меньше некоторого критического значения, кривизна отрицательна и имеет место первый случай. Второй случай (нулевая кривизна) осуществляется при критическом значении плотности. Наконец, при плотности больше критической ¾ кривизна положительна (третий случай). В процессе расширения абсолютное значение кривизны может меняться, но знак ее

    остается постоянным.

    Критическое значение плотности выражается через постоянную Хаббла Н и гравитационную постоянную f следующим образом: при Н = 55 км/сек × Мпс, r кр = 5 × 10-30 г/см3 Учет всех известных в Метагалактике масс приводит к оценке средней плотности около 5×10-31 г/см3

    Однако это заведомо нижний предел, так как еще не известна масса невидимой среды между галактиками. Поэтому имеющаяся оценка плотности не дает оснований судить о знаке кривизны реального пространства.

    В принципе возможны другие пути эмпирического выбора наиболее реальной модели Вселенной на основе определения красного смещения наиболее далеких объектов (от которых свет, дошедший до нас, был испущен сотни миллионов и миллиарды лет назад) и сопоставления этих скоростей с расстояниями до объектов, найденными другими методами. Фактически таким путем из наблюдении определяется изменение во времени скорости расширения. Современные наблюдения еще не настолько точны, чтобы можно было уверенно судить о знаке кривизны пространства. Можно сказать только, что кривизна пространства Вселенной близка к нулю.

    Постоянная Хаббла, играющая такую важную роль в теории однородной изотропной

    Вселенной, имеет любопытный физический смысл. Чтобы пояснить его, следует

    обратить внимание на то, что обратная величина 1 / H имеет размерность времени и

    равна 1/H = 6×1017 сек или 20 миллиардам лет. Легко сообразить, что это есть

    промежуток времени, необходимый для расширения Метагалактики до современного состояния при условии, что в прошлом скорость расширения не менялась. Однако вопрос о постоянстве этой скорости, о предшествующей и последующей (по отношению к современной) стадиях расширения Вселенной еще плохо изучен.

    Подтверждением того, что Вселенная действительно когда-то находилась в некотором особом состоянии, является открытое в 1965 г. космическое радиоизлучение, названное реликтовым (т.е. остаточным). Его спектр тепловой и воспроизводит кривую Планка для температуры около 3 ёК. [Заметим, что согласно формуле максимум такого излучения приходится на длину волны около 1 мм, близкую к доступному для наблюдений с Земли диапазону электромагнитного спектра.

    Отличительной чертой реликтового излучения является одинаковость его

    интенсивности по всем направлениям (изотропность). Именно этот факт и позволил выделить столь слабое излучение, которое не удавалось связать ни с каким объектом или областью на небе.

    Название "реликтовое" дано потому, что это излучение должно быть остатком

    излучения Вселенной, существовавшего в эпоху большой ее плотности, когда она

    была непрозрачна к собственному излучению. Расчет показывает, что это должно

    было иметь место при плотности r > 10-20 г/см3 (средняя концентрация атомов

    порядка 104 см -3), т.е. когда плотность в миллиард раз превышала современную.

    Поскольку плотность меняется обратно пропорционально кубу радиуса, то, полагая

    расширение Вселенной в прошлом таким же, как и сейчас, получим, что в эпоху

    непрозрачности все расстояния во Вселенной были в 1000 раз меньше. Во столько же раз была меньше и длины волны l . Поэтому кванты, имеющие сейчас длину волны 1мм, ранее имели длину волны около 1 мк, соответствующую максимуму излучения при температуре около 3000 ёК.

    Таким образом, существование реликтового излучения является не только указанием на большую плотность Вселенной в прошлом, но и на ее высокую температуру ("горячая" модель Вселенной).

    О том, была ли Вселенная в еще более плотных состояниях, сопровождавшихся

    значительно более высокими температурами, в принципе можно было бы судить на

    основании аналогичного изучения реликтовых нейтрино. Для них непрозрачность

    Вселенной должна наступить при плотностях r " 107 г/см3 что могло быть только

    на сравнительно очень ранних этапах развития Вселенной. Как и в случае

    реликтового излучения, когда вследствие расширения Вселенная переходит в

    состояние с меньшей плотностью, нейтрино перестают взаимодействовать с остальным веществом, как бы "отрываются" от него, и в дальнейшем претерпевают только космологическое красное смещение, обусловленное расширением. К сожалению, регистрация таких нейтрино, которые в настоящее время должны обладать энергией всего лишь в несколько десятитысячных долей электрон-вольт, вряд ли сможет быть осуществлена в скором времени.

    Космология в принципе позволяет получить представление о наиболее общих

    закономерностях строения и развития Вселенной. Легко понять, какое огромное

    значение имеет этот раздел астрономии для формирования правильного

    материалистического мировоззрения. Изучая законы всей Вселенной в целом, мы еще глубже познаем свойства материи, пространства и времени. Некоторые из них,

    например, свойства реального физического пространства и времени в больших

    масштабах, можно изyчить только в рамках космологии. Поэтому ее результаты имеют важнейшее значение не только для астрономии и физики, которые получают возможность уточнить свои законы, но и для философии, приобретающей обширный материал для обобщения закономерностей материального мира.