Типы ядерных превращений, альфа и бета-распад. Альфа- бета- и гамма- распады

2.3 Закономерности α - и β -распада

Активностью A нуклида в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:

Единица активности беккерель (Бк) : 1Бк — активность нуклида, при которой за 1с происходит один акт распада. Внесистемная единица активности нуклида в радиоактивном источнике — кюри (Кu) : 1 Кu=3,7·10 10 Бк.

Альфа-распад . Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия:

Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·10 7 м/с, а соответствующая кинетическая энергия около 7,5·10 –13 Дж (приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающей α-частицы огромна, но она все же составляет только 5 % от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии.

Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рисунке 2.4.

Рисунок 2.4 - Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ

Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.

В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рисунок 2.5). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.

Бета-распад . При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут (см. § 1.2), они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон превращается в протон и электрон

Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино . Она обозначается символом Поэтому реакция распада нейтрона записывается в виде

Аналогичный процесс происходит и внутри ядер при β-распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале значений.

При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория возникающего при α-распаде урана в палладий

Наряду с электронным β-распадом обнаружен так называемый позитронный β + -распад, при котором из ядра вылетают позитрон и нейтрино . Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:

Гамма-распад . В отличие от α- и β-радиоактивности, γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.

Ядра большинства атомов - это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^226)Ra→(86^222)Rn+(2^4)He. Чтобы понимать смысл написанного выражения, изучите тему о массовом и зарядовом числе ядра атома .

Удалось установить, что основные виды радиоактивного распада: альфа и бета-распад происходят согласно следующему правилу смещения:

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^238)U→(90^234)Th+(2^4)He.

Альфа-распад - это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада: (19^40)K→(20^40)Ca+(-1^0)e+(0^0)v.

Бета-распад - это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад - это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни - менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие

Альфа и бета-излучения в общем случае называются радиоактивными распадами. Это процесс, представляющий собой испускание из ядра, происходящий с огромной скоростью. В результате атом или его изотоп может превратиться из одного химического элемента в другой. Альфа и бета-распады ядер характерны для нестабильных элементов. К ним относятся все атомы с зарядовым числом больше 83 и массовым числом, превышающим 209.

Условия возникновения реакции

Распад, подобно другим радиоактивным превращениям, бывает естественным и искусственным. Последний происходит из-за попадания в ядро какой-либо посторонней частицы. Сколько альфа и бета-распада способен претерпеть атом - зависит лишь от того, как скоро будет достигнуто стабильное состояние.

При естественных обстоятельствах встречается альфа и бета-минус распады.

При искусственных условиях присутствует нейтронный, позитронный, протонный и другие, более редкие разновидности распадов и превращений ядер.

Данные названия дал занимавшийся изучением радиоактивного излучения.

Различие между стабильным и нестабильным ядром

Способность к распаду напрямую зависит от состояния атома. Так называемое "стабильное" или нерадиоактивное ядро свойственно нераспадающимся атомам. В теории наблюдение за такими элементами можно вести до бесконечности, чтобы окончательно убедиться в их стабильности. Требуется это для того, чтобы отделить такие ядра от нестабильных, которые имеют крайне долгий период полураспада.

По ошибке такой "замедленный" атом можно принять за стабильный. Однако ярким примером может стать теллур, а конкретнее, его изотоп с номером 128, имеющий в 2,2·10 24 лет. Этот случай не единичный. Лантан-138 подвержен полураспаду, срок которого составляет 10 11 лет. Этот срок в тридцать раз превышает возраст существующей вселенной.

Суть радиоактивного распада

Данный процесс происходит произвольно. Каждый распадающийся радионуклид приобретает скорость, являющуюся константой для каждого случая. Скорость распада не может измениться под влиянием внешних факторов. Неважно, будет происходить реакция под воздействием огромной гравитационной силы, при абсолютном нуле, в электрическом и магнитном поле, во время какой-либо химической реакции и прочее. Повлиять на процесс можно только прямым воздействием на внутренность атомного ядра, что практически невозможно. Реакция спонтанная и зависит лишь от атома, в котором протекает, и его внутреннего состояния.

При упоминании радиоактивных распадов часто встречается термин "радионуклид". Тем, кто не знаком с ним, следует знать, что данное слово обозначает группу атомов, которые имеют радиоактивные свойства, собственное массовое число, атомный номер и энергетический статус.

Различные радионуклиды применяются в технических, научных и прочих сферах жизнедеятельности человека. К примеру, в медицине данные элементы используются при диагностировании заболеваний, обработке лекарств, инструментов и прочих предметов. Имеется даже ряд лечебных и прогностических радиопрепаратов.

Не менее важным является и определение изотопа. Этим словом называют особую разновидность атомов. Они имеют одинаковый атомный номер, как у обычного элемента, однако отличное массовое число. Вызвано это различие количеством нейтронов, которые не влияют на заряд, как протоны и электроны, но меняют массу. К примеру, у простого водорода их имеется целых 3. Это единственный элемент, изотопам которого были присвоены названия: дейтерий, тритий (единственный радиоактивный) и протий. В остальных случаях имена даются в соответствии с атомными массами и основным элементом.

Альфа-распад

Это вид радиоактивной реакции. Характерен для естественных элементов из шестого и седьмого периода таблицы химических элементов Менделеева. В особенности для искусственных или трансурановых элементов.

Элементы, подверженные альфа-распаду

В число металлов, для которых характерен данный распад, относят торий, уран и прочие элементы шестого и седьмого периода из периодической таблицы химических элементов, считая от висмута. Также процессу подвергаются изотопы из числа тяжелых элементов.

Что происходит во время реакции?

При альфа-распаде начинается испускание из ядра частиц, состоящих из 2 протонов и пары нейтронов. Сама выделяемая частица является ядром атома гелия, с массой 4 единицы и зарядом +2.

В итоге появляется новый элемент, который расположен на две клетки левее исходного в периодической таблице. Такое расположение определяется тем, что исходный атом потерял 2 протона и вместе с этим - начальный заряд. В итоге масса возникшего изотопа на 4 массовые единицы уменьшается по сравнению с первоначальным состоянием.

Примеры

Во время такого распада из урана образуется торий. Из тория появляется радий, из него - радон, который в итоге дает полоний, и в конце - свинец. При этом в процессе возникают изотопы этих элементов, а не они сами. Так, получается уран-238, торий-234, радий-230, радон-236 и далее, вплоть до возникновения стабильного элемента. Формула такой реакции выглядит следующим образом:

Th-234 -> Ra-230 -> Rn-226 -> Po-222 -> Pb-218

Скорость выделенной альфа-частицы в момент испускания составляет от 12 до 20 тыс. км/сек. Находясь в вакууме, такая частица обогнула бы земной шар за 2 секунды, двигаясь по экватору.

Бета-распад

Отличие этой частицы от электрона - в месте появления. Распад бета возникает в ядре атома, а не электронной оболочке, окружающей его. Чаще всего встречается из всех существующих радиоактивных превращений. Его можно наблюдать практически у всех существующих в настоящее время химических элементов. Из этого следует, что у каждого элемента имеется хотя бы один подверженный распаду изотоп. В большинстве случаев в результате бета-распадапроисходит бета-минус разложение.

Протекание реакции

При данном процессе происходит выбрасывание из ядра электрона, возникшего из-за самопроизвольного превращения нейтрона в электрон и протон. При этом протоны за счет большей массы остаются в ядре, а электрон, называемый бета-минус частицей, покидает атом. И поскольку протонов стало больше на единицу, ядро самого элемента меняется в большую сторону и располагается справа от исходного в периодической таблице.

Примеры

Распад бета с калием-40 превращает его в изотоп кальция, который расположен справа. Радиоактивный кальций-47 становится скандием-47, который может превратиться в стабильный титан-47. Как выглядит такой бета-распад? Формула:

Ca-47 -> Sc-47 -> Ti-47

Скорость вылета бета-частицы составляет 0,9 от скорости света, равной 270 тыс. км/сек.

В природе бета-активных нуклидов не слишком много. Значимых из них довольно мало. Примером может послужить калий-40, которого в естественной смеси содержится лишь 119/10000. Также естественными бета-минус-активными радионуклидами из числа значимых являются продукты альфа и бета-распад урана и тория.

Распад бета имеет типичный пример: торий-234, который при альфа-распаде превращается в протактиний-234, а затем таким же образом становится ураном, но другим его изотопом под номером 234. Этот уран-234 вновь из-за альфа-распада становится торием, но уже иной его разновидностью. Затем этот торий-230 становится радием-226, который превращается в радон. И в той же последовательности, вплоть до таллия, лишь с различными бета-переходами назад. Заканчивается этот радиоактивный бета-распад возникновением стабильного свинца-206. Это превращение имеет следующую формулу:

Th-234 -> Pa-234 -> U-234 -> Th-230 -> Ra-226 -> Rn-222 -> At-218 -> Po-214 -> Bi-210 -> Pb-206

Естественными и значимыми бета-активными радионуклидами являются К-40 и элементы от таллия до урана.

Распад бета-плюс

Также существует бета-плюс превращение. Оно также называется позитронный бета-распад. В нем происходит испускание из ядра частицы под названием позитрон. Результатом становится превращение исходного элемента в стоящий слева, который имеет меньший номер.

Пример

Когда происходит электронный бета-распад, магний-23 становится стабильным изотопом натрия. Радиоактивный европий-150 становится самарием-150.

Возникшая реакция бета-распада может создать бета+ и бета- испускания. Скорость вылета частиц в обоих случаях равна 0,9 от скорости света.

Другие радиоактивные распады

Не считая таких реакций, как альфа-распад и бета-распад, формула которых широко известна, существуют и другие, более редкие и характерные для искусственных радионуклидов процессы.

Нейтронный распад . Происходит испускание нейтральной частицы 1 единицы массы. Во время него один изотоп превращается в другой с меньшим массовым числом. Примером может стать превращение лития-9 в литий-8, гелия-5 в гелий-4.

При облучении гамма-квантами стабильного изотопа йода-127 он становится изотопом с номером 126 и приобретает радиоактивность.

Протонный распад . Встречается крайне редко. Во время него происходит испускание протона, имеющего заряд +1 и 1 единицу массы. Атомный вес становится меньше на одно значение.

Любое радиоактивное превращение, в частности, радиоактивные распады, сопровождаются выделением энергии в форме гамма-излучения. Его называют гамма-квантами. В некоторых случаях наблюдается рентгеновское излучение, имеющее меньшую энергию.

Представляет собой поток гамма-квантов. Является электромагнитным излучением, более жестким, чем рентгеновское, которое применяется в медицине. В результате появляются гамма-кванты, или потоки энергии из атомного ядра. Рентгеновское излучение также является электромагнитным, но возникает из электронных оболочек атома.

Пробег альфа-частиц

Альфа-частицы с массой от 4 атомных единиц и зарядом +2 движутся прямолинейно. Из-за этого можно говорить о пробеге альфа-частиц.

Значение пробега зависит от изначальной энергии и колеблется от 3 до 7 (иногда 13) см в воздухе. В плотной среде составляет сотую долю от миллиметра. Подобное излучение не может пробить лист бумаги и человеческую кожу.

Из-за собственной массы и зарядового числа альфа-частица имеет наибольшую ионизирующую способность и разрушает все на пути. В связи с этим альфа-радионуклиды наиболее опасны для людей и животных при воздействии на организм.

Проникающая способность бета-частиц

В связи с малым массовым числом, которое в 1836 раз меньше протона, отрицательным зарядом и размером, бета-излучение оказывает слабое действие на вещество, через которое пролетает, но притом полет дольше. Также путь частицы не прямолинейный. В связи с этим говорят о проникающейся способности, которая зависит от полученной энергии.

Проникающие способности у бета-частиц, возникших во время радиоактивного распада, в воздухе достигают 2,3 м, в жидкостях подсчет ведется в сантиметрах, а в твердых телах - в долях от сантиметра. Ткани организма человека пропускают излучение на 1,2 см в глубину. Для защиты от бета-излучения может послужить простой слой воды до 10 см. Поток частиц с достаточно большой энергией распада в 10 Мэв почти весь поглощается такими слоями: воздух - 4 м; алюминий - 2,2 см; железо - 7,55 мм; свинец - 5,2 мм.

Учитывая малые размеры, частицы бета-излучения имеют малую ионизирующую способность по сравнении с альфа-частицами. Однако при попадании внутрь они намного опаснее, чем во время внешнего облучения.

Наибольшие проникающие показатели среди всех видов излучений в настоящее время имеет нейтронное и гамма. Пробег этих излучений в воздухе иногда достигает десятков и сотен метров, но с меньшими ионизирующими показателями.

Большинство изотопов гамма-квантов по энергии не превышают показателей в 1,3 МэВ. Изредка достигаются значения в 6,7 МэВ. В связи с этим для защиты от такого излучения используются слои из стали, бетона и свинца для кратности ослабления.

К примеру, чтобы десятикратно ослабить гамма-излучения кобальта, необходима свинцовая защита толщиной около 5 см, для 100-кратного ослабления потребуется 9,5 см. Бетонная защита составит 33 и 55 см, а водная - 70 и 115 см.

Ионизирующие показатели нейтронов зависят от их энергетических показателей.

При любой ситуации лучшим защитным методом от излучения станет максимальное отдаление от источника и как можно меньшее времяпрепровождение в зоне высокой радиации.

Деление ядер атомов

Под атомов подразумевается самопроизвольное, или под влиянием нейтронов, на две части, примерно равные по размерам.

Эти две части становятся радиоактивными изотопами элементов из основной части таблицы химических элементов. Начинаются от меди до лантаноидов.

Во время выделения вырывается пара лишних нейтронов и возникает избыток энергии в форме гамма-квантов, который гораздо больше, чем при радиоактивном распаде. Так, при одном акте радиоактивного распада возникает один гамма-квант, а во время акта деления появляется 8,10 гамма-квантов. Также разлетевшиеся осколки имеют большую кинетическую энергию, переходящую в тепловые показатели.

Высвободившиеся нейтроны способны спровоцировать разделение пары аналогичных ядер, если они расположены вблизи и нейтроны в них попали.

В связи с этим возникает вероятность возникновения разветвляющей, ускоряющейся цепной реакции разделения атомных ядер и создания большого количества энергии.

Когда такая цепная реакция находится под контролем, то её можно использовать в определённых целях. К примеру, для отопления или электроэнергии. Такие процессы проводятся на атомных электростанциях и реакторах.

Если потерять контроль над реакцией, то случится атомный взрыв. Подобное применяется в ядерном оружии.

В естественных условиях имеется только один элемент - уран, имеющий лишь один делящийся изотоп с номером 235. Он является оружейным.

В обыкновенном урановом атомном реакторе из урана-238 под влиянием нейтронов образуют новый изотоп под номером 239, а из него - плутоний, который является искусственным и не встречается в естественных условиях. При этом возникший плутоний-239 применяется в оружейных целях. Этот процесс деления атомных ядер является сутью всего атомного оружия и энергетики.

Такие явления, как альфа-распад и бета-распад, формула которых изучается в школе, широко распространенны в наше время. Благодаря данным реакциям, существуют атомные электростанции и многие другие производства, основанные на ядерной физике. Однако не стоит забывать про радиоактивность многих таких элементов. При работе с ними требуется специальная защита и соблюдение всех мер предосторожности. В противном случае это может привести к непоправимой катастрофе.

Периоды полураспада известных α-радиоактивных ядер варьируются в широких пределах. Так, изотоп вольфрама 182 W имеет период полураспада T 1/2 > 8.3·10 18 лет, а изотоп протактиния 219 Pa имеет T 1/2 = 5.3·10 -8 c.

Рис. 2.1. Зависимость периода полураспада радиоактивного элемента от кинетической энергии α-частицы естественно радиоактивного элемента. Штриховая линия – закон Гейгера-Нэттола.

Для четно-четных изотопов зависимость периода полураспада от энергии α-распада Q α описывается эмпирическим законом Гейгера-Неттола

где Z − заряд конечного ядра, период полураспада T 1/2 выражен в секундах, а энергия α-частицы E α − в МэВ. На рис. 2.1 показаны экспериментальные значения периодов полураспада для α-радиоактивных четно-четных изотопов (Z изменяется от 74 до 106) и их описание с помощью соотношения (2.3).
Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция зависимости
lg T 1/2 от Q α сохраняется, но периоды полураспада в 2–100 раз больше, чем для четно-четных ядер с теми же Z и Q α .
Для того чтобы происходил α-распад, необходимо, чтобы масса исходного ядра M(A,Z) была больше суммы масс конечного ядра M(A-4, Z-2) и α-частицы M α:

где Q α = c 2 − энергия α-распада.
Так как M α << M(A-4, Z-2), основная часть энергии α-распада уносится αчастицей и лишь ≈ 2% − конечным ядром (A-4, Z-2).
Энергетические спектры α-частиц многих радиоактивных элементов состоят из нескольких линий (тонкая структура α-спектров). Причина появления тонкой структуры α-спектра − распад начального ядра (A,Z) на возбужденное состояние ядра (A-4, Z-2). Измеряя спектры α-частиц можно получить информацию о природе возбужденных состояний
ядра (A-4, Z-2).
Для определения области значений А и Z ядер, для которых энергетически возможен α-распад, используют экспериментальные данные об энергиях связи ядер. Зависимость энергии α-распада Q α от массового числа А показана на рис. 2.2.
Из рис. 2.2 видно, что α-распад становится энергетически возможным, начиная с А ≈ 140. В областях A = 140–150 и A ≈ 210 величина Q α имеет отчетливые максимумы, которые обусловлены оболочечной структурой ядра. Максимум при A = 140–150 связан с заполнением нейтронной оболочки с магическим числом N =А – Z = 82, а максимум при A ≈ 210 связан с заполнением протонной оболочки при Z = 82. Именно за счет оболочечной структуры атомного ядра первая (редкоземельная) область α-активных ядер начинается с N = 82, а тяжелые α-радиоактивные ядра становятся особенно многочисленными, начиная с Z = 82.


Рис. 2.2. Зависимость энергии α-распада от массового числа А.

Широкий диапазон периодов полураспада, а также большие значения этих периодов для многих α-радиоактивных ядер объясняются тем, что α‑частица не может «мгновенно» покинуть ядро, несмотря на то, что это энергетически выгодно. Для того чтобы покинуть ядро, α‑частица должна преодолеть потенциальный барьер − область на границе ядра, образующуюся за счёт потенциальной энергии электростатического отталкивания a-частицы и конечного ядра и сил притяжения между нуклонами. С точки зрения классической физики α‑частица не может преодолеть потенциальный барьер, так как не имеет необходимой для этого кинетической энергии. Однако квантовая механика допускает такую возможность − αчастица имеет определённую вероятность пройти сквозь потенциальный барьер и покинуть ядро. Это квантовомеханическое явление называют «туннельным эффектом» или «туннелированием». Чем больше высота и ширина барьера, тем меньше вероятность туннелирования, а период полураспада соответственно больше. Большой диапазон периодов полураспада
α-излучателей объясняется различным сочетанием кинетических энергий α-частиц и высот потенциальных барьеров. Если бы барьера не существовало, то α‑частица покинула бы ядро за характерное ядерное
время ≈ 10 -21 – 10 -23 с.
Простейшая модель α-распада была предложена в 1928 году Г. Гамовым и независимо от него Г. Герни и Э. Кондоном. В этой модели предполагалось, что α‑частица постоянно существует в ядре. Пока α-частица находится в ядре на нее действуют ядерные силы притяжения. Радиус их действия сравним с радиусом ядра R. Глубина ядерного потенциала – V 0 . За пределами ядерной поверхности при r > R потенциал является кулоновским потенциалом отталкивания

V(r) = 2Ze 2 /r.


Рис. 2.3. Энергии α‑частиц E α в зависимости от числа нейтронов N
в исходном ядре. Линии соединяют изотопы одного и того же химического элемента.

Упрощенная схема совместного действия ядерного потенциала притяжения и кулоновского потенциала отталкивания показана на рисунке 2.4. Для того, чтобы выйти за пределы ядра α-частица с энергией E α должна пройти сквозь потенциальный барьер, заключенный в области от R до R c . Вероятность α-распада в основном определяется вероятностью D прохождения α-частицы через потенциальный барьер

В рамках этой модели удалось объяснить сильную зависимость вероятности αраспада от энергии α-частицы.


Рис. 2.4. Потенциальная энергия α-частицы. Потенциальный барьер.

Для того чтобы рассчитать постоянную распада λ, надо коэффициент прохождения α-частицы через потенциальный барьер умножить, во-первых, на вероятность w α того, что α‑частица образовалась в ядре, и, во-вторых, на вероятность того, что она окажется на границе ядра. Если α‑частица в ядре радиуса R имеет скорость v, то она будет подходить к границе в среднем ≈ v/2R раз в секунду. В результате для постоянной распада λ получается соотношение

(2.6)

Скорость α‑частицы в ядре можно оценить, исходя из её кинетической энергии E α + V 0 внутри ядерной потенциальной ямы, что даёт v ≈ (0.1-0.2)с. Уже из этого следует, что при наличии в ядре α‑частицы вероятность её пройти сквозь барьер D <10 -14 (для самых короткоживущих относительно α‑распада тяжелых ядер).
Грубость оценки предэкспоненциального множителя не очень существенна, потому что постоянная распада зависит от него несравненно слабее, чем от показателя экспоненты.
Из формулы (2.6) следует, что период полураспада сильно зависит от радиуса ядра R, поскольку радиус R входит не только в предэкспоненциальный множитель, но и в показатель экспоненты, как предел интегрирования. Поэтому из данных по α-распаду можно определять радиусы атомных ядер. Полученные таким путем радиусы оказываются на 20–30% больше найденных в опытах по рассеянию электронов. Это различие связано с тем, что в опытах с быстрыми электронами измеряется радиус распределения электрического заряда в ядре, а в α-распаде измеряется расстояние между ядром и α‑частицей, на котором перестают действовать ядерные силы.
Наличие постоянной Планка в показателе экспоненты (2.6) объясняет сильную зависимость периода полураспада от энергии. Даже небольшое изменение энергии приводит к значительному изменению показателя экспоненты и тем самым к очень резкому изменению периода полураспада. Поэтому энергии вылетающих α‑частиц сильно ограничены. Для тяжелых ядер α‑частицы с энергиями выше 9 МэВ вылетают практически мгновенно, а с энергиями ниже 4 МэВ живут в ядре так долго, что α-распад даже не удается зарегистрировать. Для редкоземельных α-радиоактивных ядер обе энергии снижаются за счет уменьшения радиуса ядра и высоты потенциального барьера.
На рис. 2.5 показана зависимость энергии α-распада изотопов Hf (Z = 72) от массового числа A в области массовых чисел A = 156–185. В таблице 2.1 приведены энергии α-распада, периоды полураспада и основные каналы распада изотопов 156–185 Hf. Видно как по мере увеличения массового числа A уменьшается энергия α-распада, что приводит к уменьшению вероятности α-распада и увеличению вероятности β-распада (таблица 2.1). Изотоп 174 Hf, являясь стабильным изотопом (в естественной смеси изотопов он составляет 0.16%), тем не менее распадается с периодом полураспада T 1/2 = 2·10 15 лет с испусканием α‑частицы.


Рис. 2.5. Зависимость энергии α-распада Q α изотопов Hf (Z = 72)
от массового числа A.

Таблица 2.1

Зависимость энергии α-распада Q α , периода полураспада T 1/2 ,
различных мод распада изотопов H f (Z = 72) от массового числа A

Z N A Q α T 1/2 Моды распада (%)
72 84 156 6.0350 23 мс α (100)
72 85 157 5.8850 110 мс α (86), е (14)
72 86 158 5.4050 2.85 с α (44.3), е (55.7)
72 87 159 5.2250 5.6 с α (35), е (65)
72 88 160 4.9020 13.6 с α (0.7), е (99.3)
72 89 161 4.6980 18.2 с α (<0.13), е (>99.87)
72 90 162 4.4160 39.4 с α (<8·10 -3), е (99.99)
72 91 163 4.1280 40.0 с α (<1·10 -4), е (100)
72 92 164 3.9240 111 с е (100)
72 93 165 3.7790 76 с е (100)
72 94 166 3.5460 6.77 мин е (100)
72 95 167 3.4090 2.05 мин е (100)
72 96 168 3.2380 25.95 мин е (100)
72 97 169 3.1450 3.24 мин е (100)
72 98 170 2.9130 16.01 ч е (100)
72 99 171 2.7390 12.1 ч е (100)
72 100 172 2.7470 1.87 ч е (100)
72 101 173 2.5350 23.4 ч е (100)
72 102 174 2.4960 2·10 15 л е (100)
72 103 175 2.4041 70 дн е (100)
72 104 176 2.2580 стаб.
72 105 177 2.2423 стаб.
72 106 178 2.0797 стаб.
72 107 179 1.8040 стаб.
72 108 180 1.2806 стаб.
72 109 181 1.1530 42.39 дн β - (100)
72 110 182 1.2140 8.9·10 6 л β - (100)
72 111 183 0.6850 1.07 ч β - (100)
72 112 184 0.4750 4.12 ч β - (100)
72 113 185 0.0150 3.5 мин β - (100)

Изотопы Hf c A = 176–180 являются стабильными изотопами. Эти изотопы также имеют положительную энергию α‑распада. Однако энергия α-распада ~1.3–2.2 МэВ слишком мала и α‑распад этих изотопов не обнаружен, несмотря на отличную от нуля вероятность α-распада. При дальнейшем увеличении массового числа A > 180 доминирующим каналом распада становится β - -распад.
При радиоактивных распадах конечное ядро может оказаться не только в основном, но и в одном из возбужденных состояний. Однако сильная зависимость вероятности α-распада от энергии α‑частицы приводит к тому, что распады на возбужденные уровни конечного ядра обычно идут с очень низкой интенсивностью, потому что при возбуждении конечного ядра уменьшается энергия α‑частицы. Поэтому экспериментально удается наблюдать только распады на вращательные уровни, имеющие относительно низкие энергии возбуждения. Распады на возбужденные уровни конечного ядра приводят к возникновению тонкой структуры энергетического спектра вылетающих α‑частиц.
Основным фактором, определяющим свойства α-распада, является прохождение α‑частиц через потенциальный барьер. Другие факторы проявляются сравнительно слабо, но в отдельных случаях дают возможность получить дополнительную информацию о структуре ядра и механизме α‑распада ядра. Одним из таких факторов является появление квантовомеханического центробежного барьера. Если α‑частица вылетает из ядра (A,Z), имеющего спин J i , и при этом образуется конечное ядро
(A-4, Z-2) в состоянии со спином J f , то α‑частица должна унести полный момент J, определяемый соотношением

Так как α-частица имеет нулевой спин, её полный момент J совпадает с уносимым α-частицей орбитальным моментом количества движения l

В результате возникает квантовомеханический центробежный барьер.

Изменение формы потенциального барьера за счет центробежной энергии незначительно главным образом из-за того, что центробежная энергия спадает с расстоянием значительно быстрее кулоновской (как 1/r 2 , а не как 1/r). Однако, поскольку это изменение делится на постоянную Планка и попадает в показатель экспоненты, то при больших l, оно приводит к изменению времени жизни ядра.
В таблице 2.2 приведена рассчитанная проницаемость центробежного барьера B l для α-частиц, вылетающих с орбитальным моментом l относительно проницаемости центробежного барьера B 0 для α-частиц, вылетающих с орбитальным моментом l = 0 для ядра с Z = 90, энергия α-частицы E α = 4.5 МэВ. Видно, что с увеличением орбитального момента l, уносимого α-частицей, проницаемость квантовомеханического центробежного барьера резко падает.

Таблица 2.2

Относительная проницаемость центробежного барьера для α-частиц,
вылетающих с орбитальным моментом l
(Z = 90, E α = 4.5 МэВ)

Более существенным фактором, способным резко перераспределить вероятности различных ветвей α-распада, может оказаться необходимость значительной перестройки внутренней структуры ядра при испускании α‑частицы. Если начальное ядро сферическое, а основное состояние конечного ядра сильно деформировано, то для того чтобы эволюционировать в основное состояние конечного ядра, исходное ядро в процессе испускания α‑частицы должно перестроиться, сильно изменив свою форму. В подобном изменении формы ядра обычно участвует большое число нуклонов и такая малонуклонная система, как αчастица, покидая ядро, может оказаться не в состоянии его обеспечить. Это означает, что вероятность образования конечного ядра в основном состоянии будет незначительной. Если же среди возбужденных состояний конечного ядра окажется состояние близкое к сферическому, то начальное ядро может без существенной перестройки перейти в него в результате αраспада Вероятность заселения такого уровня может оказаться большой, значительно превышающей вероятность заселения более низколежащих состояний, включая основное.
Из диаграмм α-распада изотопов 253 Es, 225 Ac, 225 Th, 226 Ra видны сильные зависимости вероятности α-распада на возбужденные состояния от энергии α-частицы и от орбитального момента l, уносимого α-частицей.
α-распад также может происходить из возбужденных состояний атомных ядер. В качестве примера в таблицах 2.3, 2.4 приведены моды распада основного и изомерного состояний изотопов 151 Ho и 149 Tb.

Таблица 2.3

α-распады основного и изомерного состояний 151 Ho

Таблица 2.4

α-распады основного и изомерного состояний 149 Tb

На рис. 2.6 приведены энергетические диаграммы распада основного и изомерного состояний изотопов 149 Tb и 151 Ho.


Рис. 2.6 Энергетические диаграммы распада основного и изомерного состояний изотопов 149 Tb и 151 Ho.

α-распад из изомерного состояния изотопа 151 Ho (J P = (1/2) + , E изомер = 40 кэВ) более вероятен (80%), чем е-захват на это изомерное состояние. В то же время основное состояние 151 Но распадается преимущественно в результате е-захвата (78%).
В изотопе 149 Tb распад изомерного состояния (J P = (11/2) - , E изомер = 35.8кэВ) происходит в подавляющем случае в результате е-захвата. Наблюдаемые особенности распада основного и изомерного состояний объясняются величиной энергии α-распада и е-захвата и орбитальными моментами, уносимыми α-частицей или нейтрино.

При данном виде распада ядро с атомным номером Z и массовым числом А распадается путем испускания альфа-частицы, что приводит к образованию ядра с атомным номером Z-2 и массовым числом А-4:

В настоящее время известно более 200 альфа-излучающих нуклидов, среди которых почти не встречаются легкие и средние ядра. Из легких ядер исключение составляет 8 Be, кроме того, известно около 20 альфа-излучающих нуклидов редкоземельных элементов. Подавляющее же большинство a-излучающих изотопов относится к радиоактивным элементам, т.е. к элементам с Z> 83, среди которых значительную часть составляют искусственные нуклиды. Среди естественных нуклидов существует порядка 30 альфа-активных ядер, относящихся к трем радиоактивным семействам (урановый, актиниевый, и ториевый ряды), которые рассмотрены выше. Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0,298 мкс для 212 Po до >10 15 лет для 144 Nd, 174 Hf. Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4-9 МэВ, а ядрами редкоземельных элементов 2-4,5 МэВ.

То, что вероятность альфа-распада возрастает с ростом Z, обусловлено тем, что этот вид превращения ядер связан с кулоновским отталкиванием, которое по мере увеличения размеров ядер возрастает пропорционально Z 2 , тогда как ядерные силы притяжения растут линейно с ростом массового числа A .

Как было показано ранее, ядро будет неустойчиво по отношению к a- распаду, если выполняется неравенство:

где и – массы покоя исходного и конечного ядер соответственно;

– масса a-частицы.

Энергия α-распада ядер (Е α) складывается из кинетической энергии альфа-частицы, испущенной материнским ядром Т α , и кинетической энергии, которую приобретает дочернее ядро в результате испускания альфа-частицы (энергия отдачи) Т отд :

Используя законы сохранения энергии и импульса, можно получить соотношение:

где М отд = – масса ядра отдачи;

М α – масса альфа-частицы.

Совместно решая уравнения (4.3) и (4.4), получим:

. (4.5)

И, соответственно,

. (4.6)

Из уравнений (4.5 и 4.6) видно, что основную часть энергии альфа-распада (около 98 %) уносят альфа-частицы. Кинетическая энергия ядра отдачи составляет величину ≈100 кэВ (при энергии альфа- распада ≈5 МэВ). Следует отметить, что даже такие, казалось бы, небольшие значения кинетической энергии атомов отдачи являются весьма значительными и приводят к высокой реакционной способности атомов, имеющих подобные ядра. Для сравнения отметим, что энергия теплового движения молекул при комнатной температуре составляет примерно 0,04 эВ, а энергия химической связи обычно меньше 2 эВ. Поэтому ядро отдачи не только рвет химическую связь в молекуле, но и частично теряет электронную оболочку (электроны просто не успевают за ядром отдачи) с образованием ионов.

При рассмотрении различных видов радиоактивного распада, в том числе и альфа-распада, используют энергетические диаграммы. Простейшая энергетическая диаграмма представлена на рис. 4.1.

Рис. 4.1. Простейшая схема альфа-распада.

Энергетическое состояние системы до и после распада изображается горизонтальными линиями. Альфа-частица изображается стрелкой (жирной или двойной) идущей справа налево вниз. На стрелке указывается энергия испускаемых альфа-частиц.

Следует иметь в виду, что представленная на рис. 4.1 схема является простейшим случаем, когда испускаемые ядром альфа-частицы имеют одну определенную энергию. Обычно альфа- спектр имеет тонкую структуру, т.е. ядрами одного и того же нуклида испускаются альфа-частицы с достаточно близкими, но все же отличающимися по величине энергиями. Было установлено, что если альфа-переход осуществляется в возбужденное состояние дочернего ядра, то энергия альфа-частиц будет, соответственно, меньше энергии присущей переходу между основными состояниями исходного и дочернего ядер радионуклидов. И если таких возбужденных состояний несколько, то и возможных альфа-переходов будет несколько. При этом образуются дочерние ядра с различной энергией, которые при переходе в основное или более устойчивое состояние испускают гамма-кванты.

Зная энергию всех альфа-частиц и гамма-квантов, можно построить энергетическую диаграмму распада.

Пример. Построить схему распада по следующим данным:

· энергия α-частиц составляет: 4,46; 4,48; 4,61; и 4,68 МэВ,

· энергия γ-квантов – 0,07; 0,13; 0,20; и 0,22 МэВ.

Полная энергия распада 4,68 МэВ.

Решение . От энергетического уровня исходного ядра проводим четыре стрелки, каждая из которых обозначает испускание α-частиц определенной энергии. Вычисляя разности между значениями энергий отдельных групп α-частиц и сравнивания эти разности с энергиями γ-квантов, находим, каким переходам соответствует испускание γ-квантов каждой энергии

4,48 – 4,46 = 0,02 МэВ соответствующих γ-квантов нет

4,61 – 4,46 = 0,15 МэВ


4,61 – 4,48 = 0,13 МэВ энергии соответствуют энергиям

4,68 – 4,46 = 0,22 МэВ γ-квантов, испускаемых при распаде

4,68 – 4,48 = 0,20 МэВ 230 Th

4,68 – 4,61 = 0,07 МэВ

Рис. 4.2 – Схема распада 230 Th.

Вместе с тем, возможен и второй случай, когда альфа-переход осуществляется из возбужденного состояния родительского ядра в основное состояние дочернего. Эти случаи принято квалифицировать как появление длиннопробежных альфа-частиц, возможности для испускания которых возникают у возбужденных ядер, образующихся в результате сложного β-распада. Так, в качестве примера, на рисунке 4.3 представлена схема испускания длиннопробежных α-частиц ядром полония-212, образующегося в результате β-распада ядра висмута-212. Видно, что в зависимости от характера β-перехода ядро полония-212 может образоваться в основном и возбужденном состояниях. Альфа-частицы, испускаемые с возбужденных состояний ядра полония-212, и являются длиннопробежными. Однако, следует иметь в виду, что для возникших таким способом альфа-активных ядер более вероятен переход из возбужденного состояния путем испускания γ‑кванта, а не длиннопробежной альфа-частицы. Поэтому длиннопробежные альфа-частицы встречаются весьма редко.

Далее, учеными была установлена весьма важная закономерность: при небольшом увеличении энергии a-частиц периоды полураспада изменяются на несколько порядков . Так у 232 Th Т a = 4,08 МэВ, T 1/2 = 1,41×10 10 лет, а у 230 Th – Т a = 4,76 МэВ, T 1/2 = 1,7∙10 4 лет.

Рис. 4.3. Схема последовательного распада: 212 Bi – 212 Po – 208 Pb

Видно, что уменьшение энергии альфа-частиц примерно на 0,7 МэВ сопровождается увеличением периода полураспада на 6 порядков. При Т α < 2 МэВ период полураспада становится настолько большим, что экспериментально обнаружить альфа-активность практически невозможно. Разброс в значениях периодов полураспада, характерных для альфа-распада, весьма велик:

10 16 лет ≥ Т 1/2 ≥ 10 –7 сек,

и в то же время имеет место весьма узкий интервал значений энергий альфа-частиц, испускаемых радиоактивными ядрами:

2 МэВ ≤ Т α ≤ 9 МэВ.

Зависимость между периодом полураспада и энергией альфа-частицы была экспериментально установлена Гейгером и Нэттолом в 1911-1912 годах. Ими было показано, что зависимость lgT 1/2 от lgТ α хорошо аппроксимируется прямой линией:

. (4.7)

Данный закон хорошо выполняется для четно-четных ядер. Тогда как для нечетно-нечетных ядер наблюдается весьма значительное отклонение от закона.

Сильная зависимость вероятности альфа-распада, а следовательно и периода полураспада, от энергии была объяснена Г. Гамовым и Э. Кондоном в 1928 году с помощью теории одночастичной модели ядра. В этой модели предполагается, что альфа-частица постоянно существует в ядре, т.е. материнское ядро состоит из дочернего ядра и альфа-частицы. Предполагается, что альфа-частица движется в сферической области радиуса R (R – радиус ядра) и удерживается в ядре короткодействующими кулоновскими ядерными силами. На расстояниях r, больших радиуса дочернего ядра R , действуют силы кулоновского отталкивания.

Hа рис. 4.4 показана зависимость потенциальной энергии между альфа-частицей и ядром отдачи от расстояния между их центрами.

По оси абсцисс отложено расстояние между дочерним ядром и альфа-частицей, по оси ординат – энергия системы. Кулоновский потенциал обрезается на расстоянии R , которое приблизительно равно радиусу дочернего ядра. Высота кулоновского барьера B, который должна преодолеть альфа-частица, чтобы покинуть ядро, определяется соотношением:

где Z и z – заряды дочернего ядра и альфа-частицы соответственно.

Рис. 4.4. Изменение потенциальной энергии системы с расстоянием между дочерним ядром и альфа-частицей.

Величина потенциального барьера значительно превышает энергию альфа-частиц, испускаемых радиоактивными ядрами, и согласно законам классической механики альфа-частица не может покинуть ядро. Но для элементарных частиц, поведение которых описывается законами квантовой механики, возможно прохождение этих частиц через потенциальный барьер, которое получило название туннельного перехода.

В соответствии с теорией альфа-распада, начала которой заложены Г. Гамовым и Э. Кондоном, состояние частицы описывается волновой функцией ψ, которая согласно условиям нормировки в любой точке пространства отлична от нуля, и, таким образом, существует конечная вероятность обнаружить альфа-частицу как внутри барьера, так и за его пределами. То есть, возможен процесс так называемого туннельного перехода альфа-частицы через потенциальный барьер.

Было показано, что проницаемость барьера является функцией атомного номера, атомной массы, радиуса ядра и характеристики потенциального барьера.

Установлено, что альфа-переходы четно-четных ядер из основного уровня материнских нуклидов на основной уровень дочерних характеризуются наименьшими значениями периодов полураспада. Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2-1000 раз больше, чем для четно-четных ядер с данными Z и Т α .Полезно запомнить: энергия альфа-частиц, испускаемых радионуклидами, с одинаковым массовым числом, растет с ростом заряда ядра.