А.4.1 Характеристики поля излучения. Волновая оптика

Установим зависимость между смещением х частиц среды, участвующих в волновом процессе, и расстоянием у этих частиц от источника колебаний О для любого момента времени Для большей наглядности рассмотрим поперечную волну, хотя все последующие рассуждения

будут верны и для продольной волны. Пусть колебания источника являются гармоническими (см. § 27):

где А - амплитуда, круговая частота колебаний. Тогда все частицы среды тоже придут в гармоническое колебание с такой же частотой и амплитудой, но с различными фазами. В среде возникает синусоидальная волна, изображенная на рис. 58.

График волны (рис. 58) внешне похож на график гармонического колебания (рис. 46), но по существу они различны. График колебания представляет зависимость смещения данной частицы от времени. График волны представляет зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени. Он является как бы моментальной фотографией волны.

Рассмотрим некоторую частицу С, находящуюся на расстоянии у от источника колебаний (частицы О). Очевидно, что если частица О колеблется уже то частица С колеблется еще только где время распространения колебаний от до С, т. е. время, за которое волна прошла путь у. Тогда уравнение колебания частицы С следует написать так:

Но где скорость распространения волны. Тогда

Соотношение (23), позволяющее определить смещение любой точки волны в любой момент времени, называется уравнением волны. Вводя в рассмотрение длину волны X как расстояние между двумя ближайшими точками волны, находящимися в одинаковой фазе, например между двумя соседними гребнями волны, можно придать уравнению волны другой вид. Очевидно, что длина волны равна расстоянию, на которое распространяется колебание за период со скоростью

где частота волны. Тогда, подставляя в уравнение и учитывая, что получим другие формы уравнения волны:

Так как прохождение волн сопровождается колебанием частиц среды, то вместе с волной перемещается в пространстве и энергия колебаний. Энергия, переносимая волной за единицу времени через единицу площади, перпендикулярной к лучу, называется интенсивностью волны (или плотностью потока энергии). Получим выражение для интенсивности волны

Интенсивность света, связь интенсивности света с амплитудой светового вектора.

Интенсивностью света называют электромагнитную энергию , проходящую в единицу времени через единицу площади поверхности, перпендикулярной направлению распространения света. Частоты видимых световых волн лежат в пределах

= (,39 4-0,75)-10 15 Гц.

Ни глаз, ни какой-либо иной приемник световой энергии не может уследить за столь частыми изменениями потока энергии, вследствие чего они регистрируют усредненный по времени поток . Поэтому правильнее определить интенсивность как модуль среднего по времени значения плотности потока энергии, переносимой световой волной. Плотность потока электромагнитной энергии определяется выражением

Поскольку световая волна- это электромагнитная волна, то складывается из энергии магнитного и электрического полей

(4.5)

где V- объем, занимаемый волновым полем.

Из уравнений Максвелла следует, что векторы напряженности электрического и магнитного полей в электромагнитной волне связаны соотношением

(4.6)

Поэтому выражение (4.5) можно записать следующим образом

Из уравнений Максвелла скорость распространения электромагнитных волн

Выделим некоторый объем волнового поля в форме параллелепипеда (рис.4.5)

Рис.4.5

Тогда , по определению интенсивности

Используя выражение (4,6) и полагая, что в прозрачной среде m=1 получим

где n- показатель преломления среды, в которой распространяется волна. Таким образом, напряженность магнитного поля Н пропорционально напряженности электрического поля Е и n:

Тогда интенсивность волны будет определяться выражением

(4.7)

(коэффициент пропорциональности равен )- Следовательно, интенсивность света пропорциональна показателю преломления среды и квадрату амплитуды вектора напряженности электрического поля световой волны. Заметим, что при рассмотрении распространения света в однородной среде можно считать, что интенсивность пропорциональна квадрату амплитуды вектора напряженности электрического поля () световой волны:

Однако в случае прохождения света через границу раздела сред выражение для интенсивности, не учитывающее множитель n, приводит к не сохранению светового потока.

Рассмотрим сферическую световую волну. Площадь сферического фронта волны , где R- радиус фронта волны. Согласно уравнению (4,4) находим интенсивность

Эти выражения показывают, что амплитуда сферической волны уменьшается пропорционально расстоянию от источника световых волн. Если R достаточно велико, т.е. источник находится очень далеко от области наблюдения, то фронт волны представляется частью сферической поверхности очень большого радиуса. Ее можно считать плоскостью. Волна, фронт волны которой представляется плоскостью, называется плоской, так как энергия волны во всех плоскостях, представляющих фронты волны в различные моменты времени остается постоянной, то амплитуда у такой волны постоянна.

.Понятие интерференции, наложение гармонических волн, условия когерентности.

Свет является электромагнитной волной. Сложение волн, распространяющихся в среде, определяется сложением соответствующих колебаний. Рассмотрим наиболее простой случай сложения электромагнитных волн (колебаний):

1) частоты их одинаковы,

В этом случае для каждой точки среды, в которой происходит сложение волн, амплитуда результирующей волны для напряженности электрического поля определяется векторной диаграммой (рис.4.6)

Из диаграммы следует, что результирующая амплитуда определится следующим образом:

где d- разность фаз слагаемых волн (колебаний).

Результат сложения волн зависит от особенностей источников света и может быть различен.

А.4. Перенос излучения в атмосфере

Основными физическими характеристиками поля излучения являются – интенсивность, плотность, поток .

Интенсивность (яркость) излучения - это количество световой энергии, которое падает перпендикулярно на площадку единичной площади (испускается с единицы площади видимой поверхности источника) из единичного телесного угла за единицу времени:

В этом выражении dE – количество световой энергии, dS – площадка, принимающая энергию, - телесный угол, из которого поступает энергия излучения, dt – интервал времени, в течение которого действует излучение. Предполагается, что телесный угол достаточно мал, а площадка перпендикулярна направлению распространения излучения.

В общем случае следует рассматривать так называемую спектральную интенсивность - интенсивность, отнесенную к единичному интервалу длин волн излучения I λ или частоты I ν (здесь индексы обозначают длину волны или частоту). Согласно определению, интенсивность является функцией координат точки среды r , направления распространения и времени (здесь углы определены в сферической системе координат, k – единичный вектор, определяющий направление распространения излучения). Для элемента телесного угла в сферической системе координат имеем

.

Приведенное определение яркости имеет смысл, когда речь идет о поверхностном источнике, для которого вполне очевидно понятие единицы поверхности источника излучения. В случае, когда речь идет о яркости объемного источника излучения (яркости неба), такое определение, по крайней мере, непонятно. Покажем, что яркость источника численно равна интенсивности излучения, регистрируемого на некотором расстоянии, когда угол меньше угловых размеров источника. Предположим, что названный угол охватывает площадку источника излучения, находящегося на расстоянии r от точки наблюдения, и угол между направлением распространения излучения и нормалью к площадке равен α. Тогда . Подставляя это выражение в определение интенсивности, получаем

где обозначено, - телесный угол, в котором распространяется испускаемое излучение. Таким образом, яркость протяженного источника численно равна интенсивности излучения этого источника на некотором удалении от него . В данной формулировке отсутствует упоминание о поверхности источника, поэтому оно применимо и к источникам, не имеющим ярко выраженной излучающей поверхности, например, к такому объемному источнику рассеянного солнечного излучения как атмосфера. При этом предполагается, конечно, что на пути от источника к точке наблюдения среда не вносит дополнительного ослабления излучения.


Объёмная плотность излучения ρ – это количество световой энергии в единице объема среды. Распространяясь со скоростью света c , излучение I по направлению k за время dt занимает объём dV= cdtdS , а энергия, поступившая в объём, - dE=IdSdΩdt . Здесь ds – элементарная площадка, перпендикулярная направлению распространения излучения. Следовательно, вклад в величину ρ от излучения, приходящего из по направлению k, равен

.

Полная плотность излучения получается путём суммирования отдельных вкладов от разных направлений:

.

Если I не зависит от направления, говорят, что излучение изотропно. Тогда

Например, объёмная плотность излучения черного тела

,

а интенсивность .

Потоком излучения называется количество световой энергии, падающей на выбранную площадку за единицу времени со всех направлений. Поток через единичную площадку называется плотностью потока . По направлению k , в частности, на единичную площадку падает в элементарном телесном угле энергия

Следовательно, плотность потока будет равна

.

Чтобы получить значение потока через площадку произвольной площади, приведенное выражение следует проинтегрировать по этой площади. Здесь предполагается, что ось z системы координат совпадает с направлением нормали к площадке n. Тогда зависимость от ориентации излучения k по отношению к площадке «спрятана» в величинах углов и φ сферической системы координат, определяющих направление k .

Выражение для плотности потока можно переписать ещё так: Н =Н + -Н - где,

.

Здесь проведено разделение на потоки, падающие на площадку из верхней и нижней полусфер (если площадка ориентирована горизонтально). Если I не зависит от направления, тогда такие потоки равны, и суммарная плотность потока равна нулю. Плотность потока из верхней полусферы H + еще называют освещенностью (количество энергии излучения, падающего из верхней полусферы на горизонтальную площадку единичной площади в единицу времени).

Волновой процесс связан с распространением энергии (Е) в пространстве. Количественной энергетической характеристикой этого процесса является поток энергии (Ф ) - отношение энергии, перенесенной волной через некоторую поверхность, ко времени (t), за которое этот перенос совершается . Если перенос энергии осуществляется равномерно, то: Ф = Е / t , а для общего случая поток представляет производную от энергии по времени - Ф = d Е / d t . Единица измерения потока энергии совпадает с единицей мощности Дж/ с = Вт.

Интенсивность волны (или плотность потока энергии) (I) - отношение потока энергии к площади (S) поверхности, расположенной перпендикулярно направлению распространения волны . Для равномерного распределения энергии по поверхности, через которую проходит волна I = Ф / S , а в общем случае - I = dФ / dS . Измеряется интенсивность в Вт / м 2 .

Отметим, что интенсивность является тем физическим параметром, который на первичном уровне определяет степень физиологического ощущения, возникающего под действием волнового процесса (например, звук или свет).

Представим в виде параллелепипеда длиной l участок среды, в которой распространяется волна. Площадь грани параллелепипеда, которая перепендикулярна направлению скорости волны v, обозначим через S (см.рис.9) . Введемобъемную плотность энергии колебательного движения w, представляющую количество энергии в единице объема:
w = Е / V . За время t через площадку S пройдет энергия, равная произведению величины объема V = l S = v t S на объемную плотность энергии:

Е = w v t S . (25)

Разделив левую и правую части формулы (25) на время и площадь, получим выражение, связывающее интенсивность волны и скорость ее распространения. Вектор , модуль которого равен интенсивности волны, а направление совпадает с направлением ее распространения носит название вектора Умова :

Формулу (26) можно представить в несколько ином виде. Учитывая, что энергия гармонических колебаний (см.формулу (7)) и выразив массу m через плотность вещества r и объем V , для объемной плотности энергии получим: w = . Тогда формула (26) принимает вид:

. (27)

Итак интенсивность упругой волны, определяемая вектором Умова, прямо пропорциональна скорости ее распространения, квадрату амплитуды колебаний частиц и квадрату частоты колебаний.

Интенсивность света измеряется при размещении освещения в помещении или при подготовке оборудования к фотосъемке. Термин "интенсивность" используется по-разному, и из этой статьи вы узнаете, какие устройства и методы подойдут для ваших целей. Профессиональные фотографы и светотехники используют цифровые экспонометры, но вы можете сделать простое устройство со схожим действием - фотометр Джоли - самостоятельно.

Шаги

Как измерить интенсивность освещения в помещении и интенсивность света лампы

    Разберитесь в фотометрах, которые измеряют интенсивность света в люкс и фут-канделах. Такие приборы измеряют интенсивность света на поверхности, то есть освещенность . Обычно такие устройства используются для подготовки к фотосъемке и при проверке освещенности помещения.

    Узнайте, как следует интерпретировать данные. Вот несколько примеров типичных показаний, которые помогут вам понять, следует ли вам изменить освещение в помещении:

    • Работать в офисе комфортно при освещенности 250-500 люкс (23-46 фут-канделов).
    • В супермаркетах и на рабочих местах, требующих тонкой работы, используется освещенность 750-1000 люкс (70-93 фут-канделов). Верхнее значение сопоставимо с освещенностью на открытом пространстве на улице в светлый солнечный день.
  1. Узнайте, что такое люмены. Если в описании лампочки встречается слово "люмен", оно описывает, сколько энергии испускает лампочка в виде видимого света. Вам нужно знать следующее:

    Измерьте угол наклона и поле лучей. Эти характеристики применимы к источникам света, которые направляют световой поток узким лучом в определенную сторону (к примеру, фонарики). Эти значения можно измерить экспонометром и с помощью линейки и транспортира.

    • Держите экспонометр прямо перед самым ярким лучом. Подвигайте его, пока не найдете участок с максимальной интенсивностью света (освещенностью).
    • Сохраняя то же расстояние до источника света, сместите экспонометр в одну сторону, пока интенсивность света не уменьшится до 50% от максимального уровня. С помощью линейки или нитки проведите линию от источника света до этой точки.
    • Проделайте то же самое с другой стороны. Проведите линию.
    • С помощью транспортира измерьте угол между двумя линиями. Это и будет углом луча - то есть углом, под которым расходится свет.
    • Чтобы измерить поле, проделайте то же самое, только отметьте точки там, где интенсивность освещения будет равняться 10% от максимального значения.

    Как измерить относительную освещенность самодельным устройством

    1. Сделайте устройство своими руками. Собрать его несложно, если у вас есть нужные материалы. Это изобретение называется фотометром Джоли, и с его помощью можно измерить относительную интенсивность двух источников света. Обладая необходимыми знаниями физики, о которых речь пойдет ниже, можно выяснить, какая из двух лампочек дает больше света и какая из них более эффективная.

      • Поскольку значение будет относительным , оно не будет выражено в точных единицах. Вы будете знать соотношение между двумя источниками света, но не сможете выяснить точные числа, не прибегая к еще одному эксперименту.
    2. Разрежьте кусок парафинового воска пополам. Купите воск в хозяйственном магазине, отрежьте кусочек весом 500 граммов, а затем острым ножом разрежьте этот кусочек пополам.

      Положите фольгу между двумя кусками воска. Оторвите кусочек алюминиевой фольги от листа и положите его на один из кусков, стараясь накрыть всю верхнюю поверхность целиком. Сверху поместите второй кусок воска.

      Поверните полученную конструкцию вертикально. Чтобы устройство заработало, его нужно повернуть так, чтобы фольга оказалась в вертикальном положении. Если воск сам не держится, можете пока оставить его в горизонтальном положении, но помните, что коробка, которую вы будете собирать, должна будет удерживать воск вертикально.

      Прорежьте три окошка в картонной коробке. Возьмите коробку, в которую поместится воск. Возможно, вам подойдет упаковка от воска. Отмерьте окошки и вырежьте их ножницами.

      • Прорежьте два окна одинакового размера с противоположных сторон. Отверстия должны быть напротив разных сторон парафина, когда те окажутся в коробке.
      • Прорежьте третье окно любого размера в передней части коробки. Отверстие должно быть по центру, чтобы вы могли видеть обе части восковых кусочков.
    3. Положите внутрь воск. Фольга между двумя кусками должна находиться в вертикальном положении. Возможно, вам придется использовать изоленту либо скотч, небольшие кусочки картона или и то, и другое, чтобы воск не переворачивался, а фольга - не съезжала.

      • Если у коробки нет крышки, накройте ее картоном или любым другим непрозрачным предметом.
    4. Выберите точку отсчета. Решите, какой источник света вы будете использовать в качестве отправной точки. Если вы будете сравнивать более двух источников света, вы сможете использовать эту лампу при каждом сравнении.

      Расположите два источника света на прямой линии. Положите две небольшие лампочки, светодиоды или другие источники света на ровную поверхность на прямой линии. Расстояние между ними должно быть больше ширины коробки, которую вы только что сделали.

      Расположите экспонометр между двумя источниками света. Он должен быть на такой же высоте, как и лампочки, чтобы лампочки могли полностью освещать воск внутри коробки через окошки. Помните, что источники света должны быть на большом расстоянии друг от друга.

      Выключите свет в помещении. Закройте окно, задвиньте шторы, опустите жалюзи, чтобы сторонний свет не проникал в коробку.

      Поправьте лампочки так, чтобы воск был освещен с обеих сторон одинаково. Поднесите фотометр к стороне с меньшей освещенностью. Передвигая коробку, смотрите в окошко на передней стороне коробки. Остановитесь, когда оба куска воска будут подсвечены одинаково.

    5. Измерьте расстояние от экспонометра до каждого источника света. Рулеткой измерьте расстояние от фольги до лампы, которую вы выбрали в качестве точки отсчета. Обозначьте эту точку как d1 . Запишите расстояние, затем измерьте расстояние от фольги до источника света с противоположной стороны, d2 .

      • Расстояние можно измерять в любых величинах, главное - не путать их. К примеру, если вы измеряете в сантиметрах, пишите только сантиметры (без метров).
    6. Например, предположим, что расстояние d 1 до источника света, взятого за точку отсчета, составляет 60 сантиметров, а расстояние d 2 до второго источника света - 1,5 метров.
    7. I 2 = 5 2 /2 2 = 25/4 = 6.25
    8. Интенсивность света второго источника в 6.25 раз больше , чем первого.
  2. Рассчитайте эффективность. Если на лампочках отмечена мощность в ваттах (например, 60 ватт), эти цифры означают, сколько электричества потребляет лампочка. Разделите относительную интенсивность лампочки на это число, и вы получите эффективность лампочки относительно других источников света. Например:

    • У лампочки 60 ватт с относительной интенсивностью 6 относительная эффективность равняется 6/60 = 0.1.
    • У лампочки 40 ватт с относительной интенсивностью 1 относительная эффективность равняется 1/40 = 0.025.
    • Поскольку 0.1 / 0.025 = 4, лампочка 60 ватт в четыре раза эффективнее превращает электрический ток в свет. Помните, что она будет потреблять больше энергии, чем лампочка 40 ватт, а это обойдется вам в более крупную сумму. Эффективность - это процент пользы на каждую потраченную денежную единицу.
  • Рассчитав сравнительную интенсивность света, можно измерить интенсивность освещенности с помощью аналогового или цифрового экспонометра. Новые цифровые экспонометры измеряют интенсивность в люкс, а старые аналоговые - в фут-канделах. 1 фут-кандела =10.76 люкс.