Что включает реакция понимания. Ориентировочная реакция

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

· Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).

· В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Стандартная энтальпия образования (стандартная теплота образования)

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль.

Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу, оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.



Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔH I2(тв) 0 = 0 кДж/моль, а для жидкого йода ΔH I2(ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

ΔH реакции O = ΣΔH f O (продукты) - ΣΔH f O (реагенты)

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими. Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими. Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

Температурная зависимость теплового эффекта (энтальпии) реакции

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:



где ΔC p (T 1 ,T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ΔC p (T f ,T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода.

Стандартная энтальпия сгорания - ΔH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения - ΔH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ΔH реш > 0, а гидратация ионов - экзотермический, ΔH гидр < 0. В зависимости от соотношения значений ΔH реш и ΔH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

ΔH раствKOH о = ΔH реш о + ΔH гидрК +о + ΔH гидрOH −о = −59 КДж/моль

Под энтальпией гидратации - ΔH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Стандартная энтальпия нейтрализации - ΔH нейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

HCl + NaOH = NaCl + H 2 O

H + + OH − = H 2 O, ΔH нейтр ° = −55,9 кДж/моль

Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔH гидратации ° ионов при разбавлении

Энтальпия - это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия - это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия - это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении. Единицы энтальпии - британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Количество энтальпии

Количество энтальпии вещества основано на его данной температуре. Данная температура - это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии, которую можно преобразовать в теплоту. Данная температура у различных веществ разная. Например, данная температура воды - это тройная точка (О °С), азота −150°С, а хладагентов на основе метана и этана −40°С.

Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения коэффициента полезного действия процесса.

Энтальпию часто определяют как полную энергию вещества, так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту.
H = U + pV

ГЕССА ЗАКОН: тепловой эффект хим. р-ции зависит только от начального и конечного состояний системы и не зависит от ее промежут. состояний. Г. з. является выражением закона сохранения энергии для систем, в к-рых происходят хим. р-ции, и следствием первого начала термодинамики, однако был сформулирован ранее первого начала. Справедлив для р-ций, протекающих при постоянном объеме или при постоянном давлении; для первых тепловой эффект равен изменению внутр. энергии системы вследствие хим. р-ции, для вторых-изменению энтальпии. Для вычисления тепловых эффектов р-ций, в т.ч. практически неосуществимых, составляют систему термохим. ур-ний, к-рые представляют собой ур-ния р-ций, записанные совместно с соответствующими тепловыми эффектами при данной т-ре. При этом важно указывать агрегатное состояние реагирующих в-в, т.к. от этого зависит величина теплового эффекта р-ции.

Систему термохим. ур-ний можно решать, оперируя ф-лами в-в, находящихся в идентичных состояниях, как обычными членами мат. ур-ний.

Из теории химической связи известно, что образование связей сопровождается выделением энергии , поэтому если бы реакции протекали между свободными атомами, то все реакции сопровождались бы выделением энергии. Но химические реакции, как правило, протекают между молекулами веществ.

Сравним количество энергии, выделяемой при образовании молекулы HCl из атомов водорода (H ) и хлора (Cl ):

Н + Cl = HCl + 432 кДж/моль

с количеством энергии, выделяемой при образовании молекулы НСl из простых веществ (Н 2 и Cl 2 ):

1/2Н 2 +1/2Cl 2 = HCl + 92,31 кДж/моль.

Энергия реакции из простых веществ меньше, чем из свободных атомов, т.к. часть энергии затрачивается на разрыв связей в молекулах водорода (Н-Н) и хлора (Сl-Сl).

Следовательно, сущность химических реакций сводится к разрыву связей в молекулах исходных веществ и возникновению новых связей в молекулах продуктов реакции . В зависимости от соотношений энергий разрыва и образования соответствующих связей наблюдается выделение пли поглощение энергии. Обычно энергия выделяется или поглощается в форме теплоты.

Реакции, которые протекают с выделенном теплоты , называются экзотермическими . Например:

Н 2 + Cl 2 = 2HCl + 184,6 кДж

или Н 2 + Cl 2 = 2HCl; DH = –184,6 кДж.

Н 2 ( = 435,9 кДж/моль) и Cl 2 ( = 242,3 кДж/моль) энергии затрачивается меньше, а при образовании связей в молекулах HCl (Е HCl = 431,4 кДж/моль) - выделяется больше, т.е.

2 ´ 431,4 > (435,9 + 242,3).

Реакции, которые протекают с поглощением теплоты , называются эндотермическими . Например:

N 2 + O 2 = 2NO – 180,8 кДж

или N 2 + O 2 = 2NO; DH = 180,8 кДж.

Из примера следует, что на разрыв связей в молекулах N 2 ( = =945,43 кДж/моль) и O 2 ( = 498,38 кДж/моль) энергии затрачивается больше, а при образовании связей в молекулах NO - выделяется меньше, т.е.

2 ´631,5 < (945,43 + 498,38).

Тепловой эффект реакции - это количество теплоты, которое выделяется или поглощается при протекании реакции. Его обозначают символом Q и выражают в кДж. Для экзотермических реакций Q > 0 (+Q ), для эндотермических - Q < 0 (–Q ). В настоящее время для единообразия с термодинамикой тепловой эффект реакции обозначают DH (изменение энтальпии).

Энтальпия (Н ) - это величина, которая характеризует запас энергии в веществе. Для экзотермических реакций запас энергии в продуктах реакции меньше, чем в исходных веществах, поэтому изменение энтальпии DH < 0 (–DH). Для эндотермических реакций запас энергии в продуктах реакции больше, чем в исходных веществах, поэтому изменение энтальпии DH > 0 (+DH). Следовательно, связь между DH и Q выражается уравнением:



Тепловой эффект реакции зависит от температуры и давления, поэтому условились его определять при давлении (Р ) 1 атм или 101,3 кПа и температуре 25 °С или 298 К. Эти условия называют стандартными .

При постоянном давлении тепловой эффект реакции определяют как изменение энтальпии , а при постоянном объеме – как изменение внутренней энергии .

Термохимические уравнения

Химические уравнения, в которых указаны тепловые эффекты реакций, называются термохимическими .

В термохимических уравнениях обязательно указывают агрегатное состояние исходных веществ и продуктов реакции: г - газообразное, ж - жидкое, к - кристаллическое или тв - твердое . В зависимости от обозначения теплового эффекта (Q или DH ) термохимическое уравнение экзотермической реакции образования воды (Н 2 О (ж)) из простых веществ H 2 и O 2 записывается следующим образом:

2H 2(г) + O 2(г) = 2Н 2 О (ж) + 571,6 кДж

2H 2(г) + O 2(г) = 2Н 2 О (ж) ; DH = - 571,66 кДж.

Это термохимическое уравнение показывает, что при взаимодействии двух моль водорода и одного моль кислорода образуется два моль воды и выделяется 571,66 кДж теплоты. Чтобы показать тепловой эффект при образовании 1 моль вещества в термохимических уравнениях применяют дробные коэффициенты:

H 2(г) + 1/2O 2(г) = Н 2 О (ж) + 285,83 кДж

или H 2(г) + 1/2O 2(г) = Н 2 О (ж) ; DH = -285,83 кДж.

По термохимическим уравнениям реакций можно проводить различные расчеты.

Закон Гесса

Важнейшим законом, на котором основано большинство термохимических расчетов, является закон Гесса.

Закон Гесса : тепловой эффект химической реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода из начального состояния в конечное .

Например, тепловой эффект реакции окисления углерода в оксид углерода (IV) не зависит от того, проводится ли это окисление непосредственно, сжигая уголь до СО 2:



С (тв) + О 2(г) = СО 2(г) (DН 1)

или в две стадии, получая на первой стадии СО, а затем сжигая СО до СО 2:

первая стадия : С (тв) + 1/2О 2(г) = СО (г) (DН 2),

вторая стадия : СО (г) + 1/2О 2(г) = СО 2(г) (DН 3).

Наглядно это можно иллюстрировать в виде схемы, рис. 4.

CO 2
C, O 2
CO, 1/2O 2

Рисунок 4 – Схема определения теплового эффекта (DН) при образовании СО 2

Согласно закону Гесса тепловые эффекты связаны между собой соотношением DН 1 = DН 2 + DН 3 , пользуясь которым можно определить один из них, если другие два известны. Таким образом, на основании закона Гесса можно рассчитать тепловые эффекты таких реакций, для которых экспериментально измерить невозможно. Например, практически невозможно измерить теплоту сгорания углерода до оксида углерода (II), т.к. продукт реакции всегда будет состоять из смеси СО и СО 2 . Но экспериментально можно измерить теплоту полного сгорания углерода до СО 2 (DH 1 = -393 кДж/моль) и теплоту сгорания СО до СО 2 (DH 3 = = -283 кДж/моль). Имея эти данные, по закону Гесса легко рассчитать теплоту сгорания углерода до СО, т.е. DH 2:

DH 2 = DH 1 - DH 3 = -393 - (-283) = -110 кДж/моль

Термохимические расчеты

В термохимических расчетах применяют следствие из закона Гесса : тепловой эффект химической реакции равен сумме теплот образования продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом стехиометрических коэффициентов в уравнении реакции .

Для реакции: aA + bB = cC + dD

Особое значение при расчетах тепловых эффектов реакций имеют теплоты (энтальпии) образования соединений. Стандартная теплота (энтальпия) образования соединения - это количество теплоты, которое выделяется или поглощается при образовании одного моль химического соединения из простых веществ при стандартных условиях (температура 298 К, давление 101,3 кПа). Она измеряется в кДж/моль и обозначается DH 0 298 (иногда индексы опускаются и обозначают DH).

Стандартная теплота (энтальпия) образования простого вещества равна нулю.

Пример 1 . Вычислите тепловой эффект химической реакции

2H 2 + CO ® CH 3 OH (ж)

при 298 К и определите, насколько при этой температуре отличается DH и DU.

Решение

Тепловой эффект реакции равняется разности между суммой теплот образования конечных и суммой теплот образования начальных веществ. Поскольку стандартные теплоты образования отнесены к 1 молю вещества, их умножают на соответствующие стехиометрические коэффициенты n уравнения реакции.

2H 2 + CO ® CH 3 OH (ж)

КДж/моль 2 ´0 –110,53 –238,57

= –238,57 – (–110,53) = –128,04 кДж.

Тепловой эффект реакции при постоянном объеме , или изохорный тепловой эффект , можно найти из известного уравнения, связывающего изобарный и изохорный тепловые эффекты:

где: Dn - изменение числа молей газообразных веществ в результате реакции, вычисляемое по ее стехиометрическому уравнению.

Dn = – 2 – 1 = – 3 моль.

Пример 2 . Вычислите DН о, DU о, DG о (энергию Гиббса), DF о (энергию Гельмгольца) для химической реакции:

2H 2 + CO = CH 3 OH (г) .

Определите, в каком направлении пойдет реакция при стандартном давлении и 298 К.

Решение

Энергию Гиббса будем рассчитывать по уравнению:

DG 0 298 = DH 0 298 - ТDS 0 298 ,

где DH 0 298 - тепловой эффект реакции при стандартных условиях и температуре Т=298 К.

DS 0 298 - изменение энтропии в результате протекания реакции при стандартных условиях и температуре Т = 298 К. Для расчета DS 0 298 используют уравнение

где n i - число молей i-го вещества, соответствующее стехиометрическому коэффициенту перед этим веществом в уравнении реакции.

Энергию Гельмгольца будем рассчитывать по уравнению:

DF 0 298 = DG 0 298 - DnRT,

где: Dn - изменение числа молей газообразных веществ в результате реакции.

Решение задачи начинаем с выписывания справочных данных:

2H 2 + CO ® CH 3 OH (г) (Dn =1–2–1= –2)

КДж/моль 0 –110,53 –201,00

2 ´130,52 197,15 239,76

= –201,00 – 0 – (–110,53) = –90,47 кДж.

239,76 – 2 ´130,52 – 197,15 = –218,43 Дж/К.

DG 0 298 = –90470 – 298´(–218,43) = –25377,86 Дж.

DF 0 298 = –25377,86 – (–2) ´298´8,314 = –20422,66 Дж.

DG 0 298 < 0 и DF 0 298 < 0, следовательно реакция протекает в прямом направлении.

ХИМИЧЕСКАЯ КИНЕТИКА

Химическая кинетика изучает механизм и скорость реакций.

Средняя скорость гомогенной химической реакции (w) определяется изменением количества какого-либо из веществ, участвующих в реакции, в единицу времени (t) в единице объема (или изменением концентрации какого-либо вещества за единицу времени):

. (13)

Факторы, влияющие на скорость химической реакции

Зависимость скорости химической реакции от концентрации подчиняется закону действия масс. Закон открыт Гульдбергом и Вааге (1876 г.). Согласно этому закону, мгновенная (истинная) скорость реакции пропорциональна произведению концентрации реагирующих веществ, возведенных в степени, равные стехиометрическим коэффициентам в уравнении лимитирующей стадии реакции. Частицы взаимодействуют при столкновении, а число столкновений молекул пропорционально произведению концентраций реагентов.

В реакции А + В = АВ, протекающей в закрытом сосуде, скорость взаимодействия веществ в соответствиис законом выражается уравнением:

где k – коэффициент пропорциональности, называемый константой скорости реакции , [А] и [В] – равновесные концентрации веществ А и В.

Константа скорости реакции зависит от температуры, природы вещества и не зависит от концентрации, то есть является мерой реакционной способности веществ. При концентрации реагирующих веществ, равных 1 моль/дм 3 , w = k, поэтому физический смыслконстанты скорости реакции – это скорость химической реакции при концентрациях реагентов 1 моль/дм 3 .

Если газообразные или жидкие вещества реагируют с твердыми, то скорость реакции зависит от концентрации веществ в газообразном или жидком состоянии, но не зависит от концентрации веществ в твердом состоянии, например, для реакции

Н 2 (г) + S (тв) = Н 2 S (г) w = k ´ [Н 2 ].

Скорость химических реакций, протекающих с участием газообразных веществ, зависит от давления. Если в системе увеличить давление путем сжатия, то объем системы уменьшится, концентрация взаимодействующих веществ увеличится, скорость реакции возрастет.

Влияние температуры на скорость реакции. Скорость химической реакции зависит от температуры. С увеличением температуры на 10 о С скорость большинства реакций возрастает в 2-4 раза (эмпирическое правило Вант–Гоффа).

Величина, показывающая, во сколько раз увеличивается скорость реакции при увеличении температуры на 10 о С, называется температурным коэффициентом скорости реакции , обозначается γ (гамма). Величина γ меняется в пределах от 2 до 4.

Математическое выражение правила Вант – Гоффа:

, (15)

где w 2 и w 1 – скорость реакции при температуре t 2 и t 1 соответственно;

∆t = t 2 – t 1 .

Увеличение скорости реакций с повышением температуры связано с увеличением скорости движения частиц и числа столкновений между ними. Однако расчеты показывают, что при нагревании реакционной системы от 273 К до 373 К (от 0 до 100 о С) число столкновений возрастет в = 1,2 раза, а скорость реакции при γ = 2 увеличивается в 2 10 = 1024 раза. Следовательно, основная причина сильного влияния температуры на скорость в другом.

Не всякое соударение приводит к химическому взаимодействию. Реагируют лишь частицы, обладающие определенной энергией. Превращение одних веществ вдругие происходит через стадию образования некоторого активированного комплекса. Энергия, необходимая для перевода молекул в состояние активированного комплекса, называется энергией активации (Е акт). При соударении взаимодействуют лишь частицы, обладающие энергией большей или равной энергии активации. Для большинства реакций Е акт = 0 – 500, кДж/моль. При нагревании растет число активных частиц с Е ³ Е акт., увеличивается число эффективных столкновений и скорость реакции.

Зависимость константы скорости реакции k от энергии активации Е акт и температуры Т выражается уравнением Аррениуса (1889 г.):

, (16)

где Z – число столкновений в секунду в единице объема,

R – универсальная газовая постоянная (8,314 Дж/моль´К),

e – основание натурального логарифма (е =2,718),

T – температура по шкале Кельвина, К,

P – стерический фактор.

С уменьшением энергии активации и с увеличением температурывозрастает константа скорости реакции, а, следовательно, и скорость реакции .

Явление изменения скорости процесса в присутствии некоторых веществ (катализаторов) называется катализом .

Катализатор – вещество, которое изменяет скорость реакции, активно в ней участвует, оставаясь после реакции химически неизменным.

Катализаторы или увеличивают скорость реакции (они называются активаторами или положительными катализаторами ), или замедляют реакции (они называются ингибиторами или отрицательными катализаторами ).

Например, в присутствии MnO 2 (катализатор) наблюдается бурное разложение пероксида водорода: 2Н 2 О 2 2H 2 O + O 2 .

Если катализатор находится в той же фазе, что и реагирующие вещества, катализ называется гомогенным . Если катализатор и реагирующие вещества находятся в разных фазах – это гетерогенный катализ.

В присутствии катализатора образуется иной активированный комплекс с другой величиной энергии активации, что проводит к изменению скорости реакции.

Увеличение скорости реакции в присутствии катализатора связано с меньшей энергией активации нового пути процесса.

При гетерогенном катализе процесс протекает более сложно, т.к. промежуточные поверхностные соединения формируются на активных центрах (активных участках) катализатора, поэтому твердые катализаторы должны иметь большую (развитую) поверхность.

Основным законом химической кинетики является открытый в 1864–1867 гг. Гульдбергом и Вааге (Норвегия) закон действия масс , согласно которому скорость элементарной реакции пропорциональна произведению концентрацийреагирующих веществ в степенях, равных стехиометрическим коэффициентам . Такая зависимость скорости реакции от концентрации обусловлена тем, что вероятность столкновения молекул и, следовательно, их взаимодействия, пропорциональна произведению концентраций реагентов.

Рассмотрим в общем виде одностадийную обратимую реакцию, протекающую в гомогенной среде

А (г) +2В (г) Û АВ 2(г)

Предположим, что в закрытом сосуде приведены в соприкосновение вещества А и В. Скорость взаимодействия этих веществ согласно закону действия масс выразится соотношением:

где – коэффициент пропорциональности – константа скорости прямой реакции,

[А] и [В] – равновесные молярные концентрации А и В.

Если же реакция протекает в гетерогенной системе, то скорость ее не зависит от концентрации твердого вещества, т. к. концентрация его постоянна, поэтому твердое вещество не входит в уравнение закона действующих масс.

В общем виде концентрацию обозначают буквой С . – концентрация любого реагента (так как все они связаны стехиометрическими коэффициентами). Для идеального газа (условно при обычных условиях все газы приравнивают к идеальным) применимо уравнение Клапейрона-Менделеева:

РАСТВОРЫ

Растворами называются гомогенные системы, состоящие из двух или более компонентов и продуктов их взаимодействия. Растворение веществ в воде- это физико-химический процесс, при котором под влиянием молекул растворителя в растворенном веществе разрываются связи между частицами и образуются химические соединения растворяемого вещества и раствори-теля (сольваты и гидраты, если растворитель вода). Затем гидратированные частицы равномерно распределяются по всему объему раствора.

Растворение может быть как эндотермическим, так и экзотермическим процессом, поскольку разрушение структуры растворенного вещества происходит с поглощением определенного количества тепла (+ Н), а взаимодействие растворителя с частицами растворенного вещества сопровождается выделением тепла (- Н). В зависимости от того, какие процессы преобладают при растворении, тепловой эффект процесса положительный или отрицательный.

Способность вещества растворяться в данном растворителе характеризу-ется растворимостью. Растворимостью называется число, показывающее, сколько граммов растворенного вещества может раствориться в 100 г раст-ворителя при данной температуре. Растворимость вещества зависит от при-роды вещества, температуры, давления.

Одной из важнейших характеристик растворов является их концентрация.

Способы выражения концентраций:

1. Молярная концентрация – число молей растворенного вещества в 1 л раствора:

2. Нормальная концентрация – число эквивалентов растворенного вещества в 1 л раствора

3.Моляльная концентрация – показывает, сколько молей растворенного вещества содержится в 1 килограмме растворителя.

4. Массовая доля - число граммов вещества, содержащихся в 100г раствора.

РАСТВОРЫ ЭЛЕКТРОЛИТОВ

Электролиты – это вещества, растворы и расплавы которых проводят электрический ток.

При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются электролитической диссоциации , т. е. в большей или меньшей степени распадаются на положительно и отрицательно заряженные ионы – катионы и анионы. Идея этого процесса была выдвинута шведским химиком С. Аррениусом. Ему принадлежит и первая концепция кислот и оснований. Согласно теории электролитической диссоциации С. Аррениуса:

кислоты – это вещества, при диссоциации которых в водном растворе образуются ионы водорода Н + ;

основания – это вещества, при диссоциации которых в водном растворе образуются гидроксид-ионы ОН – ;

соли – это вещества, при диссоциации которых в водном растворе образуются катионы основания и анионы кислоты.

Диссоциация двух и более основных кислот и двух и более кислотных оснований протекает ступенчато. Например:

Н 3 РО 4 Н + + Н 2 РО 4 -

Н 2 РО 4 ¯ Н + + НРО 4 2-

НРО 4 2 ¯ Н + + РО 4 3-

Ba(ОH) 2 BaOН + + OH -

Химическая реакция заключается в разрыве одних и образовании других связей,поэтому она сопровождается выделением или поглощением энергии в виде теплоты,света, работы расширения образовавшихся газов.


По признаку выделения или поглощения теплоты реакции делятся на экзотермические и эндотермические.


Экзотермическая реакция - химическая реакция, при которой происходит выделение теплоты.


Например, в реакции горения метана


СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г)


выделяется столько теплоты, что метан используется как топливо.


Тот факт, что в этой реакции выделяется теплота, можно отразить в уравненииреакции:


СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) + Q.


Это так называемое термохимическое уравнение. Здесь символ "+Q " означает,что при сжигании метана выделяется теплота. Эта теплота называется тепловымэффектом реакции.


Термохимическое уравнение реакции - уравнение реакции, включающее тепловой эффект реакции, рассчитанный на количества вещества, задаваемые коэффициентами этого уравнения.

Эндотермическая реакция - химическая реакция, при которой происходит поглощение теплоты.

Тепловой эффект таких реакций отрицательный.


Например:


CaCO 3(кр) = CaO (кр) +CO 2(г) - Q,


2HgO (кр) = 2Hg (ж) + O 2(г) - Q,


2AgBr (кр) = 2Ag (кр) + Br 2(г) – Q.


Наряду с тепловым эффектом термохимические процессы очень часто характеризуют разностью энтальпий ∆H продуктов реакции и исходных веществ.


Энтальпия Н - это определенное свойство вещества, оно является мерой энергии, накапливаемойвеществом при его образовании.


Процессы, протекающие при постоянном давлении,встречаются гораздо чаще, чем те, которые протекают при постоянном объеме, так как большинство из них проводится в открытых сосудах. Доказано, что в химических процессах, протекающих при постоянном давлении, выделившееся (или поглощенное) тепло есть мера уменьшения (или соответственно увеличения) энтальпии реакции ∆ H.


При экзотермических реакциях, когда тепло выделяется, ∆Н отрицательно. При эндотермических реакциях (тепло поглощается) и ΔH положительно.

Термохимические уравнения.

На первых этапах изучения химии вы часто пользовались равным по абсолютной величине и противоположным по знаку обозначением,например:


где Q - количество выделенной теплоты. Если использовать энтальпию (характеристику энергосодержания системы), то это уравнение следует записать иначе:


В справочных таблицах обычно приводят не значениявеличины Q, а значения величины ∆H, измеренные приопределенных условиях (чаще всего при 298 К); их обозначают ∆H 0 .

Теплота образования химических соединений.

Теплотой образования соединения называется количество теплоты, которое выделяется или поглощаетсяпри образовании одного моля химического соединения из простых веществ пристандартных условиях (р = 10 5 Па, T = 298 К).

Тепловые эффекты химической реакции. Основные законы термохимии.

Количество теплоты, которое выделяется или поглощается врезультате реакций между определенными количествами реагентов, называют тепловым эффектом химическойреакции и обычно обозначают символом Q.


Она измеряется в кДж/моль. Согласно этому определению, теплота образования простого вещества при стандартныхусловиях равна О.


Теплотой сгорания вещества называется тепловой эффект сгорания 1 моля этого вещества


Изменение энтальпии ∆Н зависит отдавления и температуры. Поэтому для того, чтобы облегчить сравнениетермохимических данных для различных реакций, были приняты определенныестандартные состояния (условия).


При написании термохимических уравнений твердое вещество, жидкость и газобязательно обозначаются символами (тв), (ж) и (г) соответственно, посколькуизменение энтальпии зависит от агрегатного состояния реагирующих веществ ипродуктов реакции.


Стандартное состояние:


для газа - состояние чистого газа при 10 5 Па;


для жидкости - состояние чистой жидкости при 10 5 Па;


для твердого вещества - наиболее устойчивое при давлении 10 5 Па кристаллическое состояние, например графит у углерода, ромбическая сера у серы и т. п.


Стандартное состояние всегда относится к 298 К.


Так, например,термохимическое уравнение образования воды из водорода и кислорода записываетсяследующим образом:
Значение 286 кДж является теплотой образования воды встандартных условиях и означает, что при образовании 1 моля воды выделяется 286 кДж теплоты: Отметим, что значение теплоты образования газообразнойводы уже будет иным.

Закон Гесса и его следствия.

Важнейшим законом, на котором основано большинство термохимических расчетов, является закон Гесса (его называют также законом суммы тепловых эффектов).


Тепловой эффект химической реакции зависит от состояния исходных веществ и продуктов реакции, но не зависит от промежуточных стадий реакций.

Введение

Тепловые эффекты химических реакций необходимы для многих технических расчетов. Они находят обширное применение во многих отраслях промышленности, а также в военных разработках.

Целью данной курсовой работы является изучение практического применения теплового эффекта. Мы рассмотрим некоторые варианты его использования, и выясним насколько важно использование тепловых эффектов химических реакций в условиях развития современных тех­нологий.


Тепловой эффект химической реакции

В каждом веществе запасено определенное количество энергии. С этим свойством веществ мы сталкиваемся уже за завтраком, обедом или ужином, так как продукты питания позволяют нашему организму использовать энергию самых разнообразных химических соединений, содержащихся в пище. В организме эта энергия преобразуется в движение, работу, идет на поддержание постоянной (и довольно высокой!) температуры тела.

Одним из самых известных ученых, работающих в области термохимии, является Бертло. Бертло- профессор химии Высшей фармацевтической школы в Париже (1859). Министр просвещения и иностранных дел.

Начиная с 1865 Бертло активно занимался термохимией, провел обширные калориметрические исследования, приведшие, в частности, к изобретению "калориметрической бомбы" (1881); ему принадлежат понятия "экзотермической" и "эндотермической" реакций. Бертло получены обширные данные о тепловых эффектах огромного числа реакций, о теплоте разложения и образования многих веществ.

Бертло исследовал действие взрывчатых веществ: температуру взрыва, скорости сгорания и распространения взрывной волны и др.

Энергия химических соединений сосредоточена главным образом в химических связях. Чтобы разрушить связь между двумя атомами, требуется затратить энергию. Когда химическая связь образуется, энергия выделяется.

Любая химическая реакция заключается в разрыве одних химических связей и образовании других.

Когда в результате химической реакции при образовании новых связей выделяется энергии больше, чем потребовалось для разрушения "старых" связей в исходных веществах, то избыток энергии высвобождается в виде тепла. Примером могут служить реакции горения. Например, природный газ (метан CH 4) сгорает в кислороде воздуха с выделением большого количества теплоты (рис. 1а). Такие реакции являются экзотермическими.

Реакции, протекающие с выделением теплоты, проявляют положительный тепловой эффект (Q>0, DH<0) и называются экзотермическими.

В других случаях на разрушение связей в исходных веществах требуется энергии больше, чем может выделиться при образовании новых связей. Такие реакции происходят только при подводе энергии извне и называются эндотермическими.

Реакции, которые идут с поглощением теплоты из окружающей среды (Q<0, DH>0), т.е. с отрицательным тепловым эффектом, являются эндотермическими.

Примером является образование оксида углерода (II) CO и водорода H 2 из угля и воды, которое происходит только при нагревании (рис. 1б).

Рис. 1а,б. Изображение химических реакций при помощи моделей молекул: а) экзотермическая реакция, б) эндотермическая реакция. Модели наглядно показывают, как при неизменном числе атомов между ними разрушаются старые и возникают новые химические связи.

Таким образом, любая химическая реакция сопровождается выделением или поглощением энергии. Чаще всего энергия выделяется или поглощается в виде теплоты (реже - в виде световой или механической энергии). Эту теплоту можно измерить. Результат измерения выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции. Такая величина называется тепловым эффектом реакции.

Тепловой эффект - количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символами Q или DH (Q = -DH). Его величина соответствует разности между энергиями исходного и конечного состояний реакции:

DH = Hкон.- Hисх. = Eкон.- Eисх.

Значки (г), (ж) обозначают газообразное и жидкое состояние веществ. Встречаются также обозначения (тв) или (к) - твердое, кристаллическое вещество, (водн) - растворенное в воде вещество и т.д.

Обозначение агрегатного состояния вещества имеет важное значение. Например, в реакции сгорания водорода первоначально образуется вода в виде пара (газообразное состояние), при конденсации которого может выделиться еще некоторое количество энергии. Следовательно, для образования воды в виде жидкости измеренный тепловой эффект реакции будет несколько больше, чем для образования только пара, поскольку при конденсации пара выделится еще порция теплоты.

Используется также частный случай теплового эффекта реакции - теплота сгорания. Из самого названия видно, что теплота сгорания служит для характеристики вещества, применяемого в качестве топлива. Теплоту сгорания относят к 1 молю вещества, являющегося топливом (восстановителем в реакции окисления), например:

ацетилен

теплота сгорания ацетилена

Запасенную в молекулах энергию (Е) можно отложить на энергетической шкале. В этом случае тепловой эффект реакции ( Е) можно показать графически (рис. 2).

Рис. 2. Графическое изображение теплового эффекта (Q =  Е): а) экзотермической реакции горения водорода; б) эндотермической реакции разложения воды под действием электрического тока. Координату реакции (горизонтальную ось графика) можно рассматривать, например, как степень превращения веществ (100% - полное превращение исходных веществ).


Уравнения химических реакций

Уравнения химических реакций, в которых вместе с реагентами и продуктами записан и тепловой эффект реакции, называются термохимическими уравнениями.

Особенность термохимических уравнений заключается в том, что при работе с ними можно переносить формулы веществ и величины тепловых эффектов из одной части уравнения в другую. С обычными уравнениями химических реакций так поступать, как правило, нельзя.

Допускается также почленное сложение и вычитание термохимических уравнений. Это бывает нужно для определения тепловых эффектов реакций, которые трудно или невозможно измерить в опыте.

Приведем пример. В лаборатории чрезвычайно трудно осуществить "в чистом виде" реакцию получения метана СH4 путем прямого соединения углерода с водородом:

С + 2H 2 = СH 4

Но можно многое узнать об этой реакции с помощью вычислений. Например, выяснить, будет эта реакция экзо- или эндотермической, и даже количественно рассчитать величину теплового эффекта.

Известны тепловые эффекты реакций горения метана, углерода и водорода (эти реакции идут легко):

а) СH 4 (г) + 2O 2 (г) = СO 2 (г) + 2H 2 О(ж) + 890 кДж

б) С(тв) + O 2 (г) = СO 2 (г) + 394 кДж

в) 2H 2 (г) + O 2 (г) = 2H 2 О(ж) + 572 кДж

Вычтем два последних уравнения (б) и (в) из уравнения (а). Левые части уравнений будем вычитать из левой, правые - из правой. При этом сократятся все молекулы O 2 , СO 2 и H 2 О. Получим:

СH 4 (г) - С(тв) - 2H 2 (г) = (890 - 394 - 572) кДж = -76 кДж

Это уравнение выглядит несколько непривычно. Умножим обе части уравнения на (-1) и перенесем CH 4 в правую часть с обратным знаком. Получим нужное нам уравнение образования метана из угля и водорода:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль

Итак, наши расчеты показали, что тепловой эффект образования метана из углерода и водорода составляет 76 кДж (на моль метана), причем этот процесс должен быть экзотермическим (энергия в этой реакции будет выделяться).

Важно обращать внимание на то, что почленно складывать, вычитать и сокращать в термохимических уравнениях можно только вещества, находящиеся в одинаковых агрегатных состояниях, иначе мы ошибемся в определении теплового эффекта на величину теплоты перехода из одного агрегатного состояния в другое.


Основные законы термохимии

Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией.

Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа, формулируется следующим образом:

Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например:

2H 2 (г) + O 2 (г) = 2H 2 О(ж) + 572 кДж (горение водорода в кислороде)

2 H 2 О(ж) + 572 кДж = 2H 2 (г) + O 2 (г) (разложение воды электрическим током)

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом:

Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.

Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.


Применение теплового эффекта на практике

Тепловые эффекты химических реакций нужны для многих технических расчетов. Например, рассмотрим мощную российскую ракету "Энергия", способную выводить на орбиту космические корабли и другие полезные грузы. Двигатели одной из её ступеней работают на сжиженных газах - водороде и кислороде.

Допустим, нам известна работа (в кДж), которую придется затратить для доставки ракеты с грузом с поверхности Земли до орбиты, известна также работа по преодолению сопротивления воздуха и другие затраты энергии во время полета. Как рассчитать необходимый запас водорода и кислорода, которые (в сжиженном состоянии) используются в этой ракете в качестве топлива и окислителя?

Без помощи теплового эффекта реакции образования воды из водорода и кислорода сделать это затруднительно. Ведь тепловой эффект - это и есть та самая энергия, которая должна вывести ракету на орбиту. В камерах сгорания ракеты эта теплота превращается в кинетическую энергию молекул раскаленного газа (пара), который вырывается из сопел и создает реактивную тягу.

В химической промышленности тепловые эффекты нужны для расчета количества теплоты для нагревания реакторов, в которых идут эндотермические реакции. В энергетике с помощью теплот сгорания топлива рассчитывают выработку тепловой энергии.

Врачи-диетологи используют тепловые эффекты окисления пищевых продуктов в организме для составления правильных рационов питания не только для больных, но и для здоровых людей - спортсменов, работников различных профессий. По традиции для расчетов здесь используют не джоули, а другие энергетические единицы - калории (1 кал = 4,1868 Дж). Энергетическое содержание пищи относят к какой-нибудь массе пищевых продуктов: к 1 г, к 100 г или даже к стандартной упаковке продукта. Например, на этикетке баночки со сгущенным молоком можно прочитать такую надпись: "калорийность 320 ккал/100 г".

Тепловой эффект рассчитывается при получении монометиланилина, который относится к классу замещенных ароматических аминов. Основная область применения монометиланилина – антидетонационная присадка для бензинов. Возможно использование монометиланилина в производстве красителей. Товарный монометиланилин (N-метиланилин) выделяется из катализата методом периодической или непрерывной ректификации. Тепловой эффект реакции ∆Н= -14±5 кДж/моль.

Жаропрочные покрытия

Развитие техники высоких температур вызывает необходимость создания особо жаропрочных материалов. Эта задача может быть решена путём использования тугоплавких и жаропрочных металлов. Интерметаллические покрытия привлекают всё большее внимание, поскольку обладают многими ценными качествами: стойкостью к окислению, агрессивными расплавами, жаропрочностью и т.д. Интерес представляет и существенная экзотермичность образования этих соединений из составляющих их элементов. Возможны два способа использования экзотермичности реакции образования интерметаллидов. Первый – получение композитных, двухслойных порошков. При нагреве компоненты порошка вступают во взаимодействие, и тепло экзотермической реакции компенсируют остывание частиц, достигающих защищаемой поверхности в полностью расплавленном состоянии и образующих малопористое прочно сцеплённое с основой покрытие. Другим вариантом может быть нанесение механической смеси порошков. При достаточном нагреве частиц они вступают во взаимодействие уже в слое покрытие. Если величина теплового эффекта значительная, то это может привести к самопроплавлению слоя покрытия, образованию промежуточного диффузионного слоя, повышающего прочность сцепления, получения плотной, малопористой структуры покрытия. Пpи выборе композиции, образующей интерметаллидное покрытие с большим тепловым эффектом и обладающее многими ценными качествами – коррозионной стойкостью, достаточной жаропрочностью и износостойкостью, обращает на себя внимание алюминиды никеля, в частности NiAl и Ni 3 Al. Образование NiAl сопровождается максимальным тепловым эффектом.

Термохимический способ обработки алмаза

Свое название "термохимический" способ получил благодаря тому, что протекает он при повышенных температурах, а в основе его лежит использование химических свойств алмаза. Осуществляется способ следующим образом: алмаз приводят в контакт с металлом, способным растворять в себе углерод, а для того, чтобы процесс растворения или обработки шел непрерывно, его проводят в атмосфере газа, взаимодействующего с растворенным в металле углеродом, но не реагирующим непосредственно с алмазом. В процессе величина теплового эффекта принимает высокое значение.

Для определения оптимальных условий проведения термохимической обработки алмаза и выявления возможностей способа потребовалось изучить механизмы определенных химических процессов, которые, как показал анализ литературы, вообще не исследовались. Более конкретному изучению термохимической обработки алмаза мешало, прежде всего, недостаточное знание свойств самого алмаза. Опасались испортить его нагревом. Исследования по термической устойчивости алмаза были выполнены лишь в последние десятилетия. Установлено, что алмазы, не содержащие включений, в нейтральной атмосфере или в вакууме можно без всякого для них вреда нагреть до 1850 “С”, и только выше.

Алмаз является лучшим материалом для лезвия благодаря уникальной твердости, упругости и низкому трению по биологическим тканям. Оперирование алмазными ножами облегчает проведение операций, сокращает в 2-3 раза сроки заживления разрезов. По мнению микрохирургов МНТК микрохирургии глаза, ножи, заточенные термохимическим способом, не только не уступают, но и превосходят по качеству лучшие зарубежные образцы. Термохимически заточенными ножами уже сделаны тысячи операций. Алмазные ножи разной конфигурации и размеров могут применяться и в других областях медицины, биологии. Так, для изготовления препаратов в электронной микроскопии используют микротомы. Высокая разрешающая способность электронного микроскопа предъявляет особые требования к толщине и качеству среза препаратов. Алмазные микротомы, заточенные термохимическим методом, позволяют изготавливать срезы нужного качества.

Техногенное сырьё для производства цемента

Дальнейшая интенсификация цементного производства предполагает широкое внедрение энерго- и ресурсосберегающих технологий с использованием отходов различных отраслей.

При переработке скарново-магнетитовых руд выделяются хвосты сухой магнитной сепарации (СМС), представляющие собой щебневидный материал с размером зерен до 25 мм. Хвосты СМС имеют достаточно стабильный химический состав, мас.%:

SiO 2 40…45,

Al 2 O 3 10…12,

Fe 2 O 3 15…17,

CaO 12…13,

MgO 5…6,

Доказана возможность использования хвостов СМС в производстве портландцементного клинкера. Полученные цементы характеризуются высокими прочностными показателями.

Тепловой эффект клинкерообразования (ТЭК) определен как алгебраическая сумма теплот эндотермических процессов (декарбонизация известняка, дегидратация минералов глины, образование жидкой фазы) и экзотермических реакций (окисление пирита, вносимого хвостами СМС, формирование клинкерных фаз).

Основными преимуществами использования отходов обогащения скарново-магнетитовых руд в производстве цемента являются:

Расширение сырьевой базы за счет техногенного источника;

Экономия природного сырья при сохранении качества цемента;

Снижение топливно-энергетических затрат на обжиг клинкера;

Возможность выпуска малоэнергоемких активных низкоосновных клинкеров;

Решение экологических проблем за счет рациональной утилизации отходов и сокращения газовых выбросов в атмосферу при обжиге клинкера.

Биосенсоры

Биосенсоры – датчики на основе иммобилизованных ферментов. Позволяют быстро и качественно анализировать сложные, многокомпонентные смеси веществ. В настоящее время находят все более широкое применение в целом ряде отраслей науки, промышленности, сельского хозяйства и здравоохранения. Основой для создания автоматических систем ферментативного анализа послужили последние достижения в области энзимологии и инженерной энзимологии. Уникальные качества ферментов - специфичность действия и высокая каталитическая активность – способствуют простоте и высокой чувствительности этого аналитического метода, а большое количество известных и изученных на сегодняшний день ферментов позволяют постоянно расширять список анализируемых веществ.

Ферментные микрокалориметрические датчики – используют тепловой эффект ферментативной реакции. Состоит из двух колонок (измерительной и контрольной), заполненных носителем с иммобилизованным ферментом и снаряженных термисторами. При пропускании через измерительную колонку анализируемого образца происходит химическая реакция, которая сопровождается регистрируемым тепловым эффектом. Данный тип датчиков интересен своей универсальностью.

Заключение

Итак, проведя анализ практического применения теплового эффекта химических реакций, можно сделать вывод: тепловой эффект вплотную связан с нашей повседневной жизнью, он подвергается постоянному исследованию и находит всё новые применения на практике.

В условиях развития современных технологий теплой эффект нашел свое применение в различных отраслях. Химическая, военная, строительная, пищевая, горнодобывающая и многие другие отрасли используют тепловой эффект в своих разработках. Он применяется в двигателях внутреннего сгорания, холодильных установках и в различных топочных устройствах, а также в производстве хирургических приборов, жаропрочных покрытий, новых видах строительных материалов и так далее.

В современных условиях постоянно развивающейся науке, мы наблюдаем появление всё более новых разработок и открытий в сфере производства. Это влечет за собой всё новые и новые области применения теплового эффекта химических реакций.

Черных Е. А.


Список литературы

Мусабеков Ю. С., Марселен Бертло, М., 1965; Centenaire de Marcelin Berthelot, 1827-1927, P., 1929.

Патент 852586 Российская Федерация. МКИ В 28 Д 5/00. Способ размерной обработки алмаза /А.П.Григорьев, С.Х.Лифшиц, П.П.Шамаев (Российская Федерация). - 2 с.