Какие способы электризации вам известны. Электризация

Развлекались ли вы в детстве таким нехитрым фокусом: если потереть о сухие волосы надутый воздушный шарик, а потом приложить его к потолку, то он как бы «прилипает»?

Нет? Попробуйте, это забавно. Не менее забавно потом торчат во все стороны волосы. Такой же эффект получается иногда при расчесывании длинных волос. Они торчат и липнут к расческе. Ну и всем знакомы ситуации, когда походив в шерстяных или синтетических вещах, прикасаешься к чему-то или к кому-то и чувствуешь резкий укол. В таких случаях говорят – бьешься током. Все это примеры электризации тел. Но откуда возникает электризация, если мы все прекрасно знаем, что электрический ток живет в розетках и батарейках, а не в волосах и одежде?

Явление электризации тел: способы электризации

Явление электризации тел начинают изучать в восьмом классе. И начинают изучение с рассмотрения электризации тел при соприкосновении. Для этого на уроках проводят опыты с применением простейших способов электризации тел трением эбонитовой или стеклянной палочки о мех или шелк. Вы можете проделать такие опыты самостоятельно, вместо палочки можно взять пластмассовую ручку или линейку. Потрите ручку о шерсть или мех, а затем поднесите к мелко нарезанным кусочкам бумаги, соломинкам или шерстинкам. Вы увидите, как эти кусочки притягиваются к ручке. То же произойдет с тонкой струей воды, если поднести к ней наэлектризованную ручку.

Два рода электрических зарядов

Впервые подобные эффекты были обнаружены с янтарем , потому и были названы электрическими от греческого слова «электрон» – янтарь. И способности тел притягивать другие предметы после соприкосновения, а натирание – это лишь способ увеличить площадь соприкосновения, назвали электризацией или приданием телу электрического заряда. Опытным путем установили, что существует два рода электрических зарядов. Если натереть стеклянную и эбонитовую палочки, то они будут притягиваться между собой. А две одинаковые – отталкиваться. И это происходит не потому, что они не нравятся друг другу, а потому, что у них разные электрические заряды. Электрический заряд стеклянной палочки условились называть положительным, а эбонитовой – отрицательным. Обозначаются они, соответственно, знаками «+» и «-». Опять-таки, эти названия взяты не в смысле того, то один вид заряда хороший, а второй плохой. Имеется в виду, что они противоположны друг другу.

В наше время широко используют легко электризующиеся предметы – пластмассы, синтетические волокна, нефтепродукты. При трении таких веществ возникает электрический заряд, который иногда бывает как минимум неприятен, как максимум он может быть вреден. В промышленности с ними борются специальными средствами. В быту же самый простой способ избавиться от электризации – это смочить наэлектризованную поверхность. Если воды под рукой нет, то поможет прикосновение к металлу или земле. Эти тела снимут электризацию. А чтобы вообще не ощущать на себе эти неприятные эффекты рекомендуется пользоваться антистатиками.

При трении тел друг о друга «трутся» именно электронные оболочки атомов, из которых тела состоят. А так как электроны слабо связаны с ядрами атомов, то электроны могут отделяться от «своих» атомов и переходить на другое тело. В результате на нём возникает избыток электронов (отрицательный заряд), а на первом теле – недостаток электронов (положительный заряд).

Итак, электризация трением объясняется переходом части электронов от одного тела к другому, в результате чего тела заряжаются разноимённо. Поэтому тела, наэлектризованные трением друг о друга, всегда притягиваются (см. § 8-б). Но, кроме электризации трением, существует электризация индукцией (лат. «индукцио» – наведение). Рассмотрим её на опыте:

В начале опыта имеются два металлических шара, которые касаются друг друга (а). К одному из них подносят, не касаясь его, заряженную стеклянную палочку (б), после чего второй шар отодвигают (в). Теперь палочку можно убрать, – шары будут разноимённо заряжены (г).

Объясним этот опыт с точки зрения электронно-ионной теории.

Сначала металлические шары не были заряжены. Это значит, что электронный газ присутствовал в шарах в равных количествах (а). Поскольку палочка стеклянная, мы считаем её заряд положительным (см. § 8-б). Она притягивает отрицательно заряженные частицы – электроны. В результате электронный газ «перетекает» в левую часть левого шара, и в этом месте образуется избыток отрицательного заряда (б).

Все положительные ионы металла прочно связаны друг с другом (они и есть металл), поэтому никуда не «перетекают». Значит, во всех остальных частях шаров возникает недостаток электронов, то есть положительный заряд. И если в этот момент, не убирая палочку, раздвинуть шары (в) и лишь затем убрать её, шары останутся разноимённо заряженными (г).

Итак, электризация индукцией объясняется перераспределением электронного газа между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноимённо. Однако возникает вопрос: все ли тела поддаются электризации индукцией? Можно проделать опыты и убедиться, что пластмассовые, деревянные или резиновые шары можно легко наэлектризовать трением, но невозможно индукцией. Объясним это.

Электроны в резине, древесине и во всех пластмассах не являются свободными, то есть не образуют электронного газа, который может перетекать в другие тела. Поэтому для электризации тел из этих веществ необходимо прибегнуть к их трению, способствующему отделению электронов от «своих» атомов и переходу на другое тело.

Итак, по электрическим свойствам все вещества можно разделить на две группы. Диэлектрики – вещества, не имеющие свободных заряженных частиц и потому не проводящие заряд от одного тела к другому. Проводники вещества со свободными заряженными частицами, которые могут перемещаться, перенося заряд в другие части тела или к другим телам. Это иллюстрирует рисунок с электроскопами, пластмассовой линейкой и металлической проволокой (см. выше).

Физика! Какая емкость слова!
Физика для нас не просто звук!
Физика – опора и основа
Всех без исключения наук!

  • объяснить учащимся механизм электризации тел,
  • развивать исследовательские и творческие навыки,
  • создать условия для повышения интереса к изучаемому материалу,
  • помочь учащимся осмыслить практическую значимость, полезность приобретаемых знаний и умений.

Оборудование:

  • электрофорная машина,
  • электрометр,
  • султанчики,
  • эбонитовые и стеклянные палочки,
  • шелковые и шерстяные ткани,
  • электроскоп,
  • соединительные провода, дистиллированная вода, парафиновые шарики,
  • алюминиевые и бумажные цилиндрики, шелковые нити (крашеные и некрашеные).

На доске: Проводники, изоляторы, смоляной и стеклянный заряды.

  • Электроотрицательный атом.
  • Электроположительный атом.
  • Электризация: - соприкосновение
    • - влияние
    • - фотоэффект (под действием света).
  • Отталкивание, притяжение.
  • Заряды в наэлектризованных изоляторах и проводниках.
  • ХОД УРОКА

    1. Вступительное слово учителя

    В повседневной жизни человек наблюдает огромное количество явлений и, возможно, гораздо большее количество явлений остаются незамеченными.

    Существование этих явлений “толкает” человека на их поиски, открытия и объяснения этих явлений. Такое явление как падение тел на землю у человека не вызывает уже никакого удивления. Но, следует заметить, что земля и данное тело взаимодействуют, не касаясь друг друга. Они взаимодействуют между собой самым известным действием – гравитационным притяжением (гравитационными полями). Мы привыкли, что тела действуют друг на друга, в основном, непосредственно. Есть еще и такие явления, известные еще древним грекам, которые каждый раз вызывают интерес у детей и взрослых. Это электрические явления.

    Примеры электрических взаимодействий весьма разнообразны и не так хорошо знакомы нам с детского возраста как, например, притяжение Земли. Этот интерес объясняется и тем, что здесь мы имеем большие возможности создания, изменения экспериментальных условий, обходясь несложным оборудованием.

    Проследим за ходом выявления и изучения некоторых явлений.

    2. Историческая справка (докладывает ученик)

    Греческий философ Фалес Милетский, живший в 624–547 гг. до н.э., открыл, что янтарь, потертый о мех, приобретает свойство притягивать мелкие предметы – пушинки, соломинки и т.д. Позже такое явление было названо электризацией.

    В 1680 году немецкий ученый Ото фон Герике построил первую электрическую машину и открыл существование электрических сил отталкивания и притяжения.

    Первым ученым, аргументировано отстаивавшим точку зрения о существовании двух видов зарядов, был француз Шарль Дюфе (1698–1739). Электричество, которое появляется при натирании смолы, Дюфе назвал смоляным, а электричество, которое появляется при натирании стекла – стеклянным. В современной терминологии “смоляное” электричество соответствует отрицательным зарядам, а “стекольное” положительным. Самым убедительным оппонентом теории существования двух видов зарядов был знаменитый американец Бенджамин Франклин (1706 - 1790). Он впервые ввел понятие о положительных и отрицательных зарядах. Наличие этих зарядов у тел он объяснил избытком или недостатком в телах некоей общей электрической материи. Это особая материя, впоследствии названная “флюидом Франклина”, по его мнению, обладала положительным зарядом. Таким образом, при электризации тело либо приобретает, либо теряет положительные заряды. Нетрудно догадаться, что Франклин перепутал положительные заряды с отрицательными и тела обмениваются электронами (которые несут отрицательный заряд). Во многом благодаря этому факту впоследствии ошибочно за направление тока в металлах было принято направление движения положительного заряда.

    Англичанин Роберт Симмер (1707 - 1763), обратил внимание на необычное поведение своих шерстяных и шелковых чулков. Он носил две пары чулок: черные шерстяные для тепла и белые шелковые для красоты. Снимая с ноги сразу оба чулка и выдергивая один из другого, он наблюдал, как оба чулка раздуваются, принимая форму ноги и притягиваясь друг к другу. Однако чулки одинакового цвета отталкивались, а разных цветов притягивались. Основываясь на своих наблюдениях, Симмер стал рьяным сторонником теории двух зарядов, за что был прозван “раздутым философом”.

    Выражаясь современным языком, его шелковые чулки имели отрицательные, а шерстяные – положительные заряды.

    3. Явление электризации тел

    Учитель: Какое тело называется заряженным?

    Ученик: Если тело может притягивать или отталкивать другие тела, то оно обладает электрическим зарядом. О таком теле говорят, что оно заряжено. Заряд – свойство тел, – способность к электромагнитному взаимодействию.

    (Демонстрация действия заряженного тела).

    Учитель: Что называется электроскопом?

    Ученик: Прибор, который позволяет обнаружить наличие у тела заряда и оценить его, называется электроскопом.

    Учитель: Как устроен и работает электроскоп?

    Ученик: Основной частью электроскопа является проводящий изолированный стержень, на котором закрепляется стрелка, способная свободно вращаться. При появлении заряда стрелка и стержень заряжаются зарядами одного знака и поэтому они, отталкиваясь, создают угол отклонения, значение которого пропорционально полученному заряду.

    (Демонстрация работы прибора).

    Учитель: Электризация тел может происходить в различных случаях, т.е. существуют различные способы электризации тел:

    • трением,
    • ударом,
    • соприкосновением,
    • влиянием,
    • под действием световой энергии.

    Рассмотрим некоторые из них.

    Ученик: Если потереть эбонитовую палочку о шерсть, то эбонит получит отрицательный заряд, а шерсть – положительный заряд. Наличие этих зарядов обнаруживается с помощью электроскопа. Для этого надо коснуться стержня электроскопа эбонитовой палочкой или шерстяной тряпкой. При этом часть заряда испытуемого тела переходит к стержню. Кстати, в этом случае происходит кратковременный электрический ток. Рассмотрим взаимодействие двух бумажных подвешенных на нити гильз, заряженных один - от эбонитовой палочки, другой – от шерстяной тряпочки. Заметим, что они притягиваются друг к другу. Значит, тела с разноименными зарядами притягиваются. Не каждое вещество может передать электрические заряды. Вещества, через которые могут передаваться заряды, называют проводниками, а вещества, через которые заряды не передаются, называют непроводниками – диэлектриками (изоляторами). Это можно выяснить также с помощью электроскопа, соединяя его с заряженным телом, веществами различного рода.

    Белая шелковая нить не проводит заряд, а крашенная шелковая нить проводит. (Рис. А)

    Белая шелковая нить Крашеная шелковая нить

    Разделение зарядов и возникновение двойного электрического слоя в местах их соприкосновения, всяких двух различных тел, изоляторов или проводников, твердых тел, жидкостей или газов. Описывая электризацию трением, мы всегда брали для опыта только хорошие изоляторы – янтарь, стекло, шелк, эбонит. Почему? Потому что в изоляторах заряд остается на том месте, где он возник и не может через всю поверхность тела перейти на другие соприкасающиеся с ним тела. Опыт не удается, если оба трущиеся тела будут металлами с изолированными ручками, так как мы не можем отделить их друг от друга сразу по всей поверхности.

    Вследствие неизбежной шероховатости поверхности тел, в момент отрыва всегда остаются какие-то последние точки соприкосновения – “мостики”, через которые в последний момент сбегают все избыточные электроны и оба металла оказываются не заряженными.

    Учитель: Теперь рассмотрим электризацию соприкосновением.

    Ученик: Если мы погрузим шарик из парафина в дистиллированную воду и потом вынем из воды то и парафин, и вода окажутся заряженными. (Рис.B)

    Электризация воды и парафина произошла без всякого трения. Почему? Оказывается, что при электризации трением мы лишь увеличиваем площадь соприкосновения и уменьшаем расстояние между атомами трущихся тел. В случае вода – парафин всякие шероховатости не мешают сближению их атомов.

    Значит, трение не является обязательным условием для электризации тел. Существует другая причина, по которой происходит электризация в этих случаях.

    Ученик: На электризации тела через влияние основана работа электрофорной машины. Наэлектризованное тело может взаимодействовать с любым электрически нейтральным проводником. При сближении этих тел, за счет электрического поля заряженного тела во втором теле происходит перераспределение зарядов. Ближе к заряженному телу располагаются заряды по знаку противоположные заряженному телу. Дальше от заряженного тела в проводнике (гильза или цилиндр) располагаются одноименные с заряженным телом заряды.

    Так как расстояние до положительных и отрицательных зарядов в цилиндре от шара разное, то преобладают силы притяжения и цилиндр отклоняется в сторону наэлектризованного тела. Если же дальней стороны тела от заряженного шара коснуться рукой, то тело прыгнет к заряженному шару. Это происходит из-за того, что при этом электроны перескакивают к руке, уменьшая тем самым силы отталкивания. Рис. D.

    Учитель: Как долго сохранится такое положение? (Рис.D)

    Ученик: Через несколько секунд произойдет деление зарядов и цилиндр оторвется от шара. Характер их в дальнейшем будет зависеть от значения суммы их зарядов. Если их сумма равна нулю, то их силы взаимодействия равны нулю. Если Fp < 0, то они оттолкнутся друг от друга, но на меньший угол .

    Учитель: Рассмотрим электризацию тел под действием световой энергии (фотоэффект).

    Ученик: Направим на цинковый диск (пластину) прикрепленную к электрометру сильный световой луч. Под действием световой энергии из пластины вылетает некоторое количество электронов. Сама пластина оказывается заряженным положительно. О величине этого заряда можно судить по углу отклонения стрелки электрометра. (Рис. Е)

    Учитель: Мы убедились в том, что при уменьшении расстояния между атомами явление электризации происходит эффективнее. Почему?

    Ученик: Потому что при этом увеличиваются кулоновские силы притяжения между ядром атома и электроном соседнего атома.

    Перескакивает тот электрон, который слабо связан со своим ядром.

    Учитель: Рассмотрим как располагаются химические элементы в периодической системе химических элементов.

    Ученик: Существуют около 500 форм Периодической системы химических элементов. Из них в одной, 18-клеточной, элементы размещены согласно строению электронных оболочек их атомов и приведена в справочнике по общей и неорганической химии Н.Ф.Стась.

    С периодическим законом согласуются свойства и характеристики атомов, в том числе электроотрицательность и валентность элементов.

    Радиусы атомов и ионов в периодах уменьшаются, т.к. электронная оболочка атома или иона каждого последующего элементов в периоде по сравнению с предыдущим уплотняется из-за увеличения заряда ядра и увеличения притяжения электронов к ядру.

    Радиусы в группах увеличиваются, т.к. атом (ион) каждого элемента отличается от вышестоящего появлением нового электронного слоя. При превращении атома в катион (положительный ион) атомные радиусы резко уменьшаются, а при превращении атома в анион (отрицательный ион) атомные радиусы почти не изменяются.

    Энергия, затрачиваемая на отрыв электрона от атома и превращение в положительный ион называется ионизацией. Напряжение, при котором происходит ионизация, называют ионизационным потенциалом.

    Ионизационный потенциал – физическая характеристика, является показателем металлических свойств элемента: чем он меньше, тем легче отрывается электрон от атома и тем сильнее выражены металлические (восстановительные) свойства элемента.

    Таблица 1. Потенциалы ионизации атомов (эВ/атом) элементов второго периода

    Элемент J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8
    Литий 5,39 75,6 122,4 --- --- --- --- ---
    Бериллий 9,32 18,2 158,3 217,7 --- --- --- ---
    Бор 8,30 25,1 37,9 259,3 340,1 --- --- ---
    Углерод 11,26 24,4 47,9 64,5 392,0 489,8 --- ---
    Азот 14,53 29,6 47,5 77,4 97,9 551,9 666,8 ---
    Кислород 13,60 35,1 54,9 77,4 113,9 138,1 739,1 871,1
    Фтор 17,40 35,0 62,7 87,2 114,2 157,1 185,1 953,6
    Неон 21,60 41,1 63,0 97,0 126,3 157,9

    Учитель: Существует такое понятие, как электроотрицательность, которое играет определяющую роль при электризации тел. От него зависит знак заряда, получаемый элементом при электризации. Электроотрицательность – что это такое?

    Ученик: Электроотрицательностью называется свойство химического элемента притягивать к своему атому электроны от атомов других элементов, с которыми элемент образует химическую связь в соединениях.

    Электроотрицательность элементов определяли многие ученые: Полинг, Олред и Рохов. Они пришли к выводу, что электроотрицательность элементов в периодах увеличивается, а в группах уменьшается подобно ионизационным потенциалам. Чем меньше значение ионизационного потенциала, тем больше вероятность потери электрона и превращения в положительный ион или положительно заряженного тела, если тело однородное.

    Таблица 2. Относительная электроотрицательность (ЭО) элементов первого, второго и третьего периодов.

    Элемент ЭО Элемент ЭО Элемент ЭО
    По Полингу По Олреду-Рохову По Полингу По Олреду-Рохову По Полингу По Олреду-Рохову
    H 2,1 2,20 Li 1,0 0,97 Na 0,9 1,01
    Be 1,5 1,17 Mg 1,2 1,23
    B 2,0 2,07 Al 1,5 1,47
    C 2,5 2,50 Si 1,8 1,74
    N 3,0 3,07 P 2,1 2,06
    O 3,5 3,50 S 2,5 2,44
    F 4,0 4,10 Cl 3,0 2,83

    Учитель: Из всего этого можно сделать следующий вывод: если взаимодействуют два однородных элемента из одинакового периода, то заранее можно сказать, который из них окажется заряженным положительно, а который отрицательно.

    Вещество, атом которого имеет большую валентность (больше номер группы) по отношению к атому другого вещества, окажется заряженным отрицательно, а второе вещество положительно.

    Если взаимодействуют однородные вещества с одной группы, то вещество с меньшим номером периода или ряда окажется заряженным отрицательно, а второе взаимодействующее тело – положительно.

    Учитель: На этом уроке мы попытались раскрыть механизм электризации тел. Мы выяснили, по какой причине тело после электризации получает заряд того или иного знака, т.е. ответили на главный вопрос – почему? (как, например, раздел механики “Динамика” отвечает на вопрос: почему?)

    Теперь перечислим положительные и отрицательные значения электризации тел.

    Ученик: Статическое электричество может иметь негативное влияние:

    Притяжение волос к расческе;

    Отталкивание волос друг от друга, подобно заряженному султанчику;

    Прилипание к одежде различных мелких предметов;

    На ткацких фабриках прилипание нитей к бобинам, что ведет к частым обрывам.

    Накопленные заряды могут вызвать электрические разряды, которые могут иметь различные последствия:

    Молния (приводит к пожарам);

    Разряд в бензовозе приведет к взрыву;

    При заправке горючей смесью любой разряд может привести к взрыву.

    Чтобы снять статическое электричество, заземляют все устройства и оборудование и даже бензовоз. Используют специальное вещество антистатик.

    Ученик: Статическое электричество может принести пользу:

    При окраске мелких деталей краскораспылителем, краску и тело заряжают противоположными зарядами, что приводит к большой экономии краски;

    В лечебных целях используют статический душ;

    Для очистки воздуха от пыли, сажи, кислотных и щелочных паров используются электростатические фильтры;

    Для копчения рыбы в специальных электромерах (рыба заряжается положительно, а электроды отрицательно, копчение в электрическом поле происходит в десятки раз быстрее).

    Подведение итогов занятия .

    Учитель: Давайте вспомним цель нашего занятия и сделаем краткие выводы.

    • Что на уроке было новым?
    • Что было интересным?
    • Что на уроке было важным?

    Выводы учащихся:

    1. Явления, в которых тела приобретают свойства притягивать другие тела, называют электризацией.
    2. Электризация может происходить соприкосновением, через влияние, при облучении светом.
    3. Вещества бывают: электроотрицательные и электроположительные.
    4. Зная принадлежность веществ, можно предугадать какие заряды получат взаимодействующие тела.
    5. Трение лишь увеличивает площадь соприкосновения.
    6. Вещества бывают проводниками и непроводниками электричества.
    7. Изоляторы накапливают заряды там, где они образовались (в местах соприкосновения).
    8. В проводниках заряды распределяются равномерно по всему объему.

    Обсуждение и выставление оценок участникам урока.

    Литература.

    1. Г.С.Ландсберг. Элементарный учебник физики. Т.2. – М., 1973.
    2. Н.Ф.Стась. Справочник по общей и неорганической химии.
    3. И.Г.Кириллова. Книга для чтения по физике. М., 1986.

    Вы замечали, что когда снимаете свитер или футболку летят искры и слышны потрескивания? А когда вы выходите из машины и вас бьёт током? Это статическое электричество или электризация тел. Она возникает в результате накопления электрических зарядов разных знаков на объектах с последующей их компенсацией. В этой статье мы кратко рассмотрим данное явление, причины его возникновения, а также способы применения как в быту, так и в промышленности.

    Определение

    Электризацией называется процесс разделения электрических зарядов и накопление их в определенных местах предметов и тел. Явление происходит в результате трения, соприкосновения тел или в результате электростатической индукции. Простыми словами, когда рядом расположен какой-то предмет, обладающий электрическим полем.

    Напомним : в физике выделяют два рода зарядов – положительные и отрицательные, или протоны и электроны. Между ними возникает . Одноименные заряды притягиваются, а разноименные отталкиваются.

    Явление наблюдается на источниках питания и не только. На диэлектриках накапливаются заряды, все видели это в опытах, иллюстрирующих явление с эбонитовыми и стеклянными палочками, которые демонстрировали на уроках физики в школе.

    Изначально все атомы, из них состоит всё что нас окружает, электрически нейтральны. В результате явления электризации на поверхности предметов появляются положительные или отрицательные заряды. Напомним школьный опыт: если потереть эбонитовую палочку шерстяной тканью, после прекращения трения палочка останется заряженной. Тогда говорят, что тело электризовано.

    Таким образом, во время трения электроны переходили с одного предмета на другой. В результате, после прекращения трения избыточные электроны остались «не на своих» телах и получился избыточный заряд, и оно перестало быть нейтральным. В результате трения палочки о шерсть или мех на её поверхности образовался отрицательный заряд.

    Условия возникновения явления и способы передачи зарядов

    Мы рассказали, как объясняется это явление в природе, а теперь давайте рассмотрим, как можно наэлектризовать тела. Сразу отметим, что выполнение всех условий необязательно – электризация может происходить по тем или иным причинам, разделим их на две основных группы:

    Первая — это механическое взаимодействие. При трении расстояние между предметами сопоставимо расстоянию между молекулами в нём. Так как электроны в одном из тел слабее связаны с ядром – они переходят «вырываются» на другое тело. Другими способами электризации являются удар и соприкосновение.

    Вторая группа — электризация влиянием, то есть явление наблюдается при воздействии на тело внешних сил, среди которых:

    • Электрическое поле. В результате воздействия поля на проводник на его поверхности появляются заряды, причем чем меньше радиус изгиба поверхности – тем больше зарядов здесь скопится. Так на острие будет больше всего зарядов, подробнее этот вопрос мы рассматривали в статье и здесь

    • Воздействие светом. Открыто профессором А.Г. Столетовым в 1888 году, заключается в том, что при воздействии светом на цинк, алюминий, цезий, натрий, свинец, калий и другие металлы они теряют электроны и становятся заряженными положительно.
    • Теплом. При нагревании металла электронам сообщается энергия достаточная для того чтобы покинуть пределы металла, в результате он приобретает положительный заряд.
    • Химическая реакция. При наличии двух электродов из разных металлов происходят окислительно-восстановительные реакции, в результате один из них становится заряженным положительно, а второй – отрицательно. Подробнее мы это рассматривали в статье про .
    • Под давлением. В пьезоэлектриках (кварц, сегнетовая соль, фосфат аммония), при механическом воздействии (сжатии или растяжении), на гранях образуются положительные и отрицательные заряды.

    Это и есть основные виды электризации.

    Какие законы физики связаны с электризацией

    Явление электризации связано с такими физическими законами как:

    • . Описывает силу, с которой взаимодействуют заряды. Таким образом можно определить, как сильно наэлектризованные тела притягиваются друг к другу.
    • . В нём сказано, что алгебраическая сумма зарядов в замкнутой системе неизменна. Это говорит о том, что избыточные заряды на электризованных предметах не появляются из ниоткуда, а переходят с тела на тело.

    Мы уже рассматривали эти законы, вы можете ознакомиться подробнее в соответствующих статьях, на которые мы сослались.

    Применение на практике

    Явление электризации имеет как положительные и отрицательные проявления. Примеры положительного применения:


    Также есть ряд применений для очистки, сортировки, фильтрации, а также в медицине для ускорения лечения.

    Отрицательное влияние электризации может привести к фатальным последствиям:

    1. Возникновение искр при соприкосновении заряженных предметов. К таким случаям можно отнести искры в быту, которые проскакивают, когда вы снимаете свитер, когда вас бьёт током при выходе из машины. Например, самолёт в полёте электризуется и при подведении к нему трапа могут проскочить искры, а из-за этого возможно воспламенение, поэтому сначала снимают заряд с самолёта. Также известны случаи воспламенения нефтяных танкеров из-за электризации.
    2. Явление приводит к появлению больших электрических зарядов, они могут привести к выходу из строя электронных компонентов в технике, как при производстве техники, так и в процессе эксплуатации или ремонта. Это происходит в результате разрядки инструмента на печатную плату. Поэтому мастера по ремонту электроники должны работать в заземленных электрических браслетах и заземленными паяльниками и прочим. В современной элементной базе есть ряд технических решений по минимизации влияния электризации на их работу. Например, установка диодов Зенера параллельно цепи ЗАТВОР-ИСТОК полевых транзисторов.

    Интересно! Известен случай, когда при покрытии лаком печатных плат после монтажа электронных компонентов, наблюдалась большая отбраковка, при том, что все изделия проходили проверку до покрытия лаком. Возник вопрос: как избавиться от проблемы электризации? Проблема решилась заземлением краскопульта.

    В рамках сегодняшнего занятия мы познакомимся с такой физической величиной, как заряд, увидим примеры передачи зарядов от одного тела к другому, узнаем о разделении зарядов на два типа и о взаимодействии заряженных тел.

    Тема: Электромагнитные явления

    Урок: Электризация тел при соприкосновении. Взаимодействие заряженных тел. Два рода зарядов

    Данный урок является вводным в новый раздел «Электромагнитные явления», и на нем мы обсудим основные понятия, которые с ним связаны: заряд, его виды, электризация и взаимодействие заряженных тел.

    История возникновения понятия «электричество»

    Прежде всего, следует начать с обсуждения такого понятия, как электричество. В современном мире мы постоянно с ним сталкиваемся на бытовом уровне и уже не можем представить свою жизнь без компьютера, телевизора, холодильника, электроосвещения и т. п. Все эти приборы, насколько известно, работают благодаря электрическому току и окружают нас повсеместно. Даже изначально не полностью зависящие от электричества технологии, такие как работа двигателя внутреннего сгорания в автомобиле, начинают медленно отходить в историю, и их место активно занимают электродвигатели. Так откуда же пошло такое слово, как «электрический»?

    Слово «электрический» происходит от греческого слова «электрон», что в переводе означает «янтарь» (ископаемая смола, рис. 1). Хотя следует, конечно же, сразу оговорить, что непосредственной связи между всеми электрическими явлениями и янтарем нет, и мы немного позже поймем, откуда взялась такая ассоциация у древних ученых.

    Первые наблюдения электрических явлений относят к 5-6 вв до н. э. Считается, что Фалес Милетский (древнегреческий философ и математик из Милета, рис. 2) впервые пронаблюдал электрическое взаимодействие тел. Он провел следующий опыт: натер янтарь мехом, затем приблизил его к небольшим телам (пылинкам, стружке или перьям) и пронаблюдал, что эти тела стали притягиваться к янтарю без объяснимой на то время причины. Фалес был не единственным ученым, который впоследствии активно проводил электрические опыты с янтарем, что и привело к возникновению слова «электрон» и понятию «электрический».

    Рис. 2. Фалес Милетский ()

    Смоделируем аналогичные опыты с электрическим взаимодействием тел, для этого возьмем мелко нарезанную бумагу, стеклянную палочку и лист бумаги. Если натереть стеклянную палочку о лист бумаги, а затем подвести ее к мелко нарезанным бумажкам, то будет виден эффект притяжения мелких кусочков к стеклянной палочке (рис. 3).

    Интересен тот факт, что впервые такой процесс был достаточно полно объяснен только в 16 веке. Тогда стало известно, что существует два вида электричества, и они взаимодействуют друг с другом. Понятие электрического взаимодействия появилось в середине 18 века и связано с именем американского ученого Бенджамина Франклина (рис. 4). Именно он впервые ввел такое понятие, как электрический заряд.

    Рис. 4. Бенджамин Франклин ()

    Определение. Электрический заряд - физическая величина, которая характеризует величину взаимодействия заряженных тел.

    То, что мы имели возможность пронаблюдать на опыте с притяжением бумажек к наэлектризованной палочке, доказывает наличие сил электрического взаимодействия, а величину этих сил характеризует такое понятие, как заряд. То, что силы электрического взаимодействия могут быть различными, легко проверяется экспериментальным путем, например, при натирании одной и той же палочки с различной интенсивностью.

    Для проведения следующего опыта нам понадобится все та же стеклянная палочка, лист бумаги и бумажный султан, закрепленный на железном стержне (рис. 5). Если потереть палочку листом бумаги, а затем прикоснуться ей к железному стержню, то будет заметно явление отталкивания полосок бумаги султана друг от друга, причем, если повторить натирание и прикосновение несколько раз, то будет видно, что эффект усиливается. Наблюдаемое явление называют электризацией.

    Рис. 5. Бумажный султан ()

    Определение. Электризация - разделение электрических зарядов в результате тесного контакта двух или более тел.

    Электризация может происходить несколькими способами, первые два мы сегодня рассмотрели:

    Электризация трением;

    Электризация прикосновением;

    Электризация наведением.

    Рассмотрим электризацию наведением. Для этого возьмем линейку и положим ее на вершину железного стержня, на котором закреплен бумажный султан, после этого прикоснемся к стержню, чтобы снять на нем заряд, и расправим полоски султана. Затем наэлектризуем стеклянную палочку трением о бумагу и подведем ее к линейке, результатом станет то, что линейка начнет вращаться на вершине железного стержня. При этом стеклянной палочкой прикасаться к линейке не следует. Это доказывает то, что существует электризация без непосредственного соприкосновения между телами - электризация наведением.

    Первые исследования значений электрических зарядов датируются более поздним периодом истории, чем открытие и попытки описания электрических взаимодействий тел. В конце 18 века ученые пришли к выводу, что деление заряда приводит к двум принципиально различным результатам, и было принято решение условно разделить заряды на два типа: положительные и отрицательные. Для того чтобы была возможность различать эти два типа зарядов и определять, какой является положительным, а какой - отрицательным, договорились использовать два базовых опыта: если потереть стеклянную палочку о бумагу (шелк), то на палочке образуется положительный заряд; если потереть эбонитовую палочку о мех, то на палочке образуется отрицательный заряд (рис. 6).

    Замечание. Эбонит - материал из каучука с большим содержанием серы.

    Рис. 6. Электризация палочек двумя типами зарядов ()

    Кроме того, что было введено разделение зарядов на два типа, было замечено правило их взаимодействия (рис. 7):

    Одноименные заряды отталкиваются;

    Разноименные заряды притягиваются.

    Рис. 7. Взаимодействие зарядов ()

    Рассмотрим к этому правилу взаимодействия следующий эксперимент. Наэлектризуем стеклянную палочку трением (т. е. передадим ей положительный заряд) и прикоснемся ей к стержню, на котором закреплен бумажный султан, в результате увидим эффект, который уже обсуждали ранее, - полоски султана начнут отталкиваться друг от друга. Теперь можно пояснить, почему такое явление имеет место - поскольку полоски султана заряжаются положительно (одноименно), то они начинают отталкиваться, насколько это возможно, и образуют фигуру в форме шара. Кроме того, для более наглядной демонстрации отталкивания одноименно заряженных тел можно натертую бумагой стеклянную палочку поднести к наэлектризованному султану, и будет явно видно, как полоски бумаги будут отклоняться от палочки.

    Одновременно два явления - притяжение разноименно заряженных тел и отталкивание одноименно заряженных - можно пронаблюдать на следующем опыте. Для него необходимо взять стеклянную палочку, бумагу и гильзу из фольги, закрепленную нитью на штативе. Если натереть палочку бумагой и поднести ее к незаряженной гильзе, то гильза сначала притянется к палочке, а после прикосновения начнет отталкиваться. Поясняется это тем, что сначала гильза, пока не будет иметь заряда, притянется к палочке, палочка передаст ей часть своего заряда, и одноименно заряженная гильза оттолкнется от палочки.

    Замечание. Однако остается вопрос о том, почему же изначально незаряженная гильза притягивается к палочке. Объяснить это, используя доступные нам на сегодняшнем этапе изучения школьной физики знания, сложно, однако, попробуем, забегая вперед, это вкратце сделать. Поскольку гильза является проводником, то, оказавшись во внешнем электрическом поле, в ней наблюдается явление разделения заряда. Оно проявляется в том, что свободные электроны в материале гильзы перемещаются в сторону, которая наиболее близка к положительно заряженной палочке. В результате гильза становится разделенной на две условные области: одна заряжена отрицательно (там, где избыток электронов), другая - положительно (там, где недостаток электронов). Поскольку отрицательная область гильзы расположена ближе к положительно заряженной палочке, чем ее положительно заряженная часть, то будет преобладать притяжение между разноименными зарядами и гильза притянется к палочке. После этого оба тела приобретут одноименный заряд и оттолкнутся.

    Более подробно этот вопрос рассматривается в 10 классе в теме: «Проводники и диэлектрики во внешнем электрическом поле».

    На следующем уроке будет рассмотрен принцип работы такого устройства, как электроскоп.

    Список литературы

    1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. - М.: Мнемозина.
    2. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
    3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. - М.: Просвещение.
    1. Энциклопедия Брокгауза Ф.А. и Ефрона И.А. ().
    2. YouTube ().
    3. YouTube ().

    Домашнее задание

    1. Стр. 59: вопросы № 1-4. Перышкин А. В. Физика 8. - М.: Дрофа, 2010.
    2. Шарик из металлической фольги был заряжен положительно. Его разрядили, и шарик стал нейтральным. Можно ли утверждать, что заряд шарика исчез?
    3. На производстве для улавливания пыли или уменьшения выбросов воздух очищают с помощью электрофильтров. В этих фильтрах воздух проходит мимо противоположно заряженных металлических стержней. Почему пыль притягивается к этим стержням?
    4. Существует ли способ зарядить хотя бы часть тела положительно или отрицательно, не касаясь этого тела другим заряженным телом? Ответ обоснуйте.