Когда человек открыл для себя железо. Продолжительность железной эпохи

Что было в плотницком ящике? Обыкновенный железный инструмент: топор, пила, молоток, гвозди.

Через два столетия на другой необитаемый остров попали герои другого известного романа - пятеро американцев. Они сумели не только выжить на острове, но и создать себе более или менее нормальные условия жизни, что определенно не удалось бы, если бы всеведущий инженер Сайрес Смит (заметим, что по-английски «смит» означает «кузнец») не сумел найти на таинственном острове железную руду и сделать железные инструменты. Иначе опять пришлось бы Жюлю Верну выручать своих героев с помощью знаменитого капитана Немо.

Как видим, без железа не может обойтись даже приключенческая литература. Чрезвычайно важное место занимает этот металл в жизни человека.

Цифры, отражающие годовой уровень выплавки стали, в значительной степени определяют экономическую мощь страны.

Развитию черной металлургии - металлургии железа - придавал первостепенное значение Владимир Ильич Ленин. Еще до Октябрьской революции, в 1913 г., в статье «Железо в крестьянском хозяйстве» он писал: «Относительно железа - ...одного из фундаментов, можно сказать, цивилизации - отсталость и дикость России особенно велики». Действительно, в тот год, а 1913 год считался в царской России годом промышленного подъема, в огромной стране со 150-миллионным населением было выплавлено лишь 3,6 млн. т стали. Сейчас это средняя годовая производительность среднего металлургического завода. Сегодня Россия по выплавке чугуна и стали уверенно держит первое место в мире. В 1975 г. в нашей стране было выплавлено 141 млн. т стали, а в 1980 г. - 148 млн. т. Мировое производство стали подошло уже к рубежу 700 млн. т. Много стали (данные за 1980 г.) выплавляют Япония - 111,5 млн. т, США - 100,8 млн. т, страны Общего рынка - 128,6, в том числе ФРГ - 44,1 млн. т.

Общая доля развивающихся стран - 56,8 млн. т, в том числе Бразилии - 15,4, а Индии - 9,4 млн. т (остальные - меньше).


Начало железного века

Использование железа первобытными людьми

Было время, когда железо на земле ценилось значительно дороже золота. Советский историк Г. Арешян изучал влияние железа на древнюю культуру стран Средиземноморья. Он приводит такую пропорцию: 1: 160: 1280: 6400. Это соотношение стоимостей меди , серебра , золота и железа у древних хеттов. Как свидетельствует в «Одиссее» Гомер, победителя игр, устроенных Ахиллесом, награждали куском золота и куском железа. Железо было в равной степени необходимо и воину, и пахарю, а практическая потребность, как известно, - лучший двигатель производства и технического прогресса.

Термин «железный век» введен в науку в середине XIX в. датским археологом К. Ю. Томсеном. «Официальные» границы этого периода человеческой истории: от IX-VII вв. до н.э. когда у многих народов и племен Европы и Азии начала развиваться металлургия железа, и до времени возникновения у этих племен классового общества и государства. Но если эпохи называть по главному материалу орудий труда, то, очевидно, железный век продолжается и сегодня.

Как получали железо наши далекие предки? Сначала так называемым сыродутным методом. Сыродутные печи устраивали прямо на земле, обычно на склонах оврагов и канав. Они имели вид трубы. Эту трубу заполняли древесным углем и железной рудой. Уголь зажигали, и ветер, дувший в склон оврага, поддерживал горение угля.

Железная руда восстанавливалась, и получалась мягкая крица - железо с включениями шлака. Такое железо называют сварочным; в нем содержалось немного углерода и примесей, перешедших из руды. Крицу ковали, куски шлака отваливались, и под молотом оставалось железо, пронизанное шлаковыми нитями. Из него отковывали различные орудия.

Век сварочного железа был долгим, однако людям древности и раннего средневековья было знакомо и другое железо. Знаменитую дамасскую сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до и. э.). Но технология ее производства, так же как процесс изготовления булатных клинков, много веков держалась в секрете.

Процесс производства стали сводится в сущности к выжиганию из чугуна примесей, к окислению их кислородом воздуха. То, что делают металлурги, рядовому химику может показаться бессмыслицей: сначала восстанавливают окисел железа, одновременно насыщая металл углеродом, кремнием , марганцем (производство чугуна), а потом стараются выжечь их. Обиднее всего, что химик совершенно прав: металлурги применяют явно нелепый метод. Но другого у них не было.

Главный металлургический передел - производство стали из чугуна - возник в XIV в. Сталь тогда получали в кричных горнах. Чугун помещали на слой древесного угля, расположенный выше фурмы для подачи воздуха. При горении угля чугун плавился и каплями стекал вниз, проходя через зону, более богатую кислородом, - мимо фурмы. Здесь железо частично освобождалось от углерода и почти полностью от кремния и марганца. Затем оно оказывалось на дне горна, устланном слоем железистого шлака, оставшегося после предыдущей плавки. Шлак постепенно окислял углерод, еще сохранившийся в металле, отчего температура плавления металла повышалась, и он загустевал. Образовавшийся мягкий слиток ломом поднимали вверх. В зоне над фурмой он еще раз переплавлялся, при этом окислялась еще какая-то часть содержащегося в железе углерода. Когда после переплавки на дне горна образовывалась 50-100-килограммовая крица, ее извлекали из горна и тут же отправляли на проковку, цель которой была не только уплотнить металл, но и выдавить из него жидкие шлаки.

Наиболее совершенным железоделательным агрегатом прошлого была пудлинговая печь, изобретенная англичанином Генри Кортом в конце XVIII в. (Кстати, он же изобрел и прокатку профильного железа на валках с нарезанными в них калибрами. Раскаленная полоса металла, проходя через калибры, принимала их форму.)

Пудлинговая печь Корта загружалась чугуном, а подина (дно) и стены ее были футерованы железной рудой. После каждой плавки их подновляли. Горячие газы из топки расплавляли чугун, а потом кислород воздуха и кислород, содержащийся в руде, окисляли примеси. Пудлинговщик, стоящий у печи, помешивал в ванне железной клюшкой, на которой осаждались кристаллы, образующие железную крицу.

После изобретения пудлинговой печи в этой области черной металлургии долго не появлялось ничего нового, если не считать разработанного англичанином Гунстманом тигельного способа получения высококачественной стали. Но тигли были малопроизводительны, а развитие промышленности и транспорта требовало все большего и большего количества стали.

Мартен и конвертер


Генри Бессемер был механиком, вдобавок без систематического образования. Он изобретал, что придется: машинку для гашения марок, нарезную пушку, различные механические приспособления. Бывал он и на металлургических заводах, наблюдал за работой пудлинговщиков. У Бессемера появилась мысль переложить эту тяжелую «горячую» работу на сжатый воздух. После многих проб он в 1856 г. запатентовал способ производства стали продуванием воздуха через жидкий чугун, находящийся в конвертере - грушевидном сосуде из листового железа, выложенном изнутри кварцевым огнеупором.

Для подвода дутья служит огнеупорное днище со многими отверстиями. Конвертер имеет устройство для поворота в пределах 300°. Перед началом работы конвертер кладут «на спину», заливают в него чугун, пускают дутье и только тогда ставят конвертер вертикально. Кислород воздуха окисляет железо в закись FeO. Последняя растворяется в чугуне и окисляет углерод, кремний, марганец... Из окислов железа, марганца и кремния образуются шлаки. Такой процесс ведут до полного выгорания углерода.

Затем конвертер снова кладут «на спину», отключают дутье, вводят в металл расчетное количество ферромарганца - для раскисления. Так получается высококачественная сталь. Способ конвертерного передела чугуна стал первым способом массового производства литой стали.

Передел в бессемеровском конвертере, как выяснилось позже, имел и недостатки. В частности, из чугуна не удалялись вредные примеси - сера и фосфор . Поэтому для переработки в конвертере применяли главным образом чугун, свободный от серы и фосфора. От серы впоследствии научились избавляться (частично, разумеется), добавляя в жидкую сталь богатый марганцем «зеркальный» чугун, а позже и ферромарганец.

С фосфором, который не удалялся в доменном процессе и не связывался марганцем, дело обстояло сложнее. Некоторые руды, такие, как лотарингская, отличающиеся высоким содержанием фосфора, оставались непригодными для производства стали. Выход был найден английским химиком С. Д. Томасом, который предложил связывать фосфор известью. Конвертер Томаса в отличие от бессемеровского был футерован обожженным доломитом , а не кремнеземом. В чугун во время продувки подавали известь. Образовывался известково-фосфористый шлак, который легко отделялся от стали. Впоследствии этот шлак даже стали использовать как удобрение.

Самая большая революция в сталеплавильном производстве произошла в 1865 г., когда отец и сын - Пьер и Эмиль Мартены - использовали для получения стали регенеративную газовую печь, построенную по чертежам В. Сименса. В ней, благодаря подогреву газа и воздуха, в особых камерах с огнеупорной насадкой достигалась такая высокая температура, что сталь в ванне печи переходила уже не в тестообразное, как в пудлинговой печи, а в жидкое состояние. Ее можно было заливать в ковши и формы, изготовлять слитки и прокатывать их в рельсы, балки, строительные профили, листы... И все это в огромных масштабах! Кроме того, появилась возможность использовать громадные количества железного лома, скопившегося за долгие годы на металлургических и машиностроительных заводах.

Последнее обстоятельство сыграло очень важную роль в становлении нового процесса. В начале XX в. мартеновские печи почти полностью вытеснили бессемеровские и томасовские конвертеры, которые хотя и потребляли лом, но в очень малых количествах.

Конвертерное производство могло бы стать исторической редкостью, такой же, как и пудлинговое, если бы не кислородное дутье. Мысль о том, чтобы убрать из воздуха азот, не участвующий в процессе, и продувать чугун одним кислородом, приходила в голову многим видным металлургам прошлого; в частности, еще в XIX в. русский металлург Д. К. Чернов и швед Р. Окерман писали об этом. Но в то время кислород был слишком дорог. Только в 30-40-х годах прошлого столетия, когда были внедрены дешевые промышленные способы получения кислорода из воздуха, металлурги смогли использовать кислород в сталеплавильном производстве. Разумеется, в мартеновских печах. Попытки продувать кислородом чугун в конвертерах не привели к успеху: развивалась такая высокая температура, что прогорали днища аппаратов. В мартеновской печи все было проще: кислород давали и в факел, чтобы повысить температуру пламени, и в ванну (в жидкий металл), чтобы выжечь примеси. Это позволило намного увеличить производительность мартеновских печен, но в то же время повысило температуру в них настолько, что начинали плавиться огнеупоры. Поэтому и здесь кислород применяли в умеренных количествах.

В 1952 г. в австрийском городе Линце на заводе «Фест» впервые начали применять новый способ производства стали - кислородноконвертерный. Чугун заливали в конвертер, днище которого не имело отверстий для дутья, было глухим. Кислород подавался на поверхность жидкого чугуна. Выгорание примесей создавало такую высокую температуру, что жидкий металл приходилось охлаждать, добавляя в конвертер железную руду и лом. И в довольно больших количествах. Конвертеры снова появились на металлургических заводах. Новый способ производства стали начал быстро распространяться во всех промышленно развитых странах. Сейчас он считается одним из самых перспективных в сталеплавильном производстве.

Достоинства конвертера состоят в том, что он занимает меньше места, чем мартеновская печь, сооружение его гораздо дешевле, а производительность выше. Однако в конвертерах сначала выплавляли только малоуглеродистые мягкие стали. В последующие годы был разработан процесс выплавки в конвертере высокоуглеродистых и легированных сталей.

Получение и применение железа по праву относится к выдающимся достижениям человечества. По словам Ф. Энгельса, на рубеже II-I тыс. до н. э. «все культурные народы переживают свою героическую эпоху, - эпоху железного меча, а вместе с тем железного плуга и топора. Человеку стало служить железо, последний и важнейший из всех видов сырья, игравших революционную роль в истории...»

Железо как металл стало известно человечеству почти одновременно с медью и обрабатывалось оно, так же как и медь, ковкой. Спорадические находки археологами железных предметов (главным образом украшений, очень небольших по размеру) относятся к IV тыс. до н. э. Химический анализ отдельных предметов того времени показывает высокое содержание в них никеля (до 7,5%), что свидетельствует о метеоритном происхождении железа. Так, например, в Египте, в Эль-Герце при раскопках могил додинастического периода были найдены небольшие бусины, сделанные из кованой железной пластинки, свернутой в трубочку.

В настоящее время большинство исследователей сходится на том, что в начале III тыс. до н. э. племена, населявшие горы Армении на Кавказе (хетты, урартийцы, митани), впервые открыли секрет получения железа из руд. Свободное, так называемое самородное железо в земной коре в отличие от меди встречается крайне редко. Железо входит в состав многих минералов, из которых наиболее широко распространены магнетит, пирит-серный или железный колчедан, гематит (красный железняк), железный блеск и др. Железо плавится при температуре 1539° С. Такую температуру, несмотря на усовершенствование воздуходувных устройств, в небольших горнах получить еще не могли. В начале III тыс. до н. э. был открыт сыродутный процесс получения железа, который на протяжении II и I тыс. до н. э. распространяется повсеместно и до XIV в. нашей эры является единственным (за исключением тигельного способа, не имевшего большого производственного значения) способом производства железа.

При сыродутном процессе железо добывали из широко распространенных и легко доступных залежей бурого железняка, озерных и болотных руд: металл восстанавливался из железной руды при температуре 800-900°С. Процесс шел в горнах, загружавшихся попеременными слоями предварительно измельченной и обожженной на открытом огне железной руды и древесного угля. С помощью воздуходувных устройств (сопел и мехов, которые сначала были кожаными, а затем деревянными и металлическими) в горн нагнетали сырой, неподогретый воздух, откуда и пошло название всего процесса. В результате восстановления на дне горна образовывался ком мягкого сварного железа - крица весом от 1 до 8 кг. Крица состояла из мягкого (малонауглероженного) металла с пустотами, заполненными затвердевшим шлаком, образовавшимся из пустой породы и золы топлива. Шлак из крицы удаляли неоднократными ударами молота. После ковки железо становилось довольно высокого качества, но производительность первых печей была очень невелика, да и степень извлечения железа из руд не превышала 50%. Со временем производительность печей повысилась вследствие увеличения горнового пространства и усовершенствования воздуходувных устройств. Очень рано были открыты и способы получения более твердого металла - закалка и цементация железных изделий. Все дальнейшие достижения и изобретения в черной металлургии относятся к более позднему времени.

Впервые железные предметы (как дань города Пуршханда) упоминаются в начале II тыс. до н. э. В середине II тыс. до н. э. хеттский царь Хаттушиль пишет египетскому фараону Рамсесу II о посылке в Египет железа. В это же время хетты проникают в Северную Сирию, Палестину и Киликию, доходят до Вавилона в Месопотамии, занимают северные области Египта. Археолог В. Петри при раскопках в Гераре в Палестине обнаружил железные сошники, серпы, мотыги, которые он датировал XI в. до н. э. Однако широко применять железо на Древнем Востоке стали с IX-VIII вв. до н. э. Именно к этому времени относится расцвет Ассирийской державы, расположенной к северу от Месопотамии. Еще в XIII в. до н. э. железные предметы клали в виде вотивных даров при закладке храмов. Начиная с IX в. в ассирийских документах упоминаются железные мотыги, кинжалы, но и в это время железо еще полностью не вытеснило бронзу и камень при изготовлении орудий труда. При раскопках современного Хорсабада, во дворце ассирийского царя Саргона II, правившего в VIII в. до н. э., был найден склад железных слитков и орудий (лопаты, лемехи, мотыги). Лишь с VIII в. до н. э. железо получает широкое распространение. Из него начинают изготавливать доспехи и вооружение ассирийских воинов (панцири, щиты, шлемы, мечи, копья).

Железо в Греции

Об использовании железа в Древней Греции мы впервые узнаем из поэм Гомера «Илиада» и «Одиссея». В тексте «Илиады» встречается 23, а в «Одиссее» 25 упоминаний о железе. В поэмах фигурируют кузнецы, золотых дел мастера, кожевники, гончары, плотники. Однако процесс отделения ремесла от земледелия в Древней Греции еще находился в самом начале своего развития. Главными отраслями хозяйства оставались земледелие и скотоводство. Торговля еще не имела большого значения; земля была собственностью общин. Однако процесс имущественного расслоения все время ускорялся. Постоянные войны доставляли рабов. Рабство носило патриархальный, ограниченный характер. В отличие от стран Древнего Востока, где рабов широко использовали в храмовых и дворцовых хозяйствах, при сооружении и эксплуатации ирригационных систем, на строительных работах, рабы в Древней Греции не занимались ни земледелием, ни ремеслами. Их использовали лишь для домашних работ.

В VII-V вв. до н. э. в Греции в результате широкого распространения железа, проникновения его во все области хозяйства начинается период бурного развития производительных сил. Получает распространение регулярная добыча руд железных и цветных металлов. Главными центрами греческой металлургии становятся Самос, Кнос, Коринф, Халкида, Лаконика, Эгина, Лесбос.

Постепенно в Греции формируется рабовладельческий строй. Появляются рабовладельческие города-государства (полисы). К IV в. до н. э. рабство в Греции достигает максимальных размеров. Оно охватывает все основные отрасли производства и становится господствующей формой эксплуатации.

Свободный труд почти полностью вытесняется рабским, особенно в ремесленном производстве. В первой половине VII в. до н. э. начинают чеканить монеты. В связи с развитием морской торговли (в V-IV вв. до н. э. центром морской торговли становится афинская гавань Пирей) чеканная монета быстро распространяется по всему Средиземноморью. Рост товарно-денежных отношений привел к третьему крупному общественному разделению труда - возникает «класс, который занимается уже не производством, а только обменом продуктов, а именно купцов».

Под влиянием развития производительных сил в Греции, вызванного широким использованием железа в хозяйственной жизни, а также в результате завоеваний Александра Македонского в странах Восточного Средиземноморья, Западной Азии в период эллинизма (Эллинизм - период истории Восточного Средиземноморья, Западной Азии и Причерноморья со времен завоеваний Александра Македонского (IV в. до н. э.) до подчинения Египта Римом (I в. до н. э.)) строй существовавших там рабовладельческих государств приобретает новые черты. Повсюду наблюдается громадный рост рабства и работорговли; рабов селили на землю небольшими группами, подавляющая часть производимой ими продукции поступала рабовладельцу. Большую роль начинают играть города как торгово-ремесленные центры; в них стали прививаться античная форма рабства и полисное устройство, но при этом сохранялись многие черты деспотических государств и прежде всего верховная собственность царя на землю. В период эллинизма греки основали ряд колоний в Причерноморье, где также возникли полисы.

Роль железа в ремесленном производстве

Только в результате широкого использования железа в производстве ремесло окончательно отделилось от сельского хозяйства. С отделением ремесла от земледелия создаются предпосылки производства непосредственно для обмена.

Основу ремесленного производства в Греции составляли мастерские - эргастерии. Как правило, в таких мастерских работало от 3 до 12 рабов. Во главе мастерской стоял или рабовладелец, или надсмотрщик из рабов. Лишь в IV тыс. до н. э. существовали эргастерии, объединявшие несколько десятков рабов. Разделения труда внутри мастерской не было: как правило, изготовление готового продукта от начала до конца было делом рук одного работника. Однако в гончарных мастерских в VI в. до н. э. наблюдалось разделение труда: формовка, обжпг посуды осуществлялись разными мастерами.

Следствием технической революции, вызванной широким распространением железа, прежде всего явилась дифференциация ремесленного производства и высокий уровень изготовления ремесленного инструмента. Наряду с рабами в ремесленном производстве в Древней Греции и в Риме трудились свободные ремесленники.

Высокого уровня достигло кузнечное ремесло. В кузницах стоял горн с ручными двойными воздуходувными мехами. Центральное место занимала железная или бронзовая наковальня. Кузнецы пользовались молотами, клещами, топорами, шарнирными щипцами, зубилами, тисками, сверлами. В VIII в. до н. э. кузнец Главк из Хиоса изобрел способ паяния железа; до этого времени использовали клепку.

При обработке меди и бронзы применяли следующие операции: литье, ковку, штамповку, чеканку, гравировку, инкрустацию, паяние, волочение, серебрение и золочение. В первых веках нашей эры в римских мастерских для обработки металлических поверхностей стали использовать наждак. Наряду с известными ранее цветными металлами и сплавами - медью, золотом и серебром - вошли в употребление латунь и сурьма.

Высокое мастерство было достигнуто в литье бронзы. Известно изображение литейной мастерской на чернофигурной вазе VI в. до н. э. В мастерской находилась плавильная печь со специальной камерой, отделенной от топки; большой глиняный сосуд с металлом помещали в эту камеру для плавки. По восковой модели отливали художественные изделия. В конце VI в. до н. э. впервые применяют полое литье при отливке крупных бронзовых статуй. Примером высокого уровня ремесленной техники может служить сооружение в III в. до н. э. гигантской статуи бога Солнца на о-ве Родос. Железный каркас статуи был установлен на массивном пьедестале; затем на этот каркас монтировали по частям бронзовый покров статуи. Эта статуя высотой 35 м получила название «Колосс родосский» и позднее была причислена к «семи чудесам света».

Роль железа в строительстве

С широким распространением железных инструментов начинается расцвет греческой архитектуры и строительства. Греческим зодчим принадлежит одно из важнейших достижений архитектуры - создание ордера (закономерной системы архитектурных форм): дорического, ионического коринфского.

В классический период Древней Греции (V-IV вв. до н. э.), во время возвышения Афин, разрабатываются приемы гармонической соразмерности отдельных частей зданий. Это время расцвета греческого искусства. Создаются такие шедевры мирового искусства, как афинский акрополь Парфенон, храм Бескрылой победы и др. Парфенон был возведен в 447-438 гг. до н. э. архитекторами Иктином и Калликратом под руководством греческого скульптора Фидия. В IV в. до н. э. в Эпидавре был построен театр - один из лучших памятников строительной техники. Под воздействием греческой культуры римляне переняли ордерную систему. В VI-I вв. до н. э. в строительной технике широко распространяются арочные и сводчатые конструкции, воздвигаются крупные общественные здания. Был построен гигантский амфитеатр Колизей длиной 187,5, шириной 156,7 и высотой до 46,6 м, вмещавший до 90 тыс. человек. Из сооружений, в которых римляне достигли большого искусства, известны огромных размеров стадион на Марсовом поле, дворец Флавиев, арка Тита с двумя триумфальными рельефами. Из памятников нельзя не упомянуть знаменитый маяк (известный как один из «семи чудес света»), сооруженный из белого мрамора в 283 г. до н. э. на о-ве Фарос у входа в Александрийскую гавань. Фаросский маяк представлял собой трехэтажную башню высотой 120 м. Она служила не только маяком, но и защищала от вторжения вражеских кораблей вход в порт; внутри башни размещался большой гарнизон. Нижняя часть башни, построенная из известняка, имела квадратное сечение с длиной сторон 30,5 м; второй этаж представлял собой восьмигранник; в верхнем этаже цилиндрической формы горел огонь маяка. По винтообразной рампе горючее для маяка поднимали на ослах. В нижней части башни находился огромный резервуар с запасом питьевой воды.

В строительстве железо применяли лишь в виде скоб, различного рода скрепок, штырей, затяжек, но его широко использовали и для изготовления столярных и плотничьих инструментов: топоров, сверл, молотков, продольных и поперечных пил, долот, резаков, стамесок, рубанков.

В окна вставляли стекла (при раскопках Помпеи были обнаружены небольшие оконные стекла размером 4X5 см) и слюду (о чем упоминает Плиний). Стекло использовали также для изготовления красочной мозаики.

Чтобы проверить пригонку камней и их уровень, строители пользовались циркулем, ватерпасом, отвесом, линейкой, угольником. С V в. до н. э. были известны механизмы для подъема тяжестей (блоки, вороты, полиспасты).

Качество и области применения железа

Железо, хотя и не сразу, показало более совершенные качества по сравнению с бронзой. Принято считать, что совершенствование орудий труда повлекло за собой и социальный прогресс.

Как считает большинство специалистов, переход от бронзы к железу, скорее всего, осуществился из-за практических нужд. На самом деле, бронзовые орудия труда более долговечны, и для их производства не требуется столь высокая температура, как для железа. Однако бронза всегда была дорогим металлом, а бронзолитейное дело более трудоемко, прежде всего, из-за жесткой зависимости от источников сырья, в первую очередь, олова, которое встречается в природе гораздо реже, чем медь. По оценкам, даже в Древнем Египте добыча меди не превышала 7 тонн в год. Египтяне ввозили медь. В Центральной Европе производилось приблизительно 16,5 тонн в год. В микенскую эпоху на Пилосе 400 литейщиков производили 1 тонну бронзы в год.

В конце эпохи бронзы началось массовое изготовление бронзовых орудий, что очень быстро привело к истощению запасов олова. А это вызвало кризис производства, который, скорее всего, стал стимулом для поисков в сфере черной металлургии.

Известно, что в стратифицированных обществах металлургия находилась под контролем знати. Это касается, прежде всего, бронзолитейного производства. Железные руды были более доступны. Болотные руды есть практически повсюду. Данное обстоятельство оказалось решающим для обширных пространств лесной зоны, которые в эпоху бронзы отставали в социально- экономическом развитии от южных регионов. Стала совершенствоваться земледельческая техника, появился железный лемех, пригодный для распашки тяжелых лесных почв. Зона земледелия расширилась значительно за счет лесной зоны. В результате в эпоху железа исчезли многие леса Западной Европы. Но и в традиционно земледельческих районах внедрение железа способствовало улучшению ирригационных систем и повышению продуктивности полей.

Античное земледелие складывалось в виде плужного неполивного, имеющего товарный характер. Потребность в земельных и людских ресурсах стимулировала втягивание в экономическую деятельность соседних племен и породила великую греческую колонизацию.

В умеренной полосе земледелие имело иной характер. Долгое время считалось, что здесь подсечно-огневое земледелие возникло в железном веке. Это произошло ранее, но железный век стал временем его распространения. Подсечно-огневое земледелие имело большой недостаток – почвы быстро истощались, и их требовалось гораздо больше, чем при ирригации. Поэтому вместе с подсекой начали использовать двуполье и трехполье. В лесостепи развивалось пашенное неполивное земледелие и различные формы скотоводства. В лесной зоне наряду с пашенным земледелием практиковалось животноводство, в отдаленных районах лесной полосы, в особенности за Уралом основу жизнедеятельности составляли по-прежнему охота и рыболовство.

В степной зоне сложился новый хозяйственно-культурный тип кочевых скотоводов. Это был не только особый тип экономики, но и своеобразный образ жизни, о котором мы поговорим позже.

В сельском хозяйстве появилось много новых или более совершенных орудий, например, серпы, косы, садовые ножи, железные лемехи плугов и сох, топоры для вырубки леса. Железными кирками и лопатами в V в. до н.э. был вырыт туннель на острове Самос.

По свидетельству Г.Чайлда, к началу н.э. все виды ремесел и сельскохозяйственных орудий, кроме винта и шарнирных ножниц, уже были известны. В эпоху железа кузнечное дело стало первым профессиональным ремеслом. Появилось множество кузнечных инструментов и инструментов для изготовления деревянных бочек, обуви и обработки кожи. В IV в. до н.э. была изобретена вращающаяся мельница для размола горной породы. В Аттике стали использовать железную ось в колесах, но в Англии и в Северной Европе ее начали применять только в начале н.э. Уже в VIII в. до н.э. из железа начали делать различные мелкие детали для транспорта.

Оружейное дело стало более специализированным. В вооружении появились стальные мечи, шлемы, наладилось массовое производство наконечников стрел. Еще во II тыс. до н.э. была изобретена легкая конная повозка, но в железном веке преимущество перешло к верховой езде. В IX-VIII вв. до н.э. ассирийцы ввели постоянные конные отряды, а для колес стали использовать стальные ободья. Ассирийская тактика имела свои недостатки: смерть одного всадника вызывала расстройство конницы. Всадник, основным оружием которого был дротик, был весьма уязвим. Поскольку в то время еще не было стремян, всадник вынужден был одной рукой держать поводья. Если пехотинец мог сделать 6-7 выстрелов в минуту, то конник – значительно меньше. Поэтому в Ассирии конники ездили по двое. Позже после появления легкого скифского лука и скифской тактики ассирийцы провели реформу армии.

Известно, что, сидя на коне, скифы стреляли вбок и назад. Появилось массовое конное войско. С VII-VI в. до н.э. скифские стрелы были введены во все армии Ближнего и Среднего Востока. Более совершенной стала осадная техника: понтонные мосты, подкопы, осадные насыпи, тараны, устройства для метания камней и горящей пакли. Появился флот (гребные суда). Из других нововведений следует отметить шадуф (журавль для подъема воды), герд (соединенный в кольцо канат с навешенными кожаными ведрами, приводимый в движение волами), сакию (водоподъемное колесо со стальной осью).

Улучшились приемы домостроительства, стала совершеннее архитектура, усложнились виды фортификаций, зона их распространения значительно расширилась на север. Иногда железный век Восточной Европы называют веком городищ. Облегчилось строительство дорог. Расширился обмен, начали чеканиться монеты.

Экономические предпосылки ускорили формирование сложных иерархических обществ. Появились новые государственные образования. Вступил в силу фактор влияния передовых цивилизаций на первобытную периферию. По словам Гордона Чайлда, дешевое железо и алфавит сделали общество более демократичным.

По мнению Ясперса, I тыс. до н.э. – это осевое время. В Персии возникли классический иудаизм и зороастризм, в Китае – конфуцианство, в Индии произошел переход от ведизма к буддизму, янизму и другим течениям, в Греции – до-Гомеровский мифологический цикл сменился классической философией.

Железо — химический элемент с атомным номером 26 в периодической системе, обозначается символом Fe (лат. Ferrum), один из самых распространённых в земной коре металлов. Простое вещество железо — серебристо-белый, ковкий металл с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. Железо редко встречается в природе в чистом виде. Часто используется человеком для создания сплавов с другими металлами и с углеродом, является основным компонентом стали. Распространённость железа в земной коре (4,65%, 4-е место после O, Si, Al) и совокупность специфических свойств делают его «металлом №1» по важности для человека. Считается также, что железо составляет большую часть земного ядра.

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза,болг. желязо, укр. залізо, польск. Żelazo, словен. Železo). Одна из версий связывает это слово с санскритским «жальжа», что означает «металл, руда». Другая версия усматривает в слове славянский корень «лез», тот же, что и в слове «лезвие» (так как железо в основном употреблялось на изготовление оружия). Есть также связь между словом "желе" и студнеобразной консистенцией "болотной руды", из которой некоторое время добывался металл. Название природного карбоната железа (сидерита) происходит от лат. sidereus — звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

По распространенности в литосфере железо находится на 4-м месте среди всех элементов и на 2-м месте после алюминия среди металлов. Его процентное содержание по массе в земной коре составляет 4,65 %. Железо входит в состав более 300-х минералов, но промышленное значение имеют только руды с содержанием не менее 16% железа: магнетит (магнитный железняк) - Fe3O4 (72,4% Fe), гематит (железный блеск или красный железняк) - Fe2O3 (70% Fe), бурые железняки (гётит, лимонит и т.п.) с содержанием железа до 66,1% Fe, но чаще 30-55%.

Железо давно и повсеместно применяется в технике, причем не столько в силу своего широкого распространения в природе, сколько в силу своих свойств: оно пластично, легко поддается горячей и холодной ковке, штамповке и волочению. Однако чистое железо обладает низкой прочностью и химической стойкостью (на воздухе в присутствии влаги окисляется, покрываясь нерастворимой рыхлой ржавчиной бурого цвета). В силу этого в чистом виде железо практически не применяется. То, что мы в быту привыкли называть "железом" и "железными" изделиями на самом деле изготовлено из чугуна и стали - сплавов железа с углеродом, иногда с добавлением других так называемых легирующих элементов, придающих этим сплавам особые свойства.

Было время, когда железо на земле ценилось значительно дороже золота. 1: 160: 1280: 6400. Это соотношение стоимостей меди, серебра, золота и железа у древних хеттов. Как свидетельствует в «Одиссее» Гомер, победителя игр, устроенных Ахиллесом, награждали куском золота и куском железа.
Железо было в равной степени необходимо и воину, и пахарю, а практическая потребность, как известно, - лучший двигатель производства и технического прогресса. Термин «железный век» введен в науку в середине XIX в. датским археологом К.Ю. Томсеном. «Официальные» границы этого периода человеческой истории: от IX...VII вв. до н.э. когда у многих народов и племен Европы и Азии начала развиваться металлургия железа, и до времени возникновения у этих племен классового общества и государства. Но если эпохи называть по главному материалу орудий труда, то, очевидно, железный век продолжается и сегодня.

Как получали железо наши далекие предки? Сначала так называемым сыродутным методом. Сыродутные печи устраивали прямо на земле, обычно на склонах оврагов и канав. Они имели вид трубы. Эту трубу заполняли древесным углем и железной рудой. Уголь зажигали, и ветер, дувший в склон оврага, поддерживал горение угля. Железная руда восстанавливалась, и получалась мягкая крица - железо с включениями шлака. Такое железо называлось сварочным; в нем содержалось немного углерода и примесей, перешедших из руды. Крицу ковали. Куски шлака отваливались, и под молотом оставалось железо, пронизанное шлаковыми нитями. Из него отковывали различные орудия. Век сварочного железа был долгим, однако людям древности и раннего средневековья было знакомо и другое железо. Знаменитую дамасскую сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до н.э.). Но технология ее производства, так же как процесс изготовления булатных клинков, держалась в секрете.

И булат, и дамасская сталь по химическому составу не отличаются от обычной нелегированной стали. Это сплавы железа с углеродом. Но в отличие от обычной углеродистой стали булат обладает очень большой твердостью и упругостью, а также способностью давать лезвие исключительной остроты.
Секрет булата не давал покоя металлургам многих веков и стран. Каких только способов и рецептов не предлагалось! В железо добавляли золото, серебро, драгоценные камни, слоновую кость. Придумывались хитроумнейшие (и порой ужаснейшие) «технологии». Один из древнейших советов: для закалки погружать клинок не в воду, а в тело мускулистого раба, - чтобы его сила перешла в сталь.

Раскрыть секрет булата удалось в первой половине прошлого века замечательному русскому металлургу П.П. Аносову. Он брал самое чистое кричное железо и помещал его в открытом тигле в горн с древесным углем. Железо, плавясь, насыщалось углеродом, покрывалось шлаком из кристаллического доломита, иногда с добавкой чистой железной окалины. Под этим шлаком оно очень интенсивно освобождалось от кислорода, серы, фосфора и кремния. Но это было только полдела. Нужно было еще охладить сталь как можно спокойнее и медленнее, чтобы в процессе кристаллизации сначала могли образоваться крупные кристаллы разветвленной структуры - так называемые дендриты. Охлаждение шло прямо в горне, заполненном раскаленным углем. Затем следовала искусная ковка, которая ни должна была нарушить образовавшуюся структуру.

Другой русский металлург - Д.К. Чернов впоследствии объяснил происхождение уникальных свойств булата, связав их со структурой. Дендриты состоят из тугоплавкой, но относительно мягкой стали, а пространство меж их «ветвями» заполняется в процессе застывания металла более насыщенной углеродом, а следовательно, и более твердой сталью. Отсюда большая твердость и большая вязкость одновременно. При ковке этот стальной «гибрид» не разрушается, сохраняется его древовидная структура, но только из прямолинейной она превращается в зигзагообразную. Особенности рисунка в значительной мере зависят от силы и направления ударов, от мастерства кузнеца.

Дамасская сталь древности - это тот же булат, но позднее так называли сталь, полученную путем кузнечной сварки из многочисленных стальных проволочек или полос. Проволочки делались из сталей с разным содержанием углерода, отсюда те же свойства, что и у булата. В средние века искусство приготовления такой стали достигло наибольшего развития. Известен японский клинок, в структуре которого обнаружено около 4 млн микроскопически тонких стальных нитей. Естественно, процесс изготовления оружия из дамасской стали еще более трудоемок, чем процесс изготовления булатных сабель.

Сыродутный процесс во многом зависел от погоды: нужно было, чтобы ветер обязательно задувал в «трубу». Стремление избавиться от капризов погоды привело к созданию мехов, которыми раздували огонь в сыродутном горне. С появлением мехов отпала надобность устраивать сыродутные горны на склонах. Появились печи нового типа - так называемые волчьи ямы, которые выкапывали в земле, и домницы, которые возвышались над землей. Их делали из камней, скрепленных глиной. В отверстие у основания домницы вставляли трубку мехов и начинали раздувать печь. Уголь сгорал, а в горне печи оставалась уже знакомая нам крица. Обычно, чтобы вытащить ее наружу, выламывали несколько камней в нижней части печи. Затем их опять закладывали на место, заполняли печь углем и рудой, и все начиналось сначала.

При извлечении крицы из печи выливался и расплавленный чугун - железо, содержащее более 2% углерода плавящееся при более низких температурах. В твердом виде чугун нельзя ковать, он разлетается на куски от одного удара молотом. Поэтому чугун, как и шлак, считался вначале отходом производства. Англичане даже назвали его «свинским железом» - pig iron. Только потом металлурги сообразили, что жидкий чугун можно заливать в формы и получать из него различные изделия, например пушечные ядра. К XIV...XV вв. доменные печи, производившие чугун, прочно вошли в промышленность. Высота их достигала 3 м более, они выплавляли литейный чугун, из которого лили уже не только ядра, но и сами пушки. Подлинный поворот от домницы к домне произошел лишь в 80-х годах XVIII в., когда одному из демидовских приказчиков пришла в голову мысль подавать дутье в доменную печь не через одно сопло, а через два, расположив их по обеим сторонам горна. Число сопел, или фурм (как их теперь называют), росло, дутье становилось все более равномерным, увеличивался диаметр горна, повышалась производительность печей.

Еще два открытия сильно повлияли на развитие доменного производства. Долгие годы топливом доменных печей был древесный уголь. Существовала целая отрасль промышленности, занимавшаяся выжиганием угля из дерева. В результате леса в Англии вырубили до такой степени, что был издан специальный указ королевы, запрещающий уничтожать лес ради нужд черной металлургии. После этого английская металлургия стала быстро хиреть. Британия была вынуждена ввозить чугун из-за границы, главным образом из России. Так продолжалось до середины XVIII в., когда Абрагам Дерби нашел способ получения кокса из каменного угля, запасы которого в Англии очень велики. Кокс стал основным топливом для доменных печей. В 1829 г. Дж. Нилсон на заводе Клейд (Шотландия) впервые применил вдувание в домны нагретого воздуха. Это нововведение повысило производительность печей и резко снизило расход топлива. Последнее значительное усовершенствование доменного процесса произошло уже в наши дни. Суть его - замена части кокса дешевым природным газом.

Процесс производства стали сводится в сущности к выжиганию из чугуна примесей, к окислению их кислородом воздуха. То, что делают металлурги, рядовому химику может показаться бессмыслицей: сначала восстанавливают окисел железа, одновременно насыщая металл углеродом, кремнием, марганцем (производство чугуна), а потом стараются выжечь их. Обиднее всего, что химик совершенно прав: металлурги применяют явно нелепый метод. Но другого у них не было. Главный металлургический передел - производство стали из чугуна - возник в XIV в. Сталь тогда получали в кричных горнах. Чугун помещали на слой древесного угля, расположенный выше фурмы для подачи воздуха. При горении угля чугун плавился и каплями стекал вниз, проходя через зону, более богатую кислородом, - мимо фурмы. Здесь железо частично освобождалось от углерода и почти полностью от кремния и марганца. Затем оно оказывалось на дне горна, устланном слоем железистого шлака, оставшегося после предыдущей плавки. Шлак постепенно окислял углерод, еще сохранившийся в металле, отчего температура плавления металла повышалась, и он загустевал. Образовавшийся мягкий слиток ломом поднимали вверх. В зоне над фурмой он еще раз переплавлялся, при этом окислялась еще какая-то часть содержащегося в железе углерода. Когда после переплавки на дне горна образовывалась 50...100-килограммовая крица, ее извлекали из горна и тут же отправляли на проковку, цель которой была не только уплотнить металл, но и выдавать из него жидкие шлаки.

Наиболее совершенным железоделательным агрегатом прошлого была пудлинговая печь, изобретенная англичанином Генри Кортом в конце XVIII в. (Кстати, он же изобрел и прокатку профильного железа на валках с нарезанными в них калибрами. Раскаленная полоса металла, проходя через калибры, принимала их форму.). Пудлинговая печь Корта загружалась чугуном, а подина (дно) и стены ее были футерованы железной рудой. После каждой плавки их подновляли. Горячие газы из топки расплавляли чугун, а потом кислород воздуха и кислород, содержащийся в руде, окисляли примеси. Пудлинговщик, стоящий у печи, помешивал в ванне железной клюшкой, на которой осаждались кристаллы, образующие железную крицу. После изобретения пудлинговой печи в этой области черной металлургии долго не появлялось ничего нового, если не считать разработанного англичанином Гунстманом тигельного способа получения высококачественной стали. Но тигли были малопроизводительны, а развитие промышленности и транспорта требовало все большего, и большего количества стали.

Генри Бессемер в 1856 г. запатентовал способ производства стали продуванием воздуха через жидкий чугун, находящийся в конвертере - грушевидном сосуде из листового железа, выложенном изнутри кварцевым огнеупором. Для подвода дутья служит огнеупорное днище со многими отверстиями. Конвертер имеет устройство для поворота в пределах 300°. Перед началом работы конвертер кладут «на спину», заливают в него чугун, пускают дутье и только тогда ставят конвертер вертикально. Кислород воздуха окисляет железо в закись FeO. Последняя растворяется в чугуне и окисляет углерод, кремний, марганец... Из окислов железа, марганца и кремния образуются шлаки. Такси процесс ведут до полного выгорания углерода. Затем конвертер снова кладут «на спину», отключают дутье, вводят в металл расчетное количество ферромарганца - для раскисления. Так получается высококачественная сталь.
Способ конвертерного передела чугуна стал первым способом массового производства литой стали.

Передел в бессемеровском конвертере, как выяснилось позже, имел и недостатки. В частности, из чугуна но удалялись вредные примеси - сера и фосфор. Поэтому для переработки в конвертере применяли главным образом чугун, свободный от серы и фосфора. От серы в последствии научились избавляться (частично, разумеется), добавляя в жидкую сталь богатый марганцем «зеркальный» чугун, а позже и ферромарганец. С фосфором, который не удалялся в доменном процессе и не связывался марганцем, дело обстояло сложнее. Некоторые руды, такие, как лотарингская, отличающиеся высоким содержанием фосфора, оставались непригодными для производства стали. Выход был найден английским химиком С.Д. Томасом, который предложил связывать фосфор известью. Конвертер Томаса в отличие от бессемеровского был футерован обожженным доломитом, а не кремнеземом. В чугун во время продувки подавали известь. Образовывался известково-фосфористый шлак, который легко отделялся от стали. Впоследствии этот шлак даже стали использовать как удобрение.

Самая большая революция в сталеплавильном производстве произошла в 1865 г., когда отец и сын - Пьер и Эмиль Мартены использовали для получения стали регенеративную газовую печь, построенную по чертежам В. Сименса. В ней, благодаря подогреву газа и воздуха, в особых камерах с огнеупорной насадкой достигалась такая высокая температура, что сталь в ванне печи переходила уже не в тестообразное, как в пудлинговой печи, а в жидкое состояние. Ее можно было заливать в ковши и формы, изготовлять слитки и прокатывать их в рельсы, балки, строительные профили, листы... И все это в огромных масштабах! Кроме того, появилась возможность использовать громадные количества железного лома, скопившегося за долгие годы на металлургических и машиностроительных заводах. Последнее обстоятельство сыграло очень важную роль в становлении нового процесса. В начале XX в. мартеновские печи почти полностью вытеснили бессемеровские и томасовские конвертеры, которые хотя и потребляли лом, но в очень малых количествах.

Конвертерное производство могло бы стать исторической редкостью, такой же, как и пудлинговое, если бы не кислородное дутье. Мысль о том, чтобы убрать из воздуха азот, не участвующий в процессе, и продувать чугун одним кислородом, приходила в голову многим видным металлургам прошлого; в частности, еще в XIX в. русский металлург Д.К. Чернов и швед Р. Окерман писали об этом. Но в то время кислород был слишком дорог. Только в 30...40-х годах 20 столетия, когда были внедрены дешевые промышленные способы получения кислорода из воздуха, металлурги смогли использовать кислород в сталеплавильном производстве. Разумеется, в мартеновских печах. Попытки продувать кислородом чугун в конвертерах не привели к успеху; развивалась такая высокая температура, что прогорали днища аппаратов. В мартеновской печи все было проще: кислород давали и в факел, чтобы повысить температуру пламени, и в ванну (в жидкий металл), чтобы выжечь примеси. Это позволило намного увеличить производительность мартеновских печей, но в то же время повысило температуру в них настолько, что начинали плавиться огнеупоры. Поэтому и здесь кислород применяли в умеренных количествах.

В 1952 г. в австрийском городе Линце на заводе «Фест» впервые начали применять новый способ производства стали - кислородно-конвертерный. Чугун заливали в конвертор, днище которого не имело отверстий для дутья, было глухим. Кислород подавался на поверхность жидкого чугуна. Выгорание примесей создавало такую высокую температуру, что жидкий металл приходилось охлаждать, добавляя в конвертер железную руду и лом. И в довольно больших количествах. Конвертеры снова появились на металлургических заводах. Новый способ производства стали начал быстро распространяться во всех промышленно развитых странах. Сейчас он считается одним из самых перспективных в сталеплавильном производстве. Достоинства конвертера состоят в том, что он занимает меньше места, чем мартеновская печь, сооружение его гораздо дешевле, а производительность выше. Однако в конвертерах сначала выплавляли только малоуглеродистые мягкие стали. В последующие годы был разработан процесс выплавки в конвертере высокоуглеродистых и легированных сталей.

Свойства сталей разнообразны. Есть стали, предназначенные для долгого пребывания в морской воде, стали, выдерживающие высокую температуру и агрессивное действие горячих газов, стали, из которых делают мягкую увязочную проволоку, и стали для изготовления упругих и жестких пружин. Такое разнообразие свойств вытекает из разнообразия составов сталей. Так, из стали, содержащей 1% углерода и 1,5% хрома, делают шарикоподшипники высокой стойкости; сталь, содержащая 18% хрома и 8...9% никеля, - это всем известная «нержавейка», а из стали, содержащей 18% вольфрама, 4% хрома и 1% ванадия, изготовляют токарные резцы. Это разнообразие составов сталей очень затрудняет их выплавку. Ведь в мартеновской печи и конвертере атмосфера окислительная, и такие элементы, как хром, легко окисляются и переходят в шлак, т.е. теряются. Значит, чтобы получить сталь с содержанием хрома 18%, в печь надо дать гораздо больше хрома, чем 180 кг на тонну стали. А хром - металл дорогой. Как найти выход из этого положения?

Выход был найден в начале XX в. Для выплавки металла было предложено использовать тепло электрической дуги. В печь круглого сечения загружали металлолом, заливали чугун и опускали угольные или графитовые электроды. Между ними и металлом в печи («ванне») возникала электрическая дуга с температурой около 4000°C. Металл легко и быстро расплавлялся. А в такой закрытой электропечи можно создавать любую атмосферу - окислительную, восстановительную или совершенно нейтральную. Иными словами, можно предотвратить выгорание ценных элементов. Так была создана металлургия качественных сталей. Позднее был предложен еще один способ электроплавки - индукционный. Из физики известно, что если металлический проводник поместить в катушку, по которой проходит ток высокой частоты, то в нем индуцируется ток и проводник нагревается. Этого тепла хватает, чтобы за определенное время расплавить металл. Индукционная печь состоит из тигля, в футеровку которого вделана спираль. По спирали пропускают ток высокой частоты, и металл в тигле расплавляется. В такой печи тоже можно создать любую атмосферу.

В электрических дуговых печах процесс плавки идет обычно в несколько стадий. Сначала из металла выжигают ненужные примеси, окисляя их (окислительный период). Затем из печи убирают (скачивают) шлак, содержащий окислы этих элементов, и загружают ферросплавы - сплавы железа с элементами, которые нужно ввести в металл. Печь закрывают и продолжают плавку без доступа воздуха (восстановительный период). В результате сталь насыщается требуемыми элементами в заданном количестве. Готовый металл выпускают в ковш и разливают.

Стали, особенно качественные, оказались очень чувствительными к содержанию примесей. Даже небольшие количества кислорода, азота, водорода, серы, фосфора сильно ухудшают их свойства - прочность, вязкость, коррозионную стойкость. Эти примеси образуют с железом и другими содержащимися в стали элементами неметаллические соединения, которые вклиниваются между зернами металла, ухудшают его однородность и снижают качество. Так, при повышенном содержании кислорода и азота в сталях снижается их прочность, водород вызывает появление флокенов - микротрещин в металле, которые приводят к неожиданному разрушению стальных деталей под нагрузкой, фосфор увеличивает хрупкость стали на холоде, сера вызывает красноломкость - разрушение стали под нагрузкой при высоких температурах. Металлурги долго искали пути удаления этих примесей. После выплавки в мартеновских печах, конвертерах и электропечах металл раскисляют - прибавляют к нему алюминий, ферросилиций (сплав железа с кремнием) или ферромарганец. Эти элементы активно соединяются с кислородом, всплывают в шлак и уменьшают содержание кислорода в стали. Но кислород все же остается в стали, а для высококачественных сталей и оставшиеся его количества оказываются слишком большими. Необходимо было найти другие, более эффективные способы.

В 50-х годах металлурги начали в промышленном масштабе вакуумировать сталь. Ковш с жидким металлом помещают в камеру, из которой откачивают воздух. Металл начинает бурно кипеть и газы из него выделяются. Однако представьте себе ковш с 300 т стали - сколько времени пройдет, пока он прокипит полностью, и насколько за это время охладится металл. Вам сразу станет ясно, что такой способ годится лишь для небольших количеств стали. Поэтому были разработаны другие, более быстрые и эффективные способы вакуумирования. Сейчас они применяются во всех развитых странах, и это позволило улучшить качество стали. В начале 60-х годов был разработан способ электрошлакового переплава стали, который очень скоро начали применять во многих странах. Этот способ очень прост. В водоохлаждаемый металлический сосуд - кристаллизатор - помещают слиток металла, который надо очистить, и засыпают его шлаком особого состава. Затем слиток подключают к источнику тока. На конце слитка возникает электрическая дуга, и металл начинает оплавляться. Жидкая сталь реагирует со шлаком и очищается не только от окислов, но и от нитридов, фосфидов и сульфидов. В кристаллизаторе застывает новый, очищенный от вредных примесей слиток. Использовался и альтернативный способ: шлаки особого состава для очистки металла расплавляют и выливают в ковш, а затем в этот жидкий шлак выпускают металл из печи. Шлак перемешивается с металлом и поглощает примеси. Метод этот быстр, эффективен и не требует больших затрат электроэнергии.

Получением железа непосредственно из руды, минуя доменный процесс, занимались еще в прошлом веке. Тогда этот процесс и получил название прямого восстановления. Однако до последнего времени он не нашел большого распространения. Во-первых, все предложенные способы прямого восстановления были малопроизводительными, а во-вторых, полученный продукт - губчатое железо - был низкокачественным и загрязненным примесями. И все же энтузиасты продолжали работать в этом направлении. Положение коренным образом изменилось с тех пор, когда в промышленности начали широко использовать природный газ. Он оказался идеальным средством восстановления железной руды. Основной компонент природного газа - метан CH4 разлагают окислением в присутствии катализатора в специальных аппаратах - реформерах по реакции 2CH4 + О2 → 2CO + 2Н2.

Получается смесь восстановительных газов - окиси углерода и водорода. Эта смесь поступает в реактор, в который подается и железная руда.
Формы и конструкции реакторов очень разнообразны. Иногда реактором служит вращающаяся трубчатая печь, типа цементной, иногда - шахтная печь, иногда - закрытая реторта. Этим и объясняется разнообразие названий способов прямого восстановления: Мидрекс, Пурофер, Охалата-и-Ламина, СЛ-РН и т.д. Число способов уже перевалило за два десятка. Но суть их обычно одна и та же. Богатое железорудное сырье восстанавливается смесью окиси углерода и водорода. Из губчатого железа не только хорошего топора - хорошего гвоздя отковать нельзя. Как бы ни была богата исходная руда, чистого железа из нее все равно не получится. По законам химической термодинамики даже восстановить все содержащееся в руде железо не удастся; часть его все равно останется в продукте в виде окислов. Губчатое железо оказывается почти идеальным сырьем для электрометаллургии. Оно содержит мало вредных примесей и хорошо плавится. Выгода схемы прямое восстановление - электропечь состоит в ее дешевизне. Установки прямого восстановления значительно дешевле и потребляют меньше энергии, чем доменные печи. Прямой переплав - не единственный способ применения губчатого железа в черной металлургии. Его можно также использовать вместо металлолома в мартеновских печах, конвертерах и электросталеплавильных печах.

Железный век продолжается. Примерно 9/10 всех используемых человечеством металлов и сплавов - это сплавы на основе железа. Железа выплавляется в мире примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Пластмассы? Но они в наше время чаще всего выполняют в различных конструкциях самостоятельную роль, а если уж их в соответствии с традицией пытаются ввести в ранг «незаменимых заменителей», то чаще они заменяют цветные металлы, а не черные. На замену стали идут лишь несколько процентов потребляемых нами пластиков. Сплавы на основе железа универсальны, технологичны, доступны и в массе - дешевы. Сырьевая база этого металла тоже не вызывает опасений: уже разведанных запасов железных руд хватило бы по меньшей мере на два века вперед. Железу еще долго быть фундаментом цивилизации.

Для чего нужен наш ресурс?

Главная цель нашего сайта - помощь ученикам и студентам, у которых возникают трудности с решением того или иного задания, или пропустившим какую-либо школьную тему. Также наш ресурс придет на помощь родителям учеников, сталкивающихся со сложностями проверки домашних работ детей.

На нашем ресурсе можно найти готовые домашние задания для любых классов от 1-го до 11-го по всем учебным предметам. Например, можно найти ГДЗ по математике, иностранным языками, физике, биологии, литературе и т.д. Для этого требуется просто выбрать нужный класс, требуемый предмет и решебники ГДЗ подходящих авторов, после чего нужно найти необходимый раздел и получить ответ на поставленное задание. ГДЗ позволяют максимально быстро проверить заданную ученику на дом задачу, а также подготовить ребенка к контрольной.

Как получить пятерку за домашнее задание?

Для этого необходимо зайти на наш ресурс, где размещены готовые домашние задания по всем дисциплинам школьной программы. При этом не нужно переживать за ошибки, опечатки и другие недочеты в ГДЗ, потому что все размещенные у нас пособия проверяли опытные специалисты. Все ответы к домашним заданиям правильные, поэтому мы можем уверенно сказать, что за любое из них вы получите 5-ку! Но не стоит бездумно все переписывать в свою тетрадь, наоборот нужно делать задания самим, после чего проверять их при помощи ГДЗ и только после этого переписывать их в чистовик. Это позволит вам получить нужные знания и высокую оценку.

ГДЗ онлайн

Сейчас никто не испытывает проблем с доступом к ГДЗ, потому что наш интернет-ресурс приспособлен под все современные устройства: ПК, ноутбуки, планшетники и смартфоны, у которых есть выход в интернет. Теперь даже на перемене можно зайти с телефона на наш сайт и узнать ответ абсолютно на любые задания. Удобная навигация и быстрая загрузка сайта, позволяет искать и просматривать ГДЗ максимально быстро и комфортно. Доступ к нашему ресурсу бесплатный, при этом регистрация проходит очень быстро.

ГДЗ новой программы

Школьная программа периодически изменяется, поэтому учащимся нужны постоянно новые учебные пособия, учебники и ГДЗ. Наши специалисты постоянно следят за нововведениями и после их внедрения сразу же размещают на ресурсе новые учебники и ГДЗ, чтобы у пользователей были в наличие последние издания. Наш ресурс является своеобразной библиотекой для школьников, которая требуются любому ученику для успешной учебы. Практически каждый год школьная программа становится сложнее, при этом вводятся новые предметы и материалы. Обучаться становится все труднее, но наш сайт позволяет упростить жизнь родителей и учеников.

Помощь студентам

Мы не забываем и про сложную загруженную жизнь студентов. Каждый новые учебный год поднимает планку в отношении знаний, поэтому не все студенты способны справиться с такой высокой нагрузкой. Длительные занятия, разнообразные рефераты, лабораторные и дипломные работы занимают почти все свободное время студентов. С помощью нашего сайта любой студент может облегчить свою повседневную жизнь. Для этого практически каждый день наши специалисты размещают на портале новые работы. Теперь студен можешь найти у нас шпаргалки для любого задания, причем совершенно бесплатно.

Теперь не нужно носить каждый день в школу огромное количество учебников

Чтобы позаботиться о школьниках, наши специалисты разместили на сайте в открытом доступе все учебники школьной программы. Поэтому сегодня любой ученик или родитель может воспользоваться ими, причем учащимся теперь не нужно ежедневно нагружать спину из-за ношения в школу тяжелых учебников. Достаточно скачать необходимые учебники на планшетник, телефон и другое современное устройство, и учебники будут всегда с вами в любом месте. Их можно читать и в режиме онлайн прямо на сайте - это очень комфортно, быстро и совершенно бесплатно.

Готовые школьные сочинения

Если от вас вдруг потребуют написать сочинение про какую-нибудь книгу, то помните, что на нашем сайте всегда можно найти огромное количество готовых школьных сочинений, которые написали мастера слова и одобрили преподаватели. Мы ежедневно расширяем перечень сочинений, пишем новые сочинения на многие темы и принимаем во внимание рекомендации пользователей. Это позволяет нам удовлетворять повседневные запросы всех школьников.

Для самостоятельного написания сочинений мы предусмотрели сокращенные произведения, их можно посмотреть и скачать тоже на сайте. В них находится основной смысл школьных литературных произведений, что значительно сокращает изучение книг и экономит силы ученика, которые требуются ему для изучения остальных предметов.

Презентации на разные темы

Если вам срочно требуется сделать какую-либо школьную презентацию на определенную тему, о которой вы не знаете ничего, то с помощью нашего сайта вы сможете это сделать. Теперь не стоит расходовать много времени на поиск изображений, фотографий, печатной информации и консультации по теме со специалистами и т.д., потому что наш ресурс создаёт качественных презентаций с мультимедийным контентом на любую тематику. Наши специалисты разместили на сайте большое количество авторских презентаций, которые можно бесплатно посмотреть и скачать. Поэтому обучение будет для вас более познавательным и комфортным, потому что у вас будет больше времени на отдых и на другие предметы.

Наши достоинства:

* большая база книг и ГДЗ;

* ежедневно обновляются материалы;

* доступ с любого современного гаджета;

* учитываем пожелания пользователей;

* делаем жизнь учеников, студентов и родителей более свободной и радостной.

Мы постоянно улучшаем свой ресурс, чтобы сделать жизнь своих пользователей более комфортной и беззаботной. С помощью gdz.host вы будете отличниками, поэтому перед вами откроются большие перспективы во взрослой жизни. В результате ваши родители будут гордиться вами, потому что вы будете хорошим примером для всех людей.

Свободное самородное железо в земной коре, в отличие от меди, почти не встречается. Но оно входит в состав многих минералов и распространено гораздо шире цветных металлов. В древности его можно было добывать буквально повсюду - из озерных, болотистых, луговых и других руд. Однако, по сравнению с металлургией меди, металлургия железа является достаточно сложным процессом.

Железо плавится при температуре 1539 градусов. Такая высокая была совершенно недоступна древним мастерам. Поэтому железо вошло в обиход человека значительно позже меди. Его широкое применение в качестве материала для изготовления оружия и инструментов началось только в первом тысячелетии до Рождества Христова, когда стал известен сыродутный способ восстановления железа.

Впрочем, некоторые народы научились металлургии железа значительно раньше; например, племена, населявшие территорию современной Армении, умели получать железо из руд уже в третьего тысячелетия до Рождества Христова.

Наиболее распространенные железные руды (магнитный железняк, красный железняк и бурый железняк) представляют собой либо соединение железа с кислородом (оксид железа), либо гидрат окиси железа. Для того чтобы выделить металлическое железо из этих соединений, необходимо восстановить его - то есть отнять у него кислород.

Разумеется, древние мастера не имели понятия о сложных химических процессах, которые происходили при восстановлении железа. Однако, наблюдая за «плавкой» руды, они, в конце концов, установили несколько важных закономерностей, которые и легли в основу простейших методов производства железа.

Прежде всего, наши предки заметили, что для получения железа вовсе не обязательно доводить его до температуры плавления. Металлическое железо можно получать и при гораздо меньших температурах, но при этом должно быть больше топлива, чем при выплавке меди, и это топливо должно быть лучшего качества. Необходимо также, чтобы огонь был как можно более «горячим». Все это требовало особого устройства печи и условий плавки.

Как правило, приступая к «плавке» железа, мастера сначала выкапывали круглую яму, стенки которой изнутри обмазывались толстым слоем глины. С наружной стороны к этой яме подводилось отверстие для нагнетания воздуха. Затем над округлой нижней частью сооружали верхнюю в виде конуса. В качестве топлива использовался древесный уголь. Его засыпали в самый низ печи - в яму. Сверху на него укладывали слоями шихту - измельченную руду и уголь. На самый верх засыпали толстый слой угля.

После того как топливо внизу поджигалось, начинался сильный разогрев руды. При этом шла химическая реакция окисления углерода (угля) и восстановления железа. В виде мельчайших лепестков тестообразное железо, которое было в три раза тяжелее шлака, опускалось вниз и оседало в нижней части печи. В результате на дне ямы собирался ком мягкого сварного железа - крица, весом от 1 до 8 кг. Она состояла из мягкого металла с пустотами, заполненными твердыми шлаками. Когда «плавка» заканчивалась, печь разламывали и извлекали из нее крицу.

Дальнейшая обработка происходила в кузнице, где крицу снова разогревали в горне и обрабатывали ударами молота, чтобы удалить шлак. В металлургии железа ковка на многие века сделалась основным видом обработки металла, а кузнечное дело стало важнейшей отраслью производства. Только после ковки железо приобретало удовлетворительные качества. Чистое железо, впрочем, невозможно использовать из-за его мягкости.

Хозяйственное значение имел только сплав железа с углеродом. Если полученный металл содержал от 0, 3 до 1, 7% углерода, получалась сталь, то есть железо, которое приобрело новое свойство - способность к закалке. Для этого изготовленный инструмент нагревали докрасна, а затем охлаждали в воде. После закалки он становился очень твердым и приобретал замечательные режущие качества. При естественном притоке воздуха температура в поднималась не выше 1000 градусов.

Уже в древности было замечено, что из той же руды можно получить больше железа и лучшего качества, если в печь искусственно нагнетать воздух с помощью мехов. Меха делались из шкур, снабжались дульцами и приводились в движение вручную. С помощью сопел и мехов в печь нагнетали сырой не подогретый воздух, откуда и пошло название всего процесса. Однако и при этом способе температура могла подниматься только до 1200 градусов, и из руды извлекалось не более половины содержавшегося в ней железа.

Являясь общедоступным и дешевым материалом, железо очень скоро проникло во все отрасли производства, быта и военного дела и произвело переворот во всех сферах жизни. Железный топор и соха с железным лемехом позволили освоить земледелие тем народам, которым до этого оно было совершенно недоступно. Только после распространения железа земледелие у большинства народов превратилось в важнейшую отрасль производства.

Железо дало ремесленнику инструменты такой твердости и остроты, которым не могли противостоять ни камень, ни . Они явились той основой, на которой стали бурно развиваться другие ремесла. Эти крупные сдвиги положили конец первобытному обществу. На смену ему пришло более развитое - классовое общество.