Место органической химии в системе естественных наук. Контрольная работа Взаимодействие естественных наук

Успехи человека в решении больших и малых проблем выживания в значительной мере были достигнуты благодаря развитию химии. Успехи многих отраслей человеческой действительности, таких как энергетика, металлургия, машиностроение, легкая и пищевая промышленность и других, во многом зависит от состояния и развития химии. Огромное значение химия имеет для успешной работы сельскохозяйственного производства, фармацевтической промышленности, обеспечения быта человека. Химическая промышленность производит десятки тысяч наименований продуктов, многие из которых по технологическим и экономическим характеристикам успешно конкурируют с традиционными материалами, а часть является уникальной по своим параметрам. Химия дает материалы с заранее заданными свойствами, в том числе и такими, которые не встречаются в природе.

Химия не только обеспечивает производство многих необходимых продуктов, материалов. Во многих отраслях промышленности широко используются такие химические методы обработки: отбеливание, крашение, печатание, что привело к интенсификации процессов повышения качества.

Химизация позволила человеку решить многие технические, экономические и социальные проблемы, но масштабность этого процесса затронула все компоненты окружающей среды: сушу, атмосферу, воду мирового океана – внедрилась в природные круговороты веществ. В результате нарушилось равновесие природных процессов на планете, химизация стала заметно отражаться на здоровье самого человека. В связи с этим возникла самостоятельная ветвь экологической науки – химическая экология.

Фундаментальные основы современной химии

Фундаментальными основами химии стали квантовая механика, атомная физика, термодинамика, статическая физика, а также физическая кинетика. На основе физики построена теоретическая химия. На химическом уровне мы имеем дело с очень большим числом частиц, участвующих в квантово-механических процессах обмена электронами (химических реакциях).

Базовое понятие химии – валентность – это макроскопическое, химическое отображение квантово-механических взаимодействий.

Развитие современной химии, ее основные концепции оказались тесно связанными не только с физикой, но и с другими естественными науками, особенно с биологией.

Современный этап развития химии связан с использованием в ней принципов химизма живой природы.

Понятие «химический элемент» и «химическое соединение» с точки зрения современности

Химический элемент – это «кирпичик» вещества. Периодический закон Д.И. Менделеева сформулировал зависимость свойств химических элементов от атомной массы, признаком элемента стало его место в периодической системе, определяемое атомной массой. Физика помогла составить представление об атоме, как о сложной квантово-механической системе, раскрыла смысл периодического закона на основе строения электронных орбит всех элементов.

Современное определение химического элемента – это вид атомов с одинаковым зарядом ядра, т.е. совокупность изотопов.

А химическое соединение – это вещество, атомы которого за счет химических связей объединены в молекулы, макромолекулы, монокристаллы или иные квантово-механические системы, т.е. главной стала физическая природа сил, соединяющая атомы в молекулы, обусловленная волновыми свойствами валентных электронов.

Учение о химических процессах

Учение о химических процессах является областью глубокого взаимопроникновения физики, химии и биологии. В основе этого учения находится химическая термодинамика и кинетика, которые в равной степени относятся и к химии, и к физике.

Предметом изучения являются условия протекания химических реакций, такие факторы как температура, давление и др.

Живая клетка, исследуемая биологической наукой, представляет собой микроскопический химический реактор, в котором происходят превращения, изучаемые химией.

Изучая эти процессы, современная химия перенимает у живой природы опыт, необходимый для получения новых веществ и материалов.

Основой химии живого являются каталитические химические реакции.

Большинство современных химических технологий реализуется с использованием катализаторов – веществ, которые увеличивают скорость реакции, не расходуясь в ней.

В современной химии получило развитие направление, принципом которого является энергетическая активация реагента (т.е. подача энергии извне) до состояния полного разрыва исходных связей. Это химия экстремальных состояний , использующая высокие температуры, большие давления, излучения с большой величиной энергии кванта.

Например, плазмохимия – химия на основе плазменного состоянии реагентов, элионные технологии – активация процесса достигается за счет направленных электронных или ионных пучков.

Эффективность технологии на основе химии экспериментальных состояний очень высока. Они характеризуются энергосбережением, высокой производительностью, высокой автоматизацией и простотой управления технологическим процессом, а также небольшим размером технологических установок.

Химия как наука тесно связана с химией как производством. Основная цель современной химии, вокруг которой строится вся исследовательская работа, заключается в исследовании генезиса (происхождения) свойств веществ и разработки на этой основе методов получения веществ с заранее заданными свойствами.

Одной из закономерностей развития естествознания является взаимодействие естественных наук, взаимосвязь всех отраслей естествознания. Наука, таким образом, единое целое.

Главными путями взаимодействия являются следующие:

Изучение одного предмета одновременно несколькими науками (например, изучение человека);

Использование одной наукой знаний, полученных другими науками, например, достижения физики тесно связаны с развитием астрономии, химии, минералогии, математики и используют знания, полученные этими науками;

Использование методов одной науки для изучения объектов и процессов другой. Чисто физический метод – метод «меченых атомов» – широко применяется в биологии, ботанике, медицине и т. д. Электронный микроскоп используется не только в физике: он необходим и для изучения вирусов. Явление парамагнитного резонанса находит применение во многих отраслях науки. Во многих живых объектах природой заложены чисто физические инструментарии, например, гремучая змея имеет орган, способный воспринимать инфракрасное излучение и улавливать изменения температуры на тысячную долю градуса; у летучей мыши есть ультразвуковой локатор, позволяющий ей ориентироваться в пространстве и не натыкаться на стены пещер, где она обычно обитает и т.д.;

Взаимодействие через технику и производство, осуществляемое там, где используются данные нескольких наук, например, в приборостроении, кораблестроении, космосе, автоматизации, военной промышленности и т.д.;

Взаимодействие через изучение общих свойств различных видов материи, ярким примером чему служит кибернетика – наука об управлении в сложных динамических системах любой природы (технических, биологических, экономических, социальных, административных и т. п.), использующих обратную связь. Процесс управления в них осуществляется в соответствии с поставленной задачей и происходит до тех пор, пока цель управления не окажется достигнутой.

В процессе развития человеческого познания наука все больше дифференцируется на отдельные отрасли, изучающие частные вопросы многогранной действительности. С другой стороны, наука вырабатывает единую картину мира, отражающую общие закономерности его развития, что приводит к более широкому синтезу наук, т.е. все более углубленному познанию природы. Единство мира лежит в основе единства наук, к которому в конечном счете направлено развитие знания на каждом отдельном витке человеческого познания. Путь к единству наук лежит через интеграцию ее отдельных отраслей, что предполагает интеграцию различных теорий и методов исследования. Таким образом, в процессе развития современных наук процессы дифференциации переплетаются с процессами интеграции наук: физика подразделяется на механику, а та, в свою очередь, на кинематику, динамику и статику; молекулярную, атомную, ядерную физику, термодинамику, электричество, магнетизм, оптику и т.д.; медицинские институты готовят врачей самых разных специальностей: терапевтов, хирургов, психиатров, кардиологов, окулистов, урологов и т.д. – спектр специализаций очень широк, но любой выпускник медицинского института – врач.


Дифференциация научного знания на отдельные области побуждает выявлять необходимые связи между ними. Возникает много пограничных наук, например, на границе между физикой и химией возникли новые отрасли науки: физхимия и химфизика (в Москве при Российской академии наук (РАН) есть институты физической химии и химической физики); на границе между биологией и химией – биохимия; биологией и физикой – биофизика. В силу единства науки интеграция принципов в одной из ее областей обязательно связана с интеграцией в другой. Обобщая вышесказанное, можно констатировать тот факт, что дифференциация и интеграция естествознания – процесс незавершенный, открытый. Естествознание не является замкнутой системой, и вопрос о сущности естествознания с каждым новым открытием становится яснее.

Согласно общей теории систем (ОТС), важнейшим свойством систем со сложной структурой является их иерархичность (от греческого hierarchia – лестница соподчинения), характеризующаяся наличием субординации или соподчинения её подсистем или структурных уровней. Иерархичность есть и в естественных науках. Впервые на неё указал французский физик Андре Ампер (1775-1836), который пытался найти принцип естественной классификации всех известных в его время естественных наук. Физику он поместил на первое место как науку более фундаментальную.

Идеи о субординации естественных наук широко обсуждаются и сегодня. При этом выделяют два направления в науке: редукционизм (от латинского reduction – возвращение), согласно которому всё «высшее» сводится к более простому – «низшему», т.е. все биологические явления к химическим, а химические – к физическим, и интегратизм (всё наоборот).

Различие между редукционизмом и интегратизмом заключается лишь в направлении движения мысли учёного. Кроме того иерархия основных естественных наук имеет циклически замкнутый характер. Цикличность – это свойство, присущее самой Природе. Приведём примеры: круговорот веществ в Природе, смена дня и ночи, смена времён года, растение, умирая, оставляет на Земле семена, из которых затем появляется новая жизнь. Поэтому и естествознание, имеющее единый объект исследования – Природу, которой присуще это свойство, то же обладает им.

Одной из наук, сочетающих в себе содержание естественных и общественных научных дисциплин, является геронтология. Эта наука изучает старение живых организмов, в том числе человека.

С одной стороны, объект ее изучения шире объекта многих научных дисциплин, изучающих человека, а с другой - он совпадает с их объектами.

В то же время геронтология акцентирует внимание прежде всего на процессе старения живых организмов в целом и человека в частности, что является ее предметом. Именно учет объекта и предмета изучения позволяет видеть как общее, так и специфическое научных дисциплин, изучающих человека.

Поскольку объект изучения геронтологии - живые организмы в процессе их старения, можно сказать, что эта наука является и естественно-научной и обществоведческой дисциплиной. В первом случае ее содержание определяется биологической природой организмов, во втором - биопсихосоциальными свойствами человека, находящимися в диалектическом единстве, взаимодействии и взаимопроникновении.

Одной из основополагающих естественно-научных дисциплин, имеющих прямую связь с социальной работой (а также, конечно, с геронтологией), является медицина. Эта область науки (и одновременно практической деятельности) направлена на сохранение и укрепление здоровья людей, предупреждение и лечение болезней. Имея разветвленную систему отраслей, медицина в своей научной и практической деятельности решает проблемы сохранения здоровья и лечения пожилых людей. Вклад ее в это святое дело огромен, о чем свидетельствует практический опыт человечества.

Следует, вероятно, отметить и особое значение гериатрии как раздела клинической медицины, изучающего особенности заболеваний у людей пожилого и старческого возраста и разрабатывающего методы их лечения и профилактики.

И геронтология, и медицина базируются на знании биологии как совокупности наук о живой природе (огромном многообразии вымерших и ныне населяющих Землю живых существ), об их строении и функциях, происхождении, распространении и развитии, связях друг с другом и с неживой природой. Данные биологии являются естественно-научной основой познания природы и места человека в ней.

Несомненный интерес представляет вопрос о соотношении социальной работы и реабилитологии, которая играет все большую роль в теоретических исследованиях и практической деятельности. В самом общем виде реабилитологию можно определить как учение, науку о реабилитации как о достаточно емком и сложном процессе.

Реабилитация (от позднелатинского rehabilitatio - восстановление) означает: во-первых, восстановление доброго имени, прежней репутации; восстановление в прежних правах, в том числе в административном и судебном порядке (например, реабилитация репрессированных); во-вторых, применение к подсудимым (прежде всего к несовершеннолетним) мер воспитательного характера или наказаний, не связанных с лишением свободы, в целях их исправления; в-третьих, комплекс медицинских, юридических и других мер, направленных на восстановление или компенсацию нарушенных функций организма и трудоспособности больных и инвалидов.

К сожалению, представители отраслевых, конкретных научных дисциплин не всегда указывают (и учитывают) последний вид реабилитации. В то время как социальная реабилитация имеет важнейшее значение в жизнедеятельности людей (восстановление основных социальных функций личности, общественного института, социальной группы, их социальной роли как субъектов основных сфер жизни общества). В содержательном плане социальная реабилитация, по существу, в концентрированном виде включает все аспекты реабилитации. И в этом случае она может рассматриваться как социальная реабилитация в широком смысле, т. е. включающая все виды жизнедеятельности людей. Некоторые исследователи выделяют так называемую профессиональную реабилитацию, которая входит в социальную реабилитацию. Точнее можно было бы назвать этот вид социально-трудовой реабилитацией.

Таким образом, реабилитация является одним из важнейших направлений, технологий в социальной работе.

Для выяснения соотношения социальной работы и реабилито- логии как научных направлений важно уяснить объект и предмет последней.

Объект реабилитологии - определенные группы населения, отдельные личности и слои, нуждающиеся в восстановлении своих прав, репутации, социализации и ресоциализации, восстановлении здоровья в целом или нарушенных отдельных функций организма. Предметом реабилитологии выступают конкретные стороны реабилитации названных групп, изучение закономерностей реабилитационных процессов. Такое понимание объекта и предмета реабилитологии показывает ее тесную связь с социальной работой и как с наукой, и как со специфическим видом практической деятельности.

Социальная работа является методологической основой реабилитологии. Выполняя функцию выработки и теоретической систематизации знаний о социальной сфере (совместно с социологией), анализа существующих форм и методов социальной работы, разработки оптимальных технологий разрешения социальных проблем различных объектов (индивидов, семей, групп, слоев, общностей людей), социальная работа как наука способствует - прямо или косвенно - решению вопросов, являющихся сутью, содержанием реабилитологии.

Тесная связь между социальной работой и реабилитологией как науками определяется и тем, что они являются, по существу, междисциплинарными, универсальными по своему содержанию. Эта связь, кстати, в МГУ сервиса была обусловлена и организационно: в рамках факультета социальной работы в 1999 г. открыта новая кафедра - медико-психологической реабилитологии. Медико-психологическая реабилитация и сейчас (после преобразования кафедры) остается важнейшим структурным подразделением кафедры психологии.

Говоря о методологической роли социальной работы в становлении и функционировании реабилитологии, следует учитывать и влияние знаний в области реабилитологии на социальную работу. Эти знания способствуют не только конкретизации понятийного аппарата социальной работы, но и обогащению понимания тех закономерностей, которые изучают и выявляют социономы.

Что касается технических наук , то социальная работа связана с ними благодаря процессу информатизации, ведь сбор, обобщение и анализ информации в области социальной работы осуществляются с помощью компьютерной техники, а распространение, усвоение и применение знаний и умений - других технических средств, наглядной агитации, демонстрации различных приборов и приспособлений, специальной одежды и обуви ит.д., призванных облегчить самообслуживание, передвижение по улице, ведение домашнего хозяйства и т. д. определенным категориям населения - пенсионерам, инвалидам и др.

Технические науки имеют важное значение при создании соответствующей инфраструктуры, обеспечивающей возможность повышения эффективности всех видов и направлений социальной работы, включая инфраструктуру различных сфер жизнедеятельности как специфических объектов социальной работы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Химия сегодня

Зарождение современной химии

Периодический закон

Особенности современной химии

Заключение

Химия сегодня

"Широко простирает химия руки свои в дела человеческие", - эта крылатая фраза Михаила Ломоносова в настоящее время особенно актуальна. Химия сегодня - это продукты и лекарства, горючее и одежда, удобрения и краски, анализ и синтез, организация производства и контроль качества его продукции, подготовка питьевой воды и обезвреживание стоков, экологический мониторинг и создание безопасной среды обитания человека. "Овладеть таким объемом знаний невозможно!" - воскликнет пессимист. "Ничего невозможного нет для человека, увлеченного своим делом,"-отвечаем мы. И если вы решили связать свою судьбу с химией, мы ждем вас на нашем факультете. Здесь вы получите фундаментальное университетское образование, которое позволит вам не только легко адаптироваться на любом рабочем месте, но и стать профессионалом своего дела.

Наряду с традиционными областями приложения сил специалистов-химиков все большее значение в жизни общества приобретает химическая экспертиза. Действительно, в настоящее время заметно возросло количество и многообразие объектов экспертизы: вода, воздух, почва, продукты питания и промышленные товары, лекарственные препараты и отходы различных предприятий, а также многое другое. Установление вида товара, факта и способа его фальсификации, контроль чистоты окружающей среды, криминалистическая экспертиза- вот далеко не полный перечень того, что должен уметь химик- эксперт. Результаты, получаемые специалистами-экспертами, являются мощным источником поисковой, диагностической и доказательной информации, что способствует установлению объективной истины при расследовании чрезвычайных происшествий, осуществлении экоаналитического, санитарно-эпидемиологического и таможенного контроля. Специалисты такого профиля необходимы органам внутренних дел и ФСБ, Минюсту, Минздраву, МЧС, таможенной службе, ведомствам с природоохранными функциями. Между тем специалистов такой направленности у нас в стране практически не готовят. Поэтому химический факультет нашего университета начинает подготовку специалистов в области химической экспертизы.

Каждый год на нашем факультете начинают студенческую жизнь 50 первокурсников, а всего на факультете учатся около 250 студентов. На младших курсах студенты изучают, помимо химических дисциплин, высшую математику, информатику, физику, социально-экономические дисциплины, иностранный язык.

После 3 курса студенты по собственному желанию выбирают кафедру, где получат соответствующую специализацию. На факультете имеются три кафедры. Кафедра аналитической химии и химии нефти, сокращенно АХН, (зав.кафедрой - профессор В.И. Вершинин) занимается проблемами охраны окружающей среды, помогает некоторым предприятиям нефтехимического комплекса решать производственные проблемы. Именно кафедра АХН, единственная в городе, начинает подготовку химиков в области химической экспертизы. На кафедре имеется аспирантура по специальностям "аналитическая химия" и "методика преподавания химии".

Кафедру неорганической химии возглавляет профессор В.Ф. Борбат. Здесь вас познакомят с проблемами защиты металлов от коррозии, очистки стоков от тяжелых металлов, научат различным электрохимическим методам анализа и еще многому другому. В итоге вы получите специализацию "электрохимия". Кроме того, кафедра начинает подготовку специалистов в области экологии и охраны окружающей среды, что так актуально для нашего города. Студенты, проявившие склонность к научной работе, могут продолжить ее на кафедре, поступив в аспирантуру по специальностям "физическая химия" и "электрохимия".

На кафедре органической химии, возглавляемой профессором Р.С. Сагитуллиным, ведут синтез новых органических соединений, занимаются разработкой принципиально новых способов получения лекарственных препаратов, красителей, антиокислителей и т.п. Студенты на этой кафедре получают специализацию "органическая химия". И так же, как на двух других кафедрах, здесь имеется аспирантура по специальности "органическая химия".

Кроме вышеперечисленных специализаций, студенты по желанию могут получить еще одну, дополнительную специализацию - "методика преподавания химии". Эта специализация будет особенно полезна тем студентам, которые по окончании университета решат заняться преподавательской работой в школах, техникумах, вузах.

Теоретические знания, полученные студентами на лекциях, закрепляются в учебных лабораториях. Факультет обладает достаточно большими учебными площадями, неплохим парком современных приборов, имеет свой компьютерный класс. Финалом обучения на факультете является дипломная работа.

Универсальность подготовки наших специалистов позволяет им быстро осваиваться на любом рабочем месте. Вы встретите выпускников химфака на промышленных предприятиях города, в лабораториях сертификации, СЭС, контроля окружающей среды, в вузах, техникумах, школах.

Мы надеемся встретить вас в числе абитуриентов нашего факультета. А если для вас еще не наступило время "Х", или вы еще не определились с выбором профессии, приходите к нам в Химическую школу, которая действует на базе факультета для учащихся 10-11-х классов. Здесь под руководством опытных преподавателей вы получите реальную возможность расширить и углубить свои знания по химии, познакомиться с основами анализа и синтеза, выполнить научную работу на современном оборудовании.

Современные экономические условия таковы, что предприятия, для того чтобы выдержать конкуренцию, должны постоянно совершенствовать свои технологии и формы контроля качества продукции, а для этого им просто необходимы высококвалифицированные специалисты-химики. При этом предприятие не должно загрязнять окружающую среду, ведь в противном случае придется платить огромные штрафы, поэтому лучше уж иметь в штате хороших химиков-аналитиков, которые бы следили за содержанием вредных веществ и контролировали их выбросы. Так что спрос на специалистов с университетским химическим образованием будет всегда. И постепенно станет в нашем городе и воздух чище, и вода светлее, и хлеб вкуснее.

Зарождение современной химии

Представления древнегреческих натурфилософов оставались основными идейными истоками естествознания вплоть до XVIII в. До начала эпохи Возрождения в науке господствовали представления Аристотеля. В дальнейшем стало расти влияние атомистических взглядов, впервые высказанных Левкиппом и Демокритом. Алхимические работы опирались преимущественно на натурфилософские взгляды Платона и Аристотеля. Большинство экспериментаторов того периода были откровенными шарлатанами, которые пытались с помощью примитивных химических реакций получить или золото, или философский камень - вещество дающее бессмертие. Однако были и настоящие ученые, которые пытались систематизировать знания. Среди них Авиценна, Парацельс, Роджер Бэкон др. Некоторые химики считают, что алхимия - это зря потерянное время. Однако это не так: в процессе поиска золота было открыто множество химических соединений и изучены их свойства. Благодаря этим знаниям в конце XVII века была создана первая серьезная химическая теория - теория флогистона.

Теория флогистона и система Лавуазье

Творец теории флогистона - Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Горение или окисление рассматривалось им как процесс, при котором тело теряет флогистон. Воздух играет при этом особо важную роль. Он необходим для окисления, чтобы “вбирать” в себя флогистон. Из воздуха флогистон попадает в листья растений и в их древесину, из которых при восстановлении он вновь освобождается и возвращается телу. Так впервые была сформулирована теория, описывающая процессы горения. Ее особенности и новизна состояли в том, что одновременно рассматривались во взаимосвязи процессы окисления и восстановления. Теория флогистона развивала идеи Бехера и атомистические представления. Она позволяла объяснить протекание различных процессов в ремесленной химии и, в первую очередь, в металлургии и оказала громадное влияние на развитие химических ремесел и совершенствование методов "экспериментального искусства" в химии. Теория флогистона способствовала и развитию учения об элементах. Приверженцы теории флогистона называли элементами оксиды металлов, рассматривая их как металлы, лишенные флогистона. Металлы же, напротив, считали соединениями элементов (оксидов металлов) с флогистоном. Потребовалось лишь поставить все положения этой теории “с головы на ноги”. Что и было сделано в дальнейшем. Для объяснения того, что масса оксидов больше чем масса металлов, Шталь предположил (а, вернее утверждал), что флогистон имеет отрицательный вес, т.е. флогистон соединившись с элементом “тянет” его вверх. Несмотря на одностороннюю, лишь качественную характеристику процессов, происходящих при горении, теория флогистона имела громадное значение для объяснения и систематизации именно этих превращений. На неверность флогистонной теории указывал Михаил Иванович Ломоносов. Однако экспериментально доказать это смог Антуан Лоран Лавуазье. Лавуазье заметил, что при горении фосфора и серы же, как и при прокаливании металлов, происходит увеличение веса вещества. Казалось бы естественным сделать: увеличение веса сжигаемого вещества происходит при всех процессах горения. Однако этот вывод настолько противоречил положениям теории флогистона, что нужна была недюжинная смелость, чтобы высказать его хотя бы в виде гипотезы. Лавуазье решил проверить высказанные ранее Бойлем, Реем, Мэйоу и Ломоносовым гипотезы о роли воздуха в процессах горения. Он интересовался тем, увеличивается ли количество воздуха, если в нем происходит восстановление окисленного тела и выделение благодаря этому дополнительного воздуха. Лавуазье удалось доказать, что действительно количество воздуха при этом возрастает. Это открытие Лавуазье назвал самым интересным со времени работ Шталя. Поэтому в ноябре 1772 г. Он направил в Парижскую Академию наук специальное сообщение о полученных им результатах. На следующем этапе исследований Лавуазье полагал выяснить, какова природа “воздуха”, соединяющегося с горючими телами при их окислении. Однако все попытки установить природу этого “воздуха” в 1772-1773 гг. Окончились безрезультатно. Дело в том, что Лавуазье, так же как и Шталь, восстанавливал “металлические извести” путем непосредственного контакта с “углеобразной материей” и тоже получал при этом диоксид углерода, состав которого он не мог тогда установить. Как считал Лавуазье, “уголь сыграл с ним злую шутку”. Однако, Лавуазье, как и многим другим химикам, не приходила мысль, что восстановление оксидов металлов можно осуществить нагреванием с помощью зажигательного стекла. Но вот осенью 1774 г. Джозеф Пристли сообщил, что при восстановлении окиси ртути с помощью зажигательного стекла образуется новый вид воздуха - “дефлогистированный воздух”. Незадолго до этого кислород был открыт Шееле, но сообщение об этом было опубликовано с большим запозданием. Шееле и Пристли объясняли наблюдаемое ими явление выделения кислорода с позиций флогистонной теории. Только Лавуазье смог использовать открытие кислорода в качестве главного аргумента против теории флогистона. Весной 1775 г. Лавуазье воспроизвел опыт Пристли. Он хотел получить кислород и проверить, был ли кислород тем компонентом воздуха, благодаря которому происходило горение или окисление металлов. Лавуазье удалось не только выделить кислород, но и вновь получить оксид ртути. Одновременно Лавуазье определял весовые отношения вступающих в эту реакцию веществ. Ученому удалось доказать, что отношения количества веществ, участвующих в реакциях окисления и восстановления, остаются неизменными. Работы Лавуазье произвели в химии, пожалуй, такую же революцию, как два с половиной века до открытия Коперника в астрономии. Вещества, которые раньше считались элементами, как показал Лавуазье, оказались соединениями, состоящими в свою очередь из сложных “элементов”. Открытия и воззрения Лавуазье оказали громадное влияние не только на развитие химической теории, но и на всю систему химических знаний. Они так преобразовали саму основу химических знаний и языка, что следующие поколения химиков, по существу, не могли понять даже терминологию, которой пользовались до Лавуазье. На этом основании в последствии стали считать, что о “подлинной” химии нельзя говорить до открытий Лавуазье. Преемственность химических исследований при этом была забыта. Только историки химии начали вновь воссоздавать действительно существовавшие закономерности развития химии. При этом было выяснено, что “химическая революция” Лавуазье была бы невозможна без существования до него определенного уровня химических знаний.

Развитие химических знаний Лавуазье увенчал созданием новой системы, в которую вошли важнейшие достижения химии прошлых веков. Эта система, правда, в значительно расширенном и исправленном виде, стала основой научной химии. В 80-х гг. XVIII в. Новая система Лавуазье получила признание у ведущих естествоиспытателей Франции - К.Бертолле, А. Де Фуркруа и Л. Гитона де Морво. Они поддержали новаторские идеи Лавуазье и совместно с ним разработали новую химическую номенклатуру и терминологию. В 1789 г. Лавуазье изложил основы разработанной им системы знаний в учебнике “Начальный курс химии, представленный в новом виде на основе новейших открытий”. Лавуазье разделял элементы на металлы и неметаллы, а соединения на двойные и тройные. Двойные соединения, образуемые металлами с кислородом, он относил к основаниям, а соединения неметаллов с кислородом - к кислотам. Тройные соединения, получающиеся при взаимодействии кислот и оснований, он называл солями. Система Лавуазье основывалась на точных качественных и количественных исследованиях. Этот довольно новый вид аргументации он использовал, изучая многие спорные проблемы химии - вопросы теории горения, проблемы взаимного превращения элементов, которые были весьма актуальны в период становления научной химии. Так, для проверки представления о возможности взаимного превращения элементов Лавуазье в течение нескольких дней нагревал воду в запаянной сосуде. В итоге он обнаружил в воде незначительное количество “земли”, установив при этом, что изменение общего веса сосуда вместе с водой не происходит. Образование “земель” Лавуазье объяснил не как результат их выделения из воды, а за счет разрушения стенок реакционного сосуда. Для ответа на этот вопрос шведский химик аптекарь К. Шееле в то же время использовал качественные методы доказательства, установив идентичность выделяющихся “земель” и материала сосуда. Лавуазье, как и Ломоносов, учитывал существовавшие с древности наблюдения о сохранении веса веществ и систематически изучал весовые соотношения веществ, участвующих в химической реакции. Он обратил внимание на то, что, например, при горении серы или при образовании ржавчины на железе происходит увеличение веса исходных веществ. Это противоречило теории флогистона, согласно которой при горении должен был выделяться гипотетический флогистон. Лавуазье счел ошибочным объяснение, согласно которому флогистон обладал отрицательным весом, и окончательно отказался от этой идеи. Другие химики, например М.В.Ломоносов или Дж. Мэйоу, пытались объяснить окисление элементов и образование оксидов металлов (или, как тогда говорили, “известей”) как процесс, при котором частицы воздуха соединяются с каким-либо веществом. Этот воздух может быть “оттянут обратно” путем восстановления. В 1772 г. Лавуазье собрал этот воздух, но не смог установить его природу. Первым об открытии кислорода сообщил Пристли. В 1775 г. Ему удалось доказать, что именно кислород соединяется с металлом и вновь выделяется из него при его восстановлении, как, например, при образовании “извести” ртути и ее восстановлении. Систематическим взвешиванием было установлено, что вес металла, участвующего в этих превращениях, не изменяется. Сегодня этот факт, казалось бы, убедительно доказывает справедливость предположений Лавуазье, а тогда большинство химиков отнеслись к нему скептически. Одной из причин такого отношения было то, что Лавуазье не мог объяснить процесс горения водорода. В 1783 г. он узнал, что, используя электрическую дугу, Кавендиш доказал образование воды при сжигании смеси водорода и кислорода в закрытом сосуде. Повторив этот опыт, Лавуазье нашел, что вес воды соответствует весу исходных веществ. Затем он провел эксперимент, в котором пропускал водяной пар через железные стружки, помещенные в сильно нагреваемую медную трубку. Кислород соединялся с железными стружками, а водород собирался на конце трубки. Таким образом, воспользовавшись превращениями веществ, Лавуазье сумел объяснить процесс горения и качественно, и количественно, и для этого ему уже не нужна была теория флогистона. Пристли же и Шееле, которые, открыв кислород, фактически создали основные предпосылки для появления кислородной теории Лавуазье, сами твердо придерживались позиций теории флогистона. Кавендиш, Пристли, Шееле и некоторые другие химики полагали, что расхождения между результатами опытов и положениями теории флогистона удастся устранить путем создания дополнительных гипотез. Надежность и полнота опытных данных, ясность аргументации и простота изложения способствовали быстрому распространению системы Лавуазье в Англии, Голландии, Германии, Швеции, Италии. В Германии представления Лавуазье были изложены в двух работах д-ра Гиртаннера “Новая химическая номенклатура на немецком языке” (1791 г.) и “Основы антифлогистонной химии” (1792 г.). Благодаря Гиртаннеру впервые появились немецкие обозначения веществ, соответствующие новой номенклатуре, например кислорода, водорода, азота. Работавший в Берлине Гермбштедт опубликовал в 1792 г. учебник Лавуазье в переводе на немецкий язык, а М. Клапрот после того, как он повторил опыты Лавуазье, признал, новое учение; взгляды Лавуазье разделял и знаменитый естествоиспытатель А. Гумбольдт.

В 1790-х годах в Германии не раз публиковались работы Лавуазье. Большинство известных химиков Англии, Голландии, Швеции, талии разделяли взгляды Лавуазье. Нередко в историко-научной литературе можно прочесть, что для признания теории Лавуазье химикам понадобилось достаточно много времени. Однако по сравнению с 200 годами непризнания астрономами взглядов Коперника 10-15-летний период дискуссий в химии не так уж велик. В последней трети XVIII в. одной из важнейших была проблема, которая многие века интересовала ученых: химики хотели понять, почему и в каких соотношениях соединяются вещества друг с другом. К этой проблеме проявляли интерес еще греческие философы, а во времена Возрождения ученые выдвигали идею о сродстве веществ и даже строили ряды веществ по сродству. Парацельс писал, что ртуть образует с металлами амальгамы, причем для разных металлов с различной скоростью ив такой последовательности: быстрее всего с золотом, затем с серебром, свинцом, оловом, медью и, наконец, медленнее всего с железом. Парацельс считал, что причиной этого ряда химического сродства является не только “ненависть” и “любовь” веществ друг к другу. В соответствии с его представлениями металлы содержат серу, и, чем меньше ее содержание, тем чище металлы, а чистота веществ в значительной мере определяет их сродство друг к другу. Г. Шталь объяснял ряд осаждения металлов как результат различного содержания в них флогистона. До последней трети XVIII в. многочисленные исследования были направлены на то, чтобы расположить вещества по величине их “сродства”, и многие химики составляли соответствующие таблицы. Для объяснения различного химического сродства веществ выдвигались и атомистические представления, а после того, как в конце XVIII - начале XIX вв. Ученые стали понимать влияние электричества на протекание некоторых химических процессов, для этой же цели пытались использовать и представления об электричестве. Основываясь на них, Берцелиус создал дуалистическую теорию состава веществ, в соответствии с, например, соли состоят из положительно и отрицательно заряженных “оснований” и “кислот”: при электролизе они притягиваются к противоположно заряженным электродам и могут распадаться при этом на элементы вследствие нейтрализации зарядов. Со второй половины XVIII в. особенно много внимания ученые стали уделять вопросу: в каких количественных соотношениях взаимодействуют друг с другом вещества в химических реакциях? Уже давно было известно, что кислоты и основания могут нейтрализовать друг друга. Предпринимались также попытки установить содержание кислот и оснований в солях. Т. Бергман и Р. Кирван нашли, что, например, в реакции двойного обмена между химически нейтральными сульфатом калия и нитратом натрия образуются новые соли - сульфат натрия и нитрат калия, которые тоже являются химически нейтральными. Но ни один из исследователей не сделал из этого наблюдения общего вывода. В 1767 г. Кавендиш обнаружил, что количество азотной и серной кислот, нейтрализующие одинаковые количества карбоната калия, нейтрализуют также одинаковое количество карбоната кальция. И.Рихтер первым сформулировал закон эквивалентов, объяснение которому было найдено позднее с позиций атомистической теории Дальтона.

Рихтер установил, что раствор, получающийся при смешивании растворов двух химически нейтральных солей, тоже нейтрален. Он провел многочисленные определения количеств оснований и кислот, которые, соединяясь, дают химически нейтральные соли. Рихтер сделал следующий вывод: если одно и то же количество какой-либо кислоты нейтрализуется различными, строго определенными количествами разных оснований, то эти количества оснований эквивалентны и нейтрализуются одним и тем же количеством другой кислоты. Выражаясь современным языком, если к раствору сульфата калия, например, добавить раствор нитрата бария до полного осаждения сульфата бария, то раствор, содержащий нитрат калия, тоже будет нейтрален:

K2SO4 + Ba(NO3)2 = 2KNO3 + BaSO4

Следовательно, при образовании нейтральной соли эквивалентны друг другу следующие количества: 2K, 1Ba, 1SO4 и 2NO3. Полинг обобщил и сформулировал в современном виде этот закон соединительных весов”: “Весовые количества двух элементов (или их целочисленные кратные), которые, реагируют с одним и тем же количеством третьего элемента, реагируют друг с другом в тех же количествах”. Вначале работы Рихтера почти не привлекли внимания исследователей, поскольку он пользовался еще терминологией флогистонной теории. Кроме того, полученные ученым ряды эквивалентных весов были недостаточно наглядны, а предложенный им выбор относительных количеств оснований не имел серьезных доказательств. Положение исправил Э.Фишер, который среди эквивалентных весов Рихтер выбрал в качестве эталона эквивалент серной кислоты, приняв его равным 100, и составил, исходя из этого, таблицу “относительных весов” (эквивалентов) соединений. Но о таблице эквивалентов Фишера стало известно лишь благодаря Бертолле, который, критикуя Фишера, привел эти данные в своей книге “Опыт химической статики” (1803 г.). Бертолле сомневался, что состав химических соединений постоянен. Он имел на это основание. Вещества, которые в начале XIX в. считались чистыми, на самом деле были либо смесями, либо равновесными системами различных веществ, а количественный состав химических соединений во многом зависел от количеств веществ, участвующих в реакциях их образования.

Некоторые историки химии считают, что, подобно Венцелю, Бертолле также предвосхитил основные положения закона действия масс, который аналитически выражал влияние количеств взаимодействующих на скорость превращения. Немецкий химик К. Венцель в 1777 г. показал, что скорость растворения металла в кислоте, измеряемая количеством металла, растворившегося за определенное время, пропорциональна “силе” кислоты. Бертолле сделал многое для учета влияния масс реагентов на ход превращения. Однако между работами Венцеля и даже Бертолле, с одной стороны, и точной формулировкой закона действия масс - с другой, существует качественное различие. Негативное отношение Бертолле к закону нейтрализации Рихтера не могло длиться долго, так как против положений Бертолле энергично выступил Пруст. Проделав в течение 1799-1807 гг. массу анализов, Пруст доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества, что он, например, не учитывал содержания воды в некоторых оксидах. Пруст убедительно доказал постоянство состава чистых химических соединений и завершил свою борьбу против взглядов Бертолле установлением закона постоянства состава веществ: состав одних и тех же веществ независимо от способа получения одинаков (постоянен).

Периодический закон

Рассматривая историю химии я не могу не упамяуть об открытии периодического закона. Уже на ранних этапах развития химии было обнаружено, что различным элементам присущи особые свойства. Вначале элементы раз-деляли всего на два типа - металлы и неметаллы. В 1829 г. немецкий химик Иоганн Деберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. Деберейнер обнаружил всего 5 триад, это:

Это обнаружение свойств элементов побудило к дальнейшим исследованиям химиков, которые пытались найти рациональные способы классификации элементов.

В 1865 г. английский химик Джон Ньюлендс (1839-1898) заинтересовался проблемой периодической повторяемости свойств элементов. Он расположил из известных элементов в порядке возрастания их атомных масс следующим образом: H Li Be B C N O F Na Mg Al Si P S Cl K Ca Cr Ti Mn Fe

Ньюлендс заметил, что в этой последовательности восьмой элемент (фтор) напоминает первый (водород), девятый элемент напоминает второй и т.д. Тем самым через каждые восемь элементов свойства повторялись. Однако в этой системе элементов было много неверного:

1) В таблице не нашлось места новым элементам.

2) Таблица не открывала возможности научного подхода к определению атомных масс и не позволяла сделать выбор между их вероятными наилучшими значениями.

3) Некоторые элементы представлялись неудачно размещенными в таблице. Например железо сопоставлялось с серой (!) и т.д.

Несмотря на большое количество недостатков, попытка Ньюлендса явилась шагом в правильном направлении. Мы знаем, открытие периодического закона при-надлежит Дмитрию Ивановичу Менделееву. Давайте рассмотрим историю его открытия. В 1869 году Н.А. Меншуткин представил членам Русского химического общества небольшую работу Д.И.Менделеева “Соотношение свойств с атомным весом элементов”. (Сам Д.И.Менделеев на заседании не присутствовал.) На этом заседании работа Д.И.Менделеева не была воспринята всерьез. Пауль Вальден писал впоследствии: “Большие события слишком часто встречают незначительный отклик, и тот день, который должен был стать знаменательным днем для молодого Русского химического общества, а в действительности оказался будничным днем”. Д.И.Менделеев любил дерзкие идеи. Обнаруженная им закономерность гласила: химические и физические свойства элементов и их соединений находятся в периодической зависимости от атомных весов элементов. Подобно своим предшественникам, Д.И.Менделеев выделил наиболее типичные элементы. Однако он предположил наличие пустот в таблице и осмелился утверждать, что они должны быть заполнены не открытыми еще элементами. В одно и тоже время с Менделеевым над этой же проблемой работал Лотарь Мейер, который опубликовал свою работу в 1870 году. Однако приоритет в открытии периодического заслуженно остается за Дмитрием Ивановичем Менделеевым, т.к. даже сам Л.Мейер не помышлял отрицать выдающуюся роль Д.И.Менделеева в открытии периодического закона. В своих воспоминаниях Л.Мейер указывал, что пользовался при написании своей работы рефератом статьи Д.И.Менделеева. В 1870 году Менделеев внес в таблицу некоторые изменения: как любая закономерность, в основе которой лежит bepm` идея, новая система оказалась жизнеспособной, поскольку в ней предусматривалась возможность уточнений. Как я уже говорил, гениальность теории Менделеева состояла в том, что он оставил пустоты в своей таблице. Тем самым он предположил (а точнее был уверен), что еще не все элементы открыты. Однако Дмитрий Иванович не остановился на достигнутом. С помощью периодического закона он даже описал химические и физические свойства еще не открытых химических элементов, например: галлия, германия, скандия, которые полностью подтвердились. После этого большинство ученых убедилось в правильности теории Д.И.Менделеева. В наше время периодический закон имеет огромное значение. С помощью его предсказывают свойства химических соединений, продукты реакций. С помощью периодического закона и в наше время предсказывают свойства элементов - это элементы которые нельзя получить в весомых количествах.

После работ Лавуазье, Пруста, Ломоносова и Менделеева, уже в нашем веке было сделано много важнейших открытий в области химии и физики. Это работы по термодинамике, строению атома и молекул, электрохимии, - этот список можно продолжить до бесконечности. Однако, открытия Лавуазье и Д.И.Менделеева остаются фундаментом химических знаний.

Особенности современной химии

Я разбил на разделы особенности современной химии, предлагаю их к вашему вниманию:

1) Атомно-молекулярная концепция, структурные и электронные представления - основа современной химии.

2) Широкое использование -- математики и компьютеров, -- сложных физических методов, -- классической и квантовой механики.

3) Особая роль теоретической химии, компьютерного моделирования и компьютерных экспериментов. Химия на бумаге. Химия на дисплее.

4) Доминирующая роль биохимических и экологических проблем.

Заключение

Представленный в настоящем реферат единообразный подход к строению весьма различных объектов облегчает совместное сравнительное обсуждение структуры упорядоченных и неупорядоченных фаз. Практическая важность такого обсуждения обусловлена тем, что если для кристаллических веществ рентгено-структурный анализ и другие дифракционные методы дают надежную структурную информацию, то для жидких кристаллов и тем более жидкостей точные сведения о структуре (в особенности о тотальной структуре) практически недоступны. Поэтому особое значение приобретает интерполяция кристаллоструктурной информации на другие фазовые состояния химических соединений.

Аналогичная ситуация возникает при распространении строгих математических подходов, разработанных в рамках кристаллографии, на объекты, не являющиеся кристаллами. В связи с этим Бернал и Карлайл ввели понятие "обобщенной кристаллографии". Позднее аналогичные соображения высказали Маккей и Финней . Сравнительный анализ структуры различных конденсированных фаз можно назвать "обобщенной кристаллохимией". Важную роль в этой области будет играть консерватизм структурных фрагментов (в частности, молекулярных ассоциатов и агломератов), о котором говорилось выше.

Список использованной литературы

1. Химический энциклопедический словарь. М.: Советская энциклопедия,1983.

2. Физический энциклопедический словарь. М.: Советская энциклопедия,1983.

3. Гордон А., Форд Р. Спутник химика. М.: Мир, 1976.

4. Афанасьев В.А., Заиков Г.Е. Физические методы в химии. М.: Наука,1984. (Серия "История науки и техники").

5. Драго Р. Физические методы в химии. Т. 1, 2. М.: Мир, 1981.

6. Вилков Л.В., Пентин Ю.А. Физические методы исследования в химии. Структурные методы и оптическая спектроскопия. М: Высшая школа, 1987.

7. Вилков Л.В., Пентин Ю.А. Физические методы исследования в химии. Резонансные и электрооптические методы. М.: Высшая школа, 1989.

8. Журнал Всесоюзного химического общества им. Д.И. Менделеева. 1985. Т. 30. N 2.

Подобные документы

    Химический взгляд на природу, истоки и современное состояние. Предмет познания химической науки и ее структура. Взаимосвязь химии и физики. Взаимосвязь химии и биологии. Химия изучает качественное многообразие материальных носителей химических явлений.

    реферат , добавлен 15.03.2004

    Теория флогистона и система Лавуазье. Периодический закон. История современной химии как закономерный процесс смены способов решения ее основной проблемы. Различные подходы к самоорганизации вещества. Общая теория химической эволюции и биогенеза Руденко.

    курсовая работа , добавлен 28.02.2011

    Основные этапы развития химии. Алхимия как феномен средневековой культуры. Возникновение и развитие научной химии. Истоки химии. Лавуазье: революция в химии. Победа атомно-молекулярного учения. Зарождение современной химии и ее проблемы в XXI веке.

    реферат , добавлен 20.11.2006

    Теория флогистона и система Лавуазье. Творец теории флогистона - Георг Шталь. Он считал, что флогистон содержится во всех горючих и способных к окислению веществах. Периодический закон. Дмитрий Иванович Менделеев.

    реферат , добавлен 05.04.2004

    Зарождение химии в Древнем Египте. Учение Аристотеля об атомах как идейная основа эпохи алхимии. Развитие химии на Руси. Вклад Ломоносова, Бутлерова и Менделеева в развитие этой науки. Периодический закон химических элементов как стройная научная теория.

    презентация , добавлен 04.10.2013

    Процесс зарождения и формирования химии как науки. Химические элементы древности. Главные тайны "трансмутации". От алхимии к научной химии. Теория горения Лавуазье. Развитие корпускулярной теории. Революция в химии. Победа атомно-молекулярного учения.

    реферат , добавлен 20.05.2014

    Происхождение термина "химия". Основные периоды развития химической науки. Типы наивысшего развития алхимии. Период зарождения научной химии. Открытие основных законов химии. Системный подход в химии. Современный период развития химической науки.

    реферат , добавлен 11.03.2009

    Истоки и развитие химии, ее связь с религией и алхимией. Важнейшие особенности современной химии. Основные структурные уровни химии и ее разделы. Основные принципы и законы химии. Химическая связь и химическая кинетика. Учение о химических процессах.

    реферат , добавлен 30.10.2009

    История химии как науки. Родоночальники российской химии. М.В.Ломоносов. Математическая химия. Атомная теория - основа химической науки. Атомная теория просто и естественно объясняла любое химическое превращение.

    реферат , добавлен 02.12.2002

    От алхимии - к научной химии: путь действительной науки о превращениях вещества. Революция в химии и атомно-молекулярное учение как концептуальное основание современной химии.Экологические проблемы химической компоненты современной цивилизации.

Весь окружающий нас многообразный мир – это материя , которая проявляется в двух формах: вещества и поля . Вещество состоит из частиц, имеющих собственную массу. Поле – такая форма существования материи, которая характеризуется энергией.

Свойством материи является движение . Формы движения материи изучаются различными естественными науками: физикой, химией, биологией и т.д.

Не следует считать, что существует однозначное строгое соответствие между науками с одной стороны, и формами движения материи с другой. Необходимо иметь в виду, что вообще нет такой формы движения материи, которая существовала бы в чистом виде, отдельно от других форм. Все это подчеркивает трудность классификации наук.

Химию можно определить как науку, изучающую химическую форму движения материи, под которой понимают качественное изменение веществ: Химия изучает строение, свойства и превращения веществ.

К химическим явлениям относят такие явления, при которых одни вещества превращаются в другие. Химические явления называют иначе химическими реакциями. Физические явления не сопровождаются превращением одних веществ в другие.

В основе каждой науки лежит некоторый набор предварительных убеждений, фундаментальных философских установок и ответов на вопрос о природе реальности и человеческого знания. Этот набор убеждений, ценностей, разделяемых членами данного научного сообщества называется парадигмами.

Основные парадигмы современной химии:

1. Атомно-молекулярное строение вещества

2. Закон сохранения материи

3. Электронная природа химической связи

4. Однозначная связь строения вещества и его химических свойств (периодический закон)

Химия, физика, биология только на первый взгляд могут показаться далекими друг от друга науками. Хотя лаборатории физика, химика и биолога очень непохожи, все эти исследователи имеют дело с природными (естественными) объектами. Это отличает естественные науки от математики, истории, экономики и многих других наук, изучающих то, что создано не природой, а прежде всего самим человеком.

Близко к естественным наукам примыкает экология. Не следует думать, будто экология - это "хорошая" химия, в отличие от классической "плохой" химии, которая загрязняет окружающую среду. Нет "плохой" химии или "плохой" ядерной физики - есть научный и технический прогресс или его недостаток в какой-нибудь области деятельности. Задача эколога - использовать новые достижения естественных наук для того, чтобы при максимальной выгоде свести к минимуму риск нарушения среды обитания живых существ. Баланс "риск-выгода" является предметом изучения экологов.



Между естественными науками нет строгих границ. Например, открытие и изучение свойств новых видов атомов когда-то было принято считать задачей химиков. Однако получилось так, что из известных на сегодняшний день видов атомов часть открыта химиками, а часть - физиками. Это лишь один из многих примеров "открытых границ" между физикой и химией.

Жизнь является сложной цепью химических превращений. Все живые организмы поглощают из окружающей среды одни вещества и выделяют другие. Значит, серьезному биологу (ботанику, зоологу, врачу) не обойтись без знания химии.

Позже мы убедимся в том, что нет совершенно точной границы между превращениями физическими и химическими. Природа едина, поэтому мы всегда должны помнить о том, что невозможно разобраться в устройстве окружающего нас мира, углубившись только в одну из областей человеческого знания.

Дисциплина "Химия" связана с другими естественнонаучными дисциплинами межпредметными связями: предшествующими – с математикой, физикой, биологией, геологией и другими дисциплинами.

Современная химия – это разветвленная система многих наук: неорганической, органической, физической, аналитической химии, электрохимии, биохимии, которые осваиваются студентами на последующих курсах.

Знание курса химии необходимо для успешного изучения других общенаучных и специальных дисциплин.

Рисунок 1.2.1 – Место химии в системе естественных наук

Совершенствование методов исследования, прежде всего экспериментальной техники, привело к разделению науки на все более узкие направления. В результате количество и «качество», т.е. надежность информации возросли. Однако невозможность для одного человека обладать полными знаниями даже для смежных научных областей породила новые проблемы. Как в военной стратегии самые слабые места обороны и наступления оказываются на стыке фронтов, в науке наименее разработанными остаются области, не поддающиеся однозначной классификации. Среди прочих причин можно отметить и сложность с получением соответствующей квалификационной ступени (ученой степени) для ученых, работающих в областях «стыка наук». Но там же делаются и основные открытия современности.