Научная электронная библиотека. Задачи для самостоятельного решения

88. В равнобедренный треугольник, у которого боковая сторона равна 10 см, а основание 6 см, вписана окружность. Определите расстояние между точками касания, находящимися на боковых сторонах треугольника. (2)
89. Дано круговое кольцо, площадь которого Q. Определите длину хорды большего круга, касательной к меньшему. (2)
90. Круг радиуса

Разделен на два сегмента хордой, равной стороне вписанного в этот круг правильного треугольника. Определите площадь меньшего из этих сегментов. (2)
91. Хорды АВ и АС имеют одинаковую длину. Величина образованного ими вписанного в окружность угла равна?/6. Найти отношение площади той части круга, которая заключена в этом угле, к площади всего круга. (3)

§ 2. Основные идеи и методы решения планиметрических задач

Если в предыдущем параграфе мы рассматривали задачи, в которых центральное место принадлежит формулам планиметрии и тригонометрии, то теперь перейдем к задачам, где главную роль будут играть не формулы, а теоремы о свойствах и признаках геометрических фигур. Задачи в параграфе разбиты уже не по объекту исследования (треугольник, трапеция, круг и т. д.), а по ведущей идее решения.

2.1. Задачи на вписанную в треугольник окружность

Если в условии задачи говорится об описанной около треугольника окружности, то в большинстве случаев строить её не нужно. И наоборот, когда речь идёт о вписанной в треугольник окружности. Здесь не только нужно строить саму окружность, но и проводить радиусы к точкам касания (перпендикуляры к сторонам), а также соединять центр окружности с вершинами треугольника. При этом образуются равные треугольники.

Примеры решения задач
92. В прямоугольном треугольнике точка касания вписанной окружности делит гипотенузу на отрезки длиной 5 и 12 см. Найдите катеты треугольника (рис. 168). (1)

Решение. Впишем в треугольник ABC окружность и соединим её центр О с вершинами В, С. Проведём также перпендикуляры ОК, ON, ОМ (см. рис.). Они являются радиусами вписанной в треугольник окружности. Из равенства треугольников ВМО и BNO следует, что ВМ = BN = 5. Аналогично, из равенства треугольников ОКС и ONC следует, что КС = NC = 12. Заметим также, что AMOK– квадрат и, значит, AM = АК = r. Получаем, что АВ = АМ + МВ = r + 5, АС = АК + КС = r + 12. По теореме Пифагора получаем: АВ2+ АС2= ВС2.
(r + 5)2+ (r + 12)2= 172;
r2+ 10r + 25 + r2+ 24r + 144 = 289;
2r2+ 34r – 120 = 0;
r2+ 17r – 60 = 0; r = 3.
Катеты равны 5 + r = 8 и 12 + r = 15.
Ответ: 8 см; 15 см.

93. В треугольник вписана окружность с радиусом 4. Одна из сторон треугольника разделена точкой касания на отрезки, длины которых 6 и 8. Найдите длины сторон треугольника (рис. 169). (2)

Решение. Как и в предыдущей задаче, изобразим вписанную в треугольник окружность и соединим центр окружности О с вершинами треугольника. Проведем также перпендикуляры ОМ, ОТ, ОК, являющиеся радиусами окружности. Получены три пары равных треугольников: OAK и ОAT, ОВМ и ОВТ, ОСМ и ОСК. По условию одна из сторон треугольника разделена точкой касания на отрезки, длины которых 6 и 8. Пусть для определенности эта сторона – ВС и ВМ = 8, МС = 6. Тогда ВТ = ВМ = 8, СК = СМ = 6. Длины отрезков АК и AT обозначим через х. Для нахождения величины х воспользуемся формулой S = рг. По формуле Герона

Ответ: 13; 14; 15.

94. Точка касания окружности, вписанной в равнобедренный треугольник, делит боковую сторону на отрезки в 3 и 4 см, считая от основания. Найдите периметр треугольника. (1)
95. Около окружности описана равнобокая трапеция, у которой боковая сторона точкой касания делится на отрезки 4 и 9 см. Найдите площадь трапеции. (2)
96. В прямоугольный треугольник, периметр которого равен 36 см, вписана окружность. Гипотенуза делится точкой касания в отношении 2:3. Найти длины сторон треугольника. (3)

2.2. Задачи на свойства параллельных прямых

В ряде задач используют свойства параллельных прямых: при пересечении двух параллельных прямых третьей образуются равные углы (рис. 170).

Квартеты равных углов:?1 = ?4 = ?6 = ?8; ?2 = ?3 = ?5 = ?7.
Особенно часто эти свойства применяются при решении задач на параллелограмм.

Примеры решения задач
97. В параллелограмме ABCD проведена биссектриса угла А, которая пересекает сторону ВС в точке F. Найдите длину BF, если сторона АВ = 11 (рас. 171). (1)

Решение. Из рисунка видно, что?BFA = ?FAD (внутренние накрест лежащие при параллельных прямых), но?BAF = ?FAD по условию, и поэтому?BFA = ?BAF. Значит, треугольник ABF – равнобедренный, и BF = АВ = 11.
Ответ: 11.

98. В параллелограмме ABCD сторона АВ равна 6 см, а высота, проведенная к основанию AD, равна 3 см. Биссектриса угла BAD пересекает сторону ВС в точке М так, что МС = 4 см. N – точка пересечения биссектрисы AM и диагонали BD. Вычислить площадь треугольника BNM (рис. 172). (3)

Решение. Пусть АВCD – данный в условии задачи параллелограмм. Проведем через точку N высоту параллелограмма QR. Обозначим через? величину угла ВАМ; тогда величина угла АМВ равна?, т. к. ВС||AD и AM – секущая. Следовательно, треугольник АВМ равнобедренный и ВМ = АВ = 6 см, откуда заключаем, что ВС = AD = ВМ + МС = 6 + 4 = 10 см. Поскольку?ВМА = ?MAD и?MBN = ?BDA, как накрест лежащие углы при параллельных ВС и AD, то треугольники BMN и AND подобны по двум углам. Так как в подобных треугольниках сходственные стороны пропорциональны сходственным высотам, то из подобия треугольников AND и BNM имеем:

Откуда QN = 9/8 см.
Площадь треугольника BNM равна:

Ответ: 27/8 см2.

Задачи для самостоятельного решения
99. В параллелограмме ABCD угол BCD равен 60°, длина стороны АВ равна а. Биссектриса угла BCD пересекает сторону AD в точке N. Найдите площадь треугольника NCD. (1)
100. Периметр параллелограмма равен 90 см и острый угол содержит 60°. Диагональ параллелограмма делит его тупой угол в отношении 1:3. Найдите стороны параллелограмма. (1)
101. В параллелограмме ABCD биссектриса тупого угла В пересекает сторону AD в точке F. Найдите периметр параллелограмма, если АВ = 12 и AF: FD = 4:3. (1)

2.3. Задачи на пропорциональные отрезки

Теорема Фалеса (а также теоремы Чевы и Менелая) применяются в первую очередь тогда, когда в задаче даны соотношения между отрезками. Очень часто при этом приходится проводить дополнительный отрезок. Идеи использования теоремы Фалеса хорошо видны на следующих примерах.

Примеры решения задач
102. Докажите, что медианы в треугольнике делятся в отношении 2:1, считая от вершины (известная теорема школьного курса математики). (2)
Самый простой путь решения (рис. 173):

Проведем медианы AM и ВК, а также отрезок МТ, параллельный ВК. Имеем: т. к. ВМ = МС, то КТ = ТС. Но тогда АК = КС = 2КТ и, значит, АО: ОМ = АК: КТ = 2, что и требовалось доказать.

103. В треугольнике ABC на стороне ВС взята точка М так, что MB = МС, а на стороне АС взята точка К так, что АК = 3 ? КС. Отрезки ВК и АМ пересекаются в точке О. Найдите AO/OM (рис. 174). (2)

Решение. Обозначим длину отрезка КС через а, тогда АК = За. Проведём MP||ВК По теореме Фалеса КР = РС = a/2. По теореме о пропорциональных отрезках имеем:

104. В треугольнике ABC на стороне АВ взята точка К так, что АК: ВК = 1:2, а на стороне ВС взята точка L так, что CL: BL = 2:1. Пусть Q – точка пересечения прямых AL и СК. Найти площадь треугольника ABC, если дано, что площадь треугольника BQC равна 1 (рис. 175). (3)

Решение. Проведём через точку L прямую LM параллельно прямой СК. Из подобия треугольников MBL и КВС следует, что

Из подобия треугольников AKQ и AML находим:

Кроме того, имеем следующие равенства:

Ответ: 7/4.

Задачи для самостоятельной работы
105. ВМ: МС = 3:1, АК = КВ. Найдите: SAKO/SABC(рис. 176). (2)

106. На сторонах АВ и АС треугольника ABC взяты точки M и N, такие, что AM/MB = CN/NA = 1/2.
Отрезки BN и СМ пересекаются в точке К. Найти отношения отрезков BK/KN и CK/KM.(2)

2.4. Задачи на свойства биссектрисы треугольника

Биссектриса треугольника обладает одним замечательным свойством: она делит противолежащую сторону на отрезки, пропорциональные соответствующим боковым сторонам (рис. 177).
с/а = d/b или c/d = a/b.

Это свойство часто используется в задачах, в которых фигурирует биссектриса треугольника.

Примеры решения задач
107. В треугольнике ABC проведена биссектриса AD. Найдите периметр треугольника ABC, если АС = 4; DC = 2; BD = 3 (рис. 178). (1)

Решение. По свойству биссектрисы BD/AB = DC/AC; 3/AB = 2/4; АВ = 6.
Периметр треугольника РАВС = 6 + 5 + 4 = 15.
Ответ: 15.

108. Дан треугольник ABC, в котором?В = 30°, АВ = 4, ВС = 6. Биссектриса угла В пересекает сторону АС в точке D. Определите площадь треугольника ABD (рис. 179). (2)

Решение. По свойству биссектрисы AD/DC = AB/BC = 4/6 = 2/3.
Пусть AD = 2х; DC = Зх.

Ответ: 12/5.

Задачи для самостоятельного решения
109. В треугольнике ABC, где АВ = 6, АС = 4, биссектриса AL и медиана ВМ пересекаются в точке О. Найдите BO/OM (1).
110. Определите стороны треугольника, если медиана и высота, проведённые из вершины одного угла, делят этот угол на три равные части, а сама медиана равна 10 см. (2)

2.5. Задачи на подобие

Два треугольника подобны: по двум углам, по двум сторонам и углу между ними, по трём сторонам. Очень важно в задаче увидеть подобные треугольники или другие подобные фигуры. Для этого нужна хорошая практика решения задач.
При решении задач на прямоугольный треугольник полезно знать, что высота, проведённая из прямого угла, делит его на два подобных треугольника (рис. 180):
?ABD ~ ?ADC ~ ?ABC.

Рис. 180.

Примеры решения задач
111. Через точки М и К, принадлежащие сторонам АВ и ВС треугольника ABC соответственно, проведена прямая МК, параллельная стороне АС. Найдите длину СК, если ВС = 12, МК = 8 и АС = 18 (рис. 181). (1)

Решение. Обозначим КС через х. Тогда ВК = 12 – х. Из подобия треугольников ABC и МВК следует: MK/BK = AC/BC; 8/(12 – x) = 18/12; x = 20/3.
Ответ: 20/3.

112. В прямоугольный равнобедренный треугольник вписан прямоугольник так, что угол прямоугольника совпадает с углом при вершине треугольника, а вершина противолежащего угла лежит на гипотенузе. Докажите, что периметр прямоугольника есть величина постоянная для данного треугольника (рис. 182). (1)

Решение. Пусть АВ = АС = а, DE = х; AD = у. Тогда DB = а – у; FC = а – х. Треугольник DEB подобен треугольнику FСЕ, значит, DE/DB = FC/FE; x/(a – y) = (a – x)/y; ху2= а2– ау – ах + ху; х + у = а; РADEF = 2(х + у) = 2а, т. е. не зависит от х и у.

113. В прямоугольном треугольнике ABC угол А – прямой. Опущена высота AD, равная?5. Найдите произведение BD ? DC (рис. 183). (1)

Решение. Треугольники ADB и ADC подобны (?BAD = ?ACD, ?ABD = ?DAC). Значит, BD/AD = AD/DC; BD ? DC = AD2= (?5)2= 5.
Ответ: 5.

114. В треугольнике ABC проведены высоты AD и СЕ. Докажите, что треугольники ABC и DBE подобны. Чему равен коэффициент подобия (рис. 184)? (2)

Решение. Из прямоугольного треугольника ВСЕ: BE = ВС? cos В. Из?ABD: BD = АВ? cos В. Значит, две стороны BD и BE треугольника BDE пропорциональны сторонам АВ и ВС треугольника ABC, а угол В (угол между пропорциональными сторонами) у треугольников общий. ?BDE ~ ?ABC по двум сторонам и углу между ними.
Значит,

Ответ: kподобия = cos B.

115. В равносторонний треугольник вписана окружность. Этой окружности и сторон треугольника касаются три малые окружности. Найдите сторону треугольника, если радиус малой окружности равен 1 (рис. 185). (2)

Решение. Так как в равностороннем треугольнике ABC угол ABC = 60°, то?ОВМ = 30° (см. рис.). Из центров О и О1 проведем перпендикуляры ОМ и О1Т к стороне ВС. По условию О1Т и О1K равны 1. Длины отрезков ОМ и ОК обозначим через R. Из треугольника ВТО1 следует, что ВО1 = О1Т/sin 30° = 1/0,5 = 2. Треугольники ВТО1 и ВМО подобны по двум углам (?BTO1 = ?BMO = 90°; ?OBM – общий). Отсюда следует, что O1T/O1B = OM/OB;

Теперь мы знаем радиус вписанной в равносторонний треугольник окружности. Осталось найти длину его стороны. Из треугольника ВОМ следует ВМ = OM ? ctg ?ОВМ = 3?3. Тогда ВС = 2ВМ = 6?3.
Ответ: 6?3.

116. Из одной точки к окружности проведены две касательные. Длина каждой касательной равна 12 см, а расстояние между точками касания 14,4 см. Определите радиус окружности (рис. 186). (2)

Решение. Пусть ОА и ОВ – касательные к окружности с центром С; А и В – точки касания. Тогда СВ? ОВ, СА? ОА. Кроме того, ОС? АВ и делит эту сторону пополам. ОА = 12 см, AM = 1/2 АВ = 7,2 см.

МОА = ?АОС (углы с взаимноперпендикулярными сторонами), значит, ?ОАС подобен?ОАМ; тогда

Ответ: 9 см.

117. Центр О окружности радиуса длиной 3 лежит на гипотенузе АС прямоугольного треугольника ABC. Катеты треугольника касаются окружности. Найти площадь треугольника ABC, если известно, что длина отрезка ОС равна 5 (рис. 187). (3)

Решение. Пусть ABC – данный в условии задачи треугольник. Обозначим через M и N точки касания окружности соответственно со сторонами АВ и ВС. Соединив эти точки с центром О окружности, получим квадрат MBNO, и поэтому BN = ОМ = 3. Треугольник ONC прямоугольный, в нём ОС = 5, ON = 3. Следовательно,

Но тогда ВС = NC + NB = 7. Треугольники ONC и ABC подобны, поэтому AB/ON = BC/NC; AB/3 = 7/4; отсюда получаем, что AB = (ON ? BC)/NC = (3 ? 7)/4 = 21/4. Теперь находим S – площадь прямоугольного треугольника ABC:

Ответ: 147/8.

Задачи для самостоятельного решения
118. В равнобедренный треугольник вписан параллелограмм так, что угол параллелограмма совпадает с углом при вершине треугольника, а вершина противолежащего угла лежит на основании. Докажите, что периметр параллелограмма есть величина постоянная для данного треугольника. (1)
119. Из точки D, лежащей на катете АС прямоугольного треугольника ABC, на гипотенузу СВ опущен перпендикуляр DE. Найдите длину CD, если СВ = 15, АВ = 9, СЕ = 4. (1)
120. Точка на гипотенузе, равноудаленная от обоих катетов, делит гипотенузу на отрезки длиной 30 и 40 см. Найдите катеты треугольника. (1)
121. В параллелограмме ABCD проведена диагональ BD и отрезок AF (F ? ВС), пересекающий BD в точке О. Известно, что ВО = 6, OD = 18, FB = 4. Определите сторону параллелограмма AD. (1)
122. В острый угол, равный 60°, вписаны две окружности, извне касающиеся друг друга. Радиус меньшей окружности равен 1. Найдите радиус большей окружности. (1)
123. Найдите длину стороны квадрата, вписанного в равнобедренный треугольник с основанием а и боковой стороной b так, что две его вершины лежат на основании, а две другие вершины – на боковых сторонах. (2)
124. В параллелограмме ABCD точка М– середина стороны СВ, N – середина стороны CD. Докажите, что прямые AM и AN делят диагональ BD на три равные части. (2)
125. В трапеции, основания которой равны а и b, через точку пересечения диагоналей проведена прямая, параллельная основаниям. Найдите длину отрезка этой прямой, отсекаемого боковыми сторонами трапеции. (2)
126. В остроугольном треугольнике ABC из вершин А и С на стороны ВС и АВ опущены высоты АР и CQ. Известно, что площадь треугольника ABC равна 18, площадь треугольника BPQ равна 2, а длина отрезка PQ равна 2?2. Вычислите радиус окружности, описанной около треугольника ABC. (3)

2.6. Задачи на вписанные и описанные четырёхугольники

Если в четырёхугольник можно вписать окружность, то суммы его противоположных сторон равны.
Если около четырёхугольника можно описать окружность, то суммы противоположных углов равны 180°.

Примеры решения задач
127. Известно, что в трапецию ABCD с основаниями AD и ВС можно вписать окружность и около неё можно описать окружность, EF – её средняя линия. Известно, что АВ + CD + EF = 18. Найдите периметр трапеции (рис. 188). (1)

Решение. Так как в трапецию можно вписать окружность, то

Поскольку около трапеции можно описать окружность, то АВ = CD. Пусть АВ = CD = а; тогда из (1) следует AD + ВС = 2а и

По условию АВ + CD + EF = 18; тогда с учетом (2) получаем: а + а + а = 18; а = 6. Периметр трапеции PABCD = АВ + CD + AD + BC = 2(АВ + CD) = 4а = 24.
Ответ: 24.

128. Около окружности с диаметром 15 см описана равнобедренная трапеция с боковой стороной, равной 17 см. Найдите основания трапеции (рис. 189). (2)

Решение. Очевидно, что высота трапеции равна диаметру окружности. Высота ВК = 15 см; из прямоугольного треугольника АВК

Пусть BС = х, тогда AD = 8 + х + 8 = х + 16. Так как в трапецию вписана окружность, то AD + ВС = АВ + CD; х + 16 + х = 17 + 17; х = 9 см; AD = 9 + 16 = 25 см.
Ответ: 9 см; 25 см.

Задачи для самостоятельного решения
129. Четырёхугольник ABCD описан около окружности с центром О. Найдите сумму углов АОВ и COD. (1)
130. Определите площадь круга, вписанного в прямоугольную трапецию с основаниями а и b. (2)
131. Длины боковых сторон трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит её на две части, отношение площадей которых равно 5/11. Найдите длины оснований трапеции. (3)

2.7. Задачи на вписанные углы

Вписанный в окружность угол равен половине центрального угла, опирающегося на ту же дугу.

Примеры решения задач
132. Найдите?ТОК, если О – центр окружности и?ТЕК = 120° (рис. 190).(1)

Решение. Так как вписанный угол ТЕК равен половине центрального угла, опирающегося на ту же дугу, то

Ответ: 120°

133. Дан правильный 30-угольник А1А2 ... А30 с центром О. Найдите угол между прямыми ОА3 и А1А4 (рис. 191). (2)

Решение. Так как многоугольник А1А2 ... A30 – правильный, то?А3ОА4 = 360°/30 = 12°. Далее, ?А3А1А4 = 1/2 ?А3ОА4 = 6° (вписанный угол, опирающийся на дугу А3А4). ?А1ОА3 = 2 ? 12° = 24°;

Требуемый нам угол х является внешним углом к треугольнику А3А1В. Так как внешний угол треугольника равен сумме внутренних углов, с ним не смежных, то х = 6° + 78° = 84°.
Ответ: 84°.

134. В окружность вписан четырёхугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке Е. Прямая, проходящая через точку Е и перпендикулярная к АВ, пересекает сторону CD в точке М. Доказать, что ЕМ – медиана треугольника CED, и найти её длину, если AD = 8 см, АВ = 4 см и?CDB = ? (рис. 192). (3)

Решение. Обозначим через К точку пересечения прямых АВ и ЕМ. Поскольку углы CDB и CAB опираются на одну и ту же дугу ВС, то?CAB = ?CDB = ?. Из равенств?DCE + CDB = ?/2, ?КЕА + ?САВ = ?/2, следует, что?DCE = ?КЕА = ?СЕМ. Но это означает, что треугольник СЕМ равнобедренный, т. е. СМ = ЕМ. Далее, ?MED = ?/2 – ?СЕМ = ?/2 – (?/2 – ?) = ?CDB.
Итак, треугольник EMD равнобедренный, или DM = ЕМ. Этим доказано, что СМ = DM или что ЕМ – медиана треугольника CED.
Из прямоугольного треугольника ABE находим
АЕ = АВ? cos?ЕАВ = АВ? cos?CAB = 4 ? cos ?.
Далее, из прямоугольного треугольника AED по теореме Пифагора получаем

111. Через точки М и К, принадлежащие сторонам АВ и ВС треугольника ABC соответственно, проведена прямая МК, параллельная стороне АС. Найдите длину СК, если ВС = 12, МК = 8 и АС = 18 (рис. 181). (1)


Решение. Обозначим КС через х. Тогда ВК = 12 – х. Из подобия треугольников ABC и МВК следует: MK/BK = AC/BC; 8/(12 – x) = 18/12; x = 20/3.

Ответ: 20/3.


112. В прямоугольный равнобедренный треугольник вписан прямоугольник так, что угол прямоугольника совпадает с углом при вершине треугольника, а вершина противолежащего угла лежит на гипотенузе. Докажите, что периметр прямоугольника есть величина постоянная для данного треугольника (рис. 182). (1)


Решение. Пусть АВ = АС = а, DE = х; AD = у. Тогда DB = а – у; FC = а – х. Треугольник DEB подобен треугольнику FСЕ, значит, DE/DB = FC/FE; x/(a – y) = (a – x)/y; ху2= а2– ау – ах + ху; х + у = а; РADEF = 2(х + у) = 2а, т. е. не зависит от х и у.


113. В прямоугольном треугольнике ABC угол А – прямой. Опущена высота AD, равная?5. Найдите произведение BD ? DC (рис. 183). (1)


Решение. Треугольники ADB и ADC подобны (?BAD = ?ACD, ?ABD = ?DAC). Значит, BD/AD = AD/DC; BD ? DC = AD2= (?5)2= 5.


114. В треугольнике ABC проведены высоты AD и СЕ. Докажите, что треугольники ABC и DBE подобны. Чему равен коэффициент подобия (рис. 184)? (2)


Решение. Из прямоугольного треугольника ВСЕ: BE = ВС? cos В. Из?ABD: BD = АВ? cos В. Значит, две стороны BD и BE треугольника BDE пропорциональны сторонам АВ и ВС треугольника ABC, а угол В (угол между пропорциональными сторонами) у треугольников общий. ?BDE ~ ?ABC по двум сторонам и углу между ними.

Ответ: kподобия = cos B.


115. В равносторонний треугольник вписана окружность. Этой окружности и сторон треугольника касаются три малые окружности. Найдите сторону треугольника, если радиус малой окружности равен 1 (рис. 185). (2)


Решение. Так как в равностороннем треугольнике ABC угол ABC = 60°, то?ОВМ = 30° (см. рис.). Из центров О и О1 проведем перпендикуляры ОМ и О1Т к стороне ВС. По условию О1Т и О1K равны 1. Длины отрезков ОМ и ОК обозначим через R. Из треугольника ВТО1 следует, что ВО1 = О1Т/sin 30° = 1/0,5 = 2. Треугольники ВТО1 и ВМО подобны по двум углам (?BTO1 = ?BMO = 90°; ?OBM – общий). Отсюда следует, что O1T/O1B = OM/OB;

Теперь мы знаем радиус вписанной в равносторонний треугольник окружности. Осталось найти длину его стороны. Из треугольника ВОМ следует ВМ = OM ? ctg ?ОВМ = 3?3. Тогда ВС = 2ВМ = 6?3.

Ответ: 6?3.


116. Из одной точки к окружности проведены две касательные. Длина каждой касательной равна 12 см, а расстояние между точками касания 14,4 см. Определите радиус окружности (рис. 186). (2)


Решение. Пусть ОА и ОВ – касательные к окружности с центром С; А и В – точки касания. Тогда СВ? ОВ, СА? ОА. Кроме того, ОС? АВ и делит эту сторону пополам. ОА = 12 см, AM = 1/2 АВ = 7,2 см.

МОА = ?АОС (углы с взаимноперпендикулярными сторонами), значит, ?ОАС подобен?ОАМ; тогда

Ответ: 9 см.


117. Центр О окружности радиуса длиной 3 лежит на гипотенузе АС прямоугольного треугольника ABC. Катеты треугольника касаются окружности. Найти площадь треугольника ABC, если известно, что длина отрезка ОС равна 5 (рис. 187). (3)


Решение. Пусть ABC – данный в условии задачи треугольник. Обозначим через M и N точки касания окружности соответственно со сторонами АВ и ВС. Соединив эти точки с центром О окружности, получим квадрат MBNO, и поэтому BN = ОМ = 3. Треугольник ONC прямоугольный, в нём ОС = 5, ON = 3. Следовательно,

200. а) Способ изображения. Продолжив отрезок ВС (рис. 185), изображающий катет основания, на расстояние CD = ВС, получаем точку D, которая в натуре симметрична с В относительно кaтета АС.

Возьмем точку М на середине ребра АА 1 и изобразим сечение призмы плоскостью Р, проходящей через точки В 1 , M и D, Для этого соединим точки В, и D. В пересечении с ребром CC 1 найдем точку N. Треугольник B 1 NM будет искомым сечением. Действительно, точка D лежит на прямой ВС и, значит, принадлежит плоскости СВВ 1 С 1 (D находится на продолжении грани CBB 1 C 1). Но точка D лежит также и на плоскости Р, поэтому она находится на линии пересечения плоскости Р с СВВ 1 С 1 .

Точно так же и точка B 1 находится на этой линии. Значит, плоскости Р и BCC 1 B 1 пересекаются по прямой B 1 D. Точка N, где B 1 D пересекается с ребром СС 1 , есть одна из вершин сечения, так что сечение призмы есть треугольник B 1 NM.

Так как BC=CD и CN||BB 1 то CN есть средняя линия треугольника BB 1 D, т. е. N- середина ребра СС 1 . Следовательно, прямая MN параллельна прямой АС, лежащей, в плоскости основания. Вследствие этого и прямая DE, по которой плоскость Р пересечет плоскость основания, параллельна АС и, значит, перпендикулярна к плоскости грани ВСС 1 В 1 . Поэтому / BDB 1 есть линейный дтол двугранного угла φ при ребре DE.

б) Решение. Имеем (см. решение задачи )

(где а = ВС, b = АС), а так как b = a tg β , то

Найдем а 2 . По условию β есть меньший из острых углов треугольника ABC, так что b < a и площадь b Н грани ACC 1 A 1 меньше плошади а Н грани ВСС 1 В 1 Поэтому разность S этих площадей (предполагаем, что она положительна) равна (а-b )H. Из треугольника DBB 1 , где BD =2BC = 2a , находим Н = 2а tg φ . Следовательно,

S=2а 2 (l - tg β ) tg φ .

Отсюда находим а 2 .

201. Угол между непересекающимися диагоналями BA 1 и AD 1 (рис. 186) равен углу φ = / A 1 BC 1 между ВА 1 и прямой ВС 1 параллельной AD 1 .

Имеем / CBC 1 =/ DAD 1 = α и / ABA 1 = β . Для определения угла φ находим A 1 C 1 2 сначала из треугольника A 1 BC 1 (по теореме косинусов), а затем из прямоугольного треугольника A 1 B 1 C 1 и приравниваем найденные выражения. Получаем

ВА 1 2 + ВС 1 2 - 2 BA 1 BC 1 cos φ = В 1 А 1 2 + В 1 С 1 2

2 BA 1 BC 1 cos φ = (ВА 1 2 - В 1 A 1 2) + (ВC 1 2 - В 1 С 1 2) = 2 BB 1 2 .

B это равенство подставляем

(из треугольника BAA 1) и . Получаем

cos φ = sin α sin β .

Другой спocоб. Через ребро B 1 C 1 проведем плоскость B 1 C 1 B 2 C 2 , перпендикулярную к BA 1 (это возможно, так как B 1 C 1 _|_BA 1). Пусть Е - точка пересечения прямых BA 1 и B 1 B 2 . Из прямоугольного треугольника ВС 1 Е находим BE = BC 1 cos φ , a из прямоугольного треугольника ВВ 1 Е, где / B 1 BE = 90° - β , имеем

BE - BB 1 cos(90° - β ) = BB 1 sin β .

Отрезок BB 1 выразим через ВС 1 из треугольника BB 1 C 1 , где / B 1 BC 1 = 90°- α . Получим BB 1 = BC 1 sin α и, значит,

BE = ВС 1 sin α sin β .

Приравнивая два выражения отрезка BE, получаем

ВС 1 cos φ = ВС 1 sin α sin β .

Отв. cos φ = sin α sin β .

______________________________________________

202. Обозначим двугранные углы при ребрах SA, SB, SC (рис. 187) через φ A , φ B , φ C .

Проведем через какую-либо точку ребра SC плоскость DFE, перпендикулярную к SF. Тогда / DFE = φ C . Определяем ED 2 из треугольника EFD и из треугольника ESD, a затем приравниваем полученные выражения. Находим

FE 2 + FD 2 - 2 FE FD- cos φ C = SE 2 + SD 2 - 2 SE SD cos γ .

2 FE FD- cos φ C = 2 SE SD cos γ - (SE 2 -FE 2) - (SD 2 - FD 2),

2 FE FD- cos φ C = 2 SE SD cos γ - 2 SF 2 .

В это равенство подставляем

FE = SF tg α ;

FD = SF tg β ;

SE = SF / cos α

SD = SF / cos β

Аналогично найдем соs φ A и cos φ B .

______________________________________________

203. Решается, как предыдущая задача.

Oтв. cos γ = cos α cos β + sin α sin β cos A.

______________________________________________

204. См. задачу 202.

Отв Искомый угол содержит 90°.

______________________________________________

205. Пусть точка М лежит на грани Q (рис. 188).

По условию прямая AM образует с АВ угол α , а прямая, MB перпендикулярна к АВ. Проведем через ВМ плоскость MBN, перпендикулярную к ребру, и опустим из точки М на BN перпендикуляр MN. Прямая MN перпендикулярна также и к NA и / MAN = β (доказать!). Имеем также φ =/ NBM. Угол φ мы найдем из треугольника NBM, где MN=AM sin β (из треугольника ANM) и BM=AM sin α (из треугольника AMВ). Получаем

______________________________________________

206. На рис. 189 PQ изображает общий перпендикуляр к скрещивающимся прямым LL" и ММ". Чтобы получить угол, под которым отрезок PQ виден из точки А, нужно провести луч АР; тогда / PAQ = α . Аналогично / PBQ = β .

Проведем через точку Р прямую РЕ, параллельную ММ". Тогда угол между прямыми MM" и LL" есть (по определению) угол φ = / EPB. Опустим из А перпендикуляр АЕ на прямую РЕ и проведем АВ (все остальные линии, дающие изображение параллелепипеда, ребрами которого являются PQ, QA и РВ, проведены лишь для наглядности чертежа). Из прямоугольного треугольника BPQ находим

PB = PQ ctg β = h ctg β .

Аналогично

PE = QA = h ctg α .

BE 2 = PB 2 + PE 2 -2 PB PE cos φ = h 2 (ctg 2 α + ctg 2 β -2 ctg α ctg β cos φ ).

Прямая АЕ перпендикулярна к плоскости ЕРВ, так как она параллельна прямой PQ, являющейся общим перпендикуляром для прямых РВ и РЕ. Из прямоугольного треугольника AЕВ находим

AB 2 =AE 2 + BE 2 = h 2 + BE 2 .

Отв. AB 2 = h 2 (1 + ctg 2 α + ctg 2 β -2 ctg α ctg β cos φ )

______________________________________________

207. Чертеж предыдущей задачи (в настоящей задаче φ = 90°). Имеем

BE = √РЕ 2 + РВ 2 = h √ctg 2 α + ctg 2 β .

Угод между прямыми АВ и PQ равен углу между АВ и прямой AE параллельной PQ. Обозначив его через γ , имеем

Отв. tg γ = √ctg 2 α + ctg 2 β

______________________________________________

208. Пусть (рис. 190)

Найдем сначала отношение объема V 1 пирамиды DMNP к объему V пирамиды DABC. Примем грань BDC за основание пирамиды DABC и грань NPD за основание пирамиды DMNP. Пусть ребро DA проектируется на плоскость DBC отрезком, лежащим на прямой DE. Тогда точки А и М проектируются в некоторые точки К и L, лежащие на прямой DE. Следовательно, высоты AK= h и ML = h 1 лежат в плоскости ADE и треугольники DML и DAK подобны. Значит,

Площадь S 1 основания NDP относится к площади S основания BDC, как DN DP к DB DC (так как треугольники NDP и BDC имеют общий угол D). Значит,

______________________________________________

209. План решения : из подобия треугольников OEL и МЕК. (рис. 191) выразим OL через МК=b и ME = H / 2 , из подобия треугольников ОСЕ и MEN выразим ОС через MN = h и ME = H / 2 .

Подставив найденные выражения в соотношение OC 2 =2 OL 2 получим уравнение, из которого найдем Н.

Решение. Имеем

OL: Н = МК: ЕК,

______________________________________________

1

7-2. МИР ДЕФОРМАЦИЙ.

Теория упругости знает всего ПЯТЬ типов деформации тел: сжатие, растяжение, сдвиг, изгиб и кручение, которые известными преобразованиями не сводятся друг к другу. Вместе с этим, в механике известны многочисленные наглядные примеры тесной взаимосвязи, сопутствия друг другу сжатия и растяжения (рис. 11), сдвига и изгиба (рис. 12), сдвига и кручения и т.п. Из этих примеров самоочевидна своеобразная иерархия такого сопутствия:

Рис. 11 Рис. 12

1. Сжатию сопутствует растяжение.

2. Сдвигу сопутствуют сжатие и растяжение.

3. Изгибу сопутствуют сжатие, растяжение и сдвиг.

4. Кручению сопутствуют сжатие, растяжение, сдвиг и изгиб.

Действительно, обозначая компоненты нормальных напряжений в некоторой точке деформируемой среды через , а тангенциальных через , можно записать известное выражение для тензора напряжений из которого наглядно видно влияние всех компонент напряжений:

. (6)

Как известно , уравнение поверхности нормальных напряжений в некоторой точке деформированной среды в прямоугольной системе координат можно выразить:

В частных случаях такая поверхность может принимать один из показанных на рис. 13 (сфера), рис. 14 (тор) и рис. 15 (скрученный тор) видов:

Рис. 13 Рис. 14 Рис. 15

Другими словами, очередные виды деформаций связаны с новыми возможностями, появлением новых свойств деформируемого объекта, как это свойственно процессу увеличения размерности мира . Следовательно, мир деформаций мы вправе представить в качестве многомерного пространства, в котором «дополнительное» свойство представляет собой дополнительную способность данной деформации, как это показано на рис. 16. При этом, присваивая каждому новому виду деформации дополнительное направление, мы должны будем кручению «присвоить» все три измерения. На основании изложенного представляется обоснованной своеобразная иерархия деформаций:

1. Сжатие. 2. Растяжение. 3. Сдвиг. 4. Изгиб. 5. Кручение.

В связи с изложенными соображениями здесь уместно вспомнить из теории упругости так называемые «УСЛОВИЯ СОВМЕСТНОСТИ ДЕФОРМАЦИЙ» Сен-Венана , которые определяют непрерывность среды. Как это мы обнаружили в работе , главный принцип ТОПОЛОГИИ - НЕПРЕРЫВНОСТЬ является отражением главного свойства нашего МИРА - НЕПРЕРЫВНОСТИ его СУБСТАНЦИИ. Таким образом, количественное увеличение дополнительных направлений (свойств, способностей, возможностей...) приводит к появлению новых качественных признаков, величин, параметров...Сопоставляя этот наш атрибутивно - субстанциональный взгляд на категории размерности с известными эмпирическими положениями об объективности лишь двух видов материи (вещества и поля) и с отсутствием в природе «просто» движения в пустоте как смещения относительно «абсолютного» пространства, приходится признать, что для всех материальных объектов в виде полей или вещественных тел предполагается общая среда, в которой и локализованы все материальные объекты (тела и поля), взаимодействуя между собой по установленным законам.

История физики со времен Аристотеля многократно приходила к идее об эфире - некоей субстанции, в которой протекают все наблюдаемые нами процессы. Не повторяя здесь хронологию этих гипотез, отошлю читателя к авторам, уже
в XX веке выдвинувших свои подобные гипотезы, которые так и не стали продуктивными теориями, так как не смогли преодолеть известные противоречия гипотезы эфира. Отсылая читателя к полным текстам трудов упомянутых мыслителей, я здесь процитирую лишь по одной ключевой в данном направлении мысли каждого из упомянутых авторов:

«...Пространство - единство, в котором форма образована частицами, расположенными по поверхности объёма, вырезанного ими из пустоты, а содержание представляет собой густоты и частицы, заполняющие этот объём...» (См. , стр. 45 и далее).

«...Таким образом, по совокупности всех требований наилучшим образом свойствам микромира удовлетворяет газоподобная среда...» (См. , стр. 46 и далее).

«...классическая динамика и квантовая механика представляют собой две дополнительные процедуры атомной теории...» (См. , стр.18 и далее).

«...Таким образом, глобула - это элементарная единица макрообъёма газа и жидкости, в которой сочетается единство массы, энергии и пространства, а также, как увидим ниже, электрических зарядов...» (См. , стр.10 и далее).

С целью выяснения объективных причин тех систематических неудач многочисленных вариантов гипотез эфира мне придётся, учитывая мизерный тираж издания, процитировать себя из упомянутой статьи : «В 1935 году Нильс Бор в работах по квантовой физике пришел к гносеологическому выводу, что явления в микромире представляются понятными на механическом уровне. В частности, его «планетарная» модель, построенная на механическом равновесии сил электрических между электронами на орбитах и протонами в ядре атома и центробежными силам инерции движения электронов по орбитам, дополненная квантовым принципом, оказалась не только понятной даже для неспециалистов, но и наиболее продуктивной в атомной физике. Несмотря на многочисленные дополнения и изменения этой модели за вековую историю развития атомной физики, она оказалась не только самой объективной, но весьма продуктивной моделью атома. Соответствие этому принципу Бора, например, в генетике для объяснения механизма наследственности в живых организмах путём материальных носителей - хромосом позволило удивительно просто и полно понять эти совсем немеханические процессы в биологии, послужило мощным импульсом в развитии нового направления в биологии - генетики и т. п. Оставляя читателя за воспоминаниями из истории науки многочисленных фактов торжества принципа Бора, здесь необходимо лишь подчеркнуть его универсальность, которую можно использовать в качестве критерия объективности: соответствие научного вывода принципу Бора свидетельствует об объективности этого вывода.».

7-3. ПОВЕДЕНИЕ В МИРЕ ДЕФОРМАЦИЙ:

Назовём ДЕФОНОМ окрестность деформированной среды вокруг ЛОКАЛЬНОЙ ДЕФОРМАЦИИ в точке О с указанными компонентами нормальных и тангенциальных напряжений, поверхности которых показаны выше на рис. 6 рис. 7 и рис. 8. Ясно, что субстанция в мире деформаций обладает физическими свойствами, на которые мы не имеем никаких оснований распространять традиционные в физике наши представления (о плотности, температуре, вязкости, упругости и т. п.), поэтому вынуждены здесь пока этот вопрос оставить открытым. Можно лишь предположить пока, что эти свойства близки к свойствам физического вакуума, примерные представления о которых мы имеем по результатам инструментальных исследований ближнего космического пространства: температура близка к абсолютному нулю, вязкость соответствует сверхтекучести при сверхнизких температурах и т. п. При этом из отмеченного выше свойства совместности деформаций (см. рис. 4 по п. 2) ясно, что плотность субстанции в таком ДЕФОНЕ сжатия больше плотности субстанции в его окрестности, что можно графически представить некоторой зависимостью , (8) где от точки О, как это показано на рис. 17. Так как поведение таких ДЕФОНОВ определится направлениями указанных напряжений, то в этом вопросе должна быть полная определенность, обязывая нас рассмотреть его более подробно. Здесь уместно вспомнить, что понятие НАПРАВЛЕНИЯ в ГЕОМЕТРИИ определяется величиной УГЛА - величины, которая появляется лишь в двумерных мирах - поверхностях (радиан) и в трёхмерных мирах (стерадиан). При этом, если для если для однозначности величины плоского УГЛА необходимо указание его знака (правый - по часовой стрелке или левый - против часовой стрелки относительно заданного РЕПЕРА - линии), то для однозначности величины УГЛА пространственного ещё необходимо указание и его ориентации относительно поверхности (ВНУТРЕННИЙ или ВНЕШНИЙ), что непосредственно связано с радиусом кривизны соответствующей поверхности. Для иллюстрации отмеченного обстоятельства воспользуемся результатами топологических исследований векторных полей на поверхностях и др. Представим себе простейший такой сфероидный ДЕФОН сжатия в окрестности точки О как на рис. 18, тогда на рис. 19 получим изображение векторных полей нормальных (рис. 19-а) и тангенциальных (рис. 19-б) компонент напряжения в смежной со сфероидом окрестности, которые по определению ортогональны друг другу (см. рис. 19). (рис. 89-а) и б) по ) Вместе с этим, два подобных ДЕФОНА, расположенные вблизи друг от друга, окажутся с противоположных сторон любой поверхности, которые всегда могут быть представлены замкнутыми в бесконечности по несобственной линии вокруг любого из ДЕФОНОВ, как это наглядно показано на рис. 20, на котором - след пограничной поверхности между окрестностями ДЕФОНОВ A и B , имеющих характеристики m и m 1 соответственно. Ясно, что радиус кривизны этой поверхности для ДЕФОНОВ A и B будет иметь противоположные знаки. Из отмеченных обстоятельств сразу следует необходимость сближения двух соседних таких ДЕФОНОВ - СФЕРОИДОВ сжатия, что равнозначно притяжению, как это показано на рис. 20, оставляя пока открытым вопрос о величине такого тяготения.

Разумеется, направления полей нормальных и тангенциальных компонент напряжения в смежных с другими нашими простейшими ДЕФОНАМИ окрестностями, имеющих поверхности тороида (рис. 14) и скрученного тороида (рис.15) необходимо рассмотреть с этих позиций также подробно. Из одного того факта, что в отличие от односвязного сфероида тороид (см. рис. 14) является двухсвязным , сразу следует вывод об отсутствии центральной симметрии векторного поля нормальных компонент напряжения, присущих сфероиду (см. рис. 18), приобретая в полярной плоскости, ортогональной экваториальной плоскости тороида, осевую симметрию, позволяя представить изменение векторного поля нормальных компонент напряжения, опуская математические преобразования, проделанные автором ранее , как на рис. 21, на котором обозначены штриховыми линиями n и - n предельные уровни значений векторного поля нормальных компонент напряжения. Из отмеченных обстоятельств снова следует вывод о необходимости сближения двух соседних таких ДЕФОНОВ-ТОРОИДОВ сжатия, что равнозначно притяжению, подобно притяжению ДЕФОНОВ-СФЕРОИДОВ на рис. 20, но величина такого тяготения ДЕФОНОВ-ТОРОИДОВ находится в зависимости не только от расстояния между ними, но и от относительной друг друга пространственной ориентации: в экваториальных плоскостях их взаимодействие подчиняется центральной симметрии, подобно взаимодействия ДЕФОНОВ - СФЕРОИДОВ
(см. рис. 20), а в полярной плоскости взаимодействие ДЕФОНОВ-ТОРОИДОВ сжатия подчиняется осевой симметрии, также здесь оставляя пока вопрос о величине такого тяготения открытым. При этом здесь важно отметить действие отмеченной особенности взаимодействия ДЕФОНОВ-ТОРОИДОВ в отличие взаимодействия ДЕФОНОВ - СФЕРОИДОВ лишь, как это ясно из графической зависимости на рис. 21, на расстояниях между ДЕФОНАМИ-ТОРОИДАМИ, сравнимыми с их собственными размерами.

Рис. 18 (рис. 88 по ) Рис. 19 (рис. 89-а) и б) по )

Рис. 20 (рис.186 по ) Рис. 21

Представить строение, но не механизм образования ДЕФОНА - скрученного ТОРОИДА (см. рис. 15) из ДЕФОНА-ТОРОИДА (см. рис. 14), ДЕФОНА - СКРУЧЕННОГО ТОРОИДА возможно по рис. 22-а), рис. 22-б) и рис.22-в), на которых показаны ДЕФОН- ТОРОИД (см. рис. 22-а) целый, ДЕФОН-ТОРОИД разрезан нормальной к его экватору плоскостью по А-В и торцы разреза развернуты относительно друг друга на 180 0 (см. рис. 22-б), так что точки А 2 и В 1 поверхности ДЕФОНА-ТОРОИДА поменялись положением, то есть А 2 заняла положение В 1 , а В 1 заняла положение А 2 , в результате образуя ДЕФОН-СКРУЧЕННЫЙ ТОРОИД (см. рис. 22-в).

Рис. 22-а) Рис. 22-б) Рис. 22-в

В действительности образование ДЕФОНА-СКРУЧЕННОГО ТОРОИДА возможно представить как процесс движения окружности вокруг некоторой точки деформируемой среды по внешней оси - замкнутой траектории при вращении этой окружности относительно траектории движения центра этой окружности до замыкания траектории - являющейся осью ТОРОИДА. Как мы видели выше (см. рис. 16), деформации кручения сопутствуют все остальные виды деформации: и сжатие, и растяжение, и сдвиг, и изгиб. Поэтому особый практический интерес для нас представляет та зависимость (8) плотности от расстояния внутри самого ДЕФОНА-СКРУЧЕННОГО ТОРОИДА и в его окрестностях, как это нами было установлено для ДЕФОНА - СФЕРОИДА (см. рис. 17), и также зависимость векторного поля нормальных компонент напряжения в его окрестности, как это мы выше обнаружили для ДЕФОНА-ТОРОИДА
(см. рис. 14). В соответствии с отмеченными «УСЛОВИЯМИ СОВМЕСТНОСТИ ДЕФОРМАЦИЙ» Сен-Венана совершенно понятно, что при кручении ДЕФОНА-ТОРОИДА (см. рис. 15-б) его поверхностный слой испытывает растяжение, которое при необходимости можно даже вычислить, сравнив длины винтовой линии от А 1 до В 2 или от А 2 до В 1 с длиной соответствующего экватора тороида (см. рис. 15-а). Данное обстоятельство приводит к необходимости деформации растяжения в ближайшей СКРУЧЕННОМУ ДЕФОНУ-ТОРОИДУ (см. рис. 15-в) окрестности как рис. 23. Кроме того, рассматривая упругие напряжения на самой поверхности такого скрученного тороида, показанные на рис. 24, где линии напряжений на поверхности скрученного тороида между и , также между и , наглядно показанные на рис. 25, непременно приведут вследствие статической реакции к свертыванию этого СКРУЧЕННОГО ДЕФОНА-ТОРОИДА, которую в плане можно изобразить на рис. 26, а представить его реальный вид снизу на рис. 27 и реальный вид сбоку на рис. 28.

Другими словами, СКРУЧЕННЫЙ ДЕФОН-ТОРОИД образует своеобразную асимметричную СКОБУ, в окрестностях которой сопутствующие деформации образуют также асимметричную область, в пределах которой значения и направления нормальных и тангенциальных компонент напряжения отображают эту асимметричность окрестностей с различных сторон относительно СКОБЫ СКРУЧЕННОГО ДЕФОНА-ТОРОИДА.

Рис. 24 Рис. 25. Рис. 26

Рис. 27 Рис. 28

СПИСОК ЛИТЕРАТУРЫ

    Вайскопф В. Физика в двадцатом столетии. М., «Атомиздат», 1977.

  1. Логунов А.А. «Релятивистская теория гравитации и новые представления о пространстве-времени // Вестник МГУ. Физика. Астрономия. т. 27, вып. 6, 1986, с.3 и далее.
  2. Дирак П.А. Воспоминания о необычайной эпохе, пер. с англ. М., «Наука», 1990, с.178 и др.
  3. Вертинский П.А. Финитность и сингулярность в понятии размерности пространства // VМНС, Красноярск, 2002.
  4. Пригожин И.Р. и Стенгерс И. Порядок из хаоса. Новый диалог человека с природой. М., «Прогресс», 1986, стр. 275, 364 и др.
  5. Мандельброт Б. Фрактальная геометрия природы. М.: ИКИ, 2002,стр.46, 144, 326.
  6. Вертинский П.А. Естественнонаучные модели содержания категорий топологии // Сб.IX МНС, Красноярск,2006.
  7. Вертинский П.А. Естественные модели размеров и размерностей в категориях топологии//Сб. X МНС, Красноярск, 2007,
  8. Вертинский П.А. Естественные модели механизмов влияния природы процессов на размерности миров//Сб. XI МНС, Красноярск, 2008.
  9. Вертинский П.А. К вопросу о полноте аксиоматики физических теорий // Вестник ИРО АН ВШ РФ№ 1(4) , Иркутск, 2004.
  10. Седов Л.И. Механика сплошной среды. М., «Наука», 1976, т. I, стр. 63 и др., т. II, с. 317.
  11. 12. Блох В.И. Теория упругости. Изд. ХГУ, Харьков, 1964, с. 201 и др.
  12. Кривошапко С.Н., Иванов В.Н., Халаби С.М. Аналитические поверхности: материалы по геометрии 500 поверхностей и информация к расчёту на прочность тонких оболочек. - М.: Наука, 2006, с.97 и др.
  13. Панин Д.М. Собрание сочинений в 4 т. Т. 2-й. Теория густот. - М.: «Радуга», 2001 г., с. 45.
  14. Ацюковский В.А. Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газонаполненном эфире. - М.: Энергоатомиздат, 1990 г. , с. 46 и др.
  15. Гризинский М. О природе атома. // Поиск математических закономерностей Мироздания: физические идеи, подходы, концепции. Избранные труды ФПВ-2000, Новосибирск, НИИ им. С. Л. Соболева СО РАН, 2001, с. 9-16.
  16. Базиев Д.Х. Основы единой теории физики. М., «Педагогика», 1994.
  17. Болтянский В. Г. и Ефремович В. А. Наглядная топология. М., «Наука», 1982.
  18. Вертинский П.А. Оптимизация электромеханических систем методами магнитодинамики // Сб. V «Сибресурс», Иркутск 2002

Библиографическая ссылка

Вертинский П.А. ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВАНИЯ СТЕРЕОХРОНОДИНАМИКИ (ПРОДОЛЖЕНИЕ 2-е) // Успехи современного естествознания. – 2010. – № 5. – С. 9-15;
URL: http://natural-sciences.ru/ru/article/view?id=8103 (дата обращения: 24.02.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»