Побочные специальности тантала. Тантал

Диоксид серы может присоединять кислород, переходя при этом в триоксид (трехокись) серы. При обычных условиях эта реакция протекает чрезвычайно медленно. Гораздо быстрее и легче она проходит при повышенной температуре в присутствии катализаторов.

Триоксид серы представляет собой бесцветную легкоподвижную жидкость плотностью , кипящую при и кристаллизующуюся при . При хранении, особенно в присутствии следов влаги, это вещество видоизменяется, превращаясь в длинные шелковистые кристаллы.

Свободные молекулы (в газообразном состоянии) построены в форме правильного треугольника, в центре которого находится атом серы, а в вершинах - атомы кислорода. Как и в молекуле , атом серы находится здесь в состоянии -гибридизации; в соответствии с этим ядра всех четырех атомов, входящих в состав молекулы , расположены в одной плоскости, а валентные углы равны :

Атом серы в молекуле связан с атомами кислорода тремя двухцентровыми о-связями и одной четырехцентровой -связью (ср. со структурой молекулы § 129). Кроме того, за счет неподеленных -электронных пар атомов кислорода и свободных -орбиталей атома серы здесь возможно образование дополнительных ковалентных связей, подобно тому, как это имеет место в молекуле (стр. 341).

Триоксид серы - ангидрид серкой кислоты; последняя образуется при взаимодействии с водой:

Структура молекул серной кислоты соответствует формуле:

Безводная бесцветная маслянистая жидкость, кристаллизующаяся при .

При нагревании безводная серная кислота (так называемый «моногидрат») отщепляет , который улетучивается. Отщепление идет до тех пор, пока не получится азеотропный раствор. Он содержит (масс.) и (масс.) воды. Этот раствор кипит и перегоняется без изменения состава при . Азеотропный раствор в конечном счете получается и при перегонке разбавленной серной кислоты. В этом случае отгоняется преимущественно вода до тех пор, пока концентрация кислоты достигает .

При растворении серной кислоты в воде образуются гидраты и выделяется очень большое количество теплоты. Поэтому смешивать концентрированную серную кислоту с водой следует с осторожностью. Во избежание разбрызгивания разогретого поверхностного слоя раствора, надо вливать серную кислоту (как более тяжелую) в воду небольшими порциями или тонкой струйкой; ни в коем случае не следует вливать воду в кислоту.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов. Способностью поглощать воду объясняется - и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и др.), при действии на них концентрированной серной кислоты. В состав углеводов водород и кислород - входят в таком же отношении, в каком они находятся в воде. Серная кислота отнимает от углеводов водород и кислород, которые образует воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, - энергичный окислитель. Она окисляет HI и (но не ) до свободных галогенов, уголь - до , серу - до . Указанные реакции выражаются уравнениями:

Взаимодействие серной кислоты с металлами различно в зависимости от ее концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений до водорода, например:

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль нерастворима.

Концентрированная серная кислота является окислителем за счет . Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты ее восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до :

При взаимодействии с более активными металлами продуктами восстановления могут быть как , так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

О действии серной кислоты на железо см. § 242.

Серная кислота - сильная двухосновная кислота. По первой ступени в растворах невысокой концентраций она диссоциирует практически нацело:

Диссоциация по второй ступени

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, .

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые - гидросульфатами.

Большинство солей серной кислоты довольно хорошо растворяется в воде. К практически нерастворимым относятся сульфаты бария , стронция и свинца . Мало растворим сульфат кальция . Произведение растворимости равно .

Сульфат бария нерастворим не только в воде, но и в разбавленных кислотах. Поэтому образование белого нерастворимого в кислотах осадка при действии на какой-нибудь раствор солью бария служит указанием на присутствие в этом растворе ионов :

Таким образом, растворимые соли бария служат реактивом на сульфатион.

К важнейшим солям серной кислоты относятся следующие.

Сульфат натрия . Кристаллизуется из водных растворов с десятью молекулами воды и в таком виде называется глауберовой солью имени немецкого врача и химика И. Р. Глаубера, который первым получил ее действием серной хлорид натрия. Безводная соль применяется при изготовлении стекла.

Сульфат калия . Бесцветные кристаллы, хорошо растворимы в воде. Образует ряд двойных солей, в частности квасцы (см. ниже).

Сульфат магния . Содержится в морской воде. Из растворов кристаллизуется в виде гидрата .

Сульфат кальция . Встречается в природе в больших количествах в виде минерала гипса . При нагревании до гипс теряет содержащейся в нем кристаллизационной воды и переходит в так называемый жженый гипс, или алебастр . Будучи замешан с водой в жидкое тесто, жженый гипс довольно быстро затвердевает, снова превращаясь в . Благодаря этому свойству гипс применяется для изготовления отливочных форм и слепков с различных предметов, а также в качестве вяжущего материала для штукатурки стен и потолков. В хирургии при переломах используют гипсовые повязки.

Открытие тантала тесно связано с открытием ниобия. На протяжении нескольких десятилетий химики считали открытый английским химиком Хэтчеттом в 1802 г. элемент "колумбий" и открытый в 1802 г. шведом Экебергом тантал одним элементом. Лишь в 1844 г. немецкий химик Розе окончательно доказал, что это два разных элемента, очень близких по своим свойствам. А поскольку тантал был назван по имени героя древнегреческих мифов Тантала, предложил назвать "колумбий" ниобием по имени дочери Тантала Ниобеи. Сам же тантал получил свое название от выражения "муки Тантала", из-за тщетности попыток Экеберга растворить в кислотах полученный им оксид этого элемента.

Получение:

Тантал почти всегда сопутствует ниобию в танталитах и ниобитах. Основные месторождения танталита находятся в Финляндии, Скандинавии и в Северной Америке.
Разложение танталовых руд в технике осуществляют нагреванием их с гидросульфатом калия в железных сосудах, выщелачиванием сплава горячей водой и растворением HF остающегося порошкообразного остатка танталовой кислоты загрязненной ниобиевой кислотой. Затем оксид тантала восстанавливают углем при 1000°С и получают металл отделяют в виде черного порошка содержащего небольшое количество оксида. Также порошок металла можно получить восстанавливая TaCl 5 водородом или магнием, а также фтортанталат калия натрием: K 2 TaF 7 + 5Na = Ta + 2KF + 5NaF.
Порошок металла перерабатывают в компактный металл методами поршковой металлургии, прессуя в "штабики", с последующей их плазменной или электролучевой плавкой.

Физические свойства:

Тантал тяжелый, платиново-серый с синеватым оттенком блестящий металл, довольно твердый, но черезвычайно ковкий, пластичный; пластичность его повышается по мере очистки. Тпл.= 3027°С (уступает только вольфраму и рению). Тяжелый, плотность 16,65 г/см 3

Химические свойства:

При комнатной температуре обладает исключительной химической стойкостью. Кроме плавиковой кислоты, на тантал не действуют никакие другие кислоты, даже царская водка. Взаимодействует со смесью плавиковой и азотной кислот, серным ангидридом, растворами и расплавами щелочей, при нагревании до 300-400°С с галогенами, водородом, кислородом, азотом, выше 1000°С - с углеродом.
В соединениях проявляет степень окисления +5. Однако известны также соединения тантала с более низкими степенями окисления: TaCl 4 , TaCl 3 , TaCl 2 .

Важнейшие соединения:

Оксид тантала(V), Та 2 О 5 в чистом состоянии удобнее всего получать прокаливанием чистого металлического тантала в токе кислорода или разложением гидроксида Та(ОH) 5 . Оксид тантала(V) - белый, нерастворимый в воде и кислотах (за исключением плавиковой) порошок с удельным весом 8,02. Он не меняется при прокаливании на воздухе, в отмосфере сероводорода или в парах серы. Однако при температуре выше 1000°С оксид взаимодействует с хлором и с хлористым водородом. Оксид тантала(V) диморфен. При обычной температуре устойчива его ромбическая модификация.

Танталаты и танталовая кислота. Сплавлением оксида тантала(V) со щелочами или карбонатами щелочных металлов получают танталаты - соли метатанталовой HTaO 3 и ортотанталовой кислот H 3 TaO 4 . Существуют и соли состава M 5 TaO 5 . Кристаллические вещества. применяются как сегнетоэлектрики.
Танталовые кислоты - белые студенистые осадки с переменным содержанием воды, даже свежеприготовленные не растворяются в соляной и азотной кислотах. Хорошо растворяются в HF и растворах щелочей. В технике танталовую кислоту получают обычно разложением серной кислотой двойного фторида тантала и калия (гептафторотанталата калия).
Хлорид тантала (V) , кристаллы, гигроскопичен, гидролизуется водой, растворим в CS 2 и CCl 4 . Применяется при получении тантала и нанесении покрытий.
Пентафторид тантала. Может быть получен взаимодействием пентахлорида с житким фтористым водородом. Он образует бесцветные призмы, гидролизуется водой. Тпл=96,8°С,Ткип=229°С. Используется для нанесения танталовых покрытий.
Гептафторотанталат калия - K 2 TaF 7 - комплексное соединение, Может быть получен взаимодействием пентафторида тантала с фторидом калия. Белые кристаллы, устойчивые на воздухе. Гидролизуется водой: K 2 TaF 7 + H 2 O -> Ta 2 O 5 *nH 2 O + KF + HF

Применение:

Так как тантал объединяет превосходные металические свойства с исключительной химической стойкостью, он оказался весьма подходящим для изготовления хирургических и зубоврачебных инструментов, например концов пинцетов, игл для инъекций,стрелок и т.д. В некоторых случаях он может заменить платину.
Применяют также для изготовления конденсаторов, катодов электронных ламп, аппаратуры в химической промышленности и ядерной энергетике, фильер для производства искуственных волокон. Карбид, силицид, нитрид тантала - жаростойкие материалы, компоненты твердых и жаростойких сплавов.
Термостойкие сплавы тантала с ниобием и вольфрамом используются в ракетной и космической технике.

Е. Розенберг.

Источники: Тантал //Популярная библиотека химических элементов Издательство «Наука», 1977.
Тантал // Википедия. Дата обновления: 12.12.2017. (дата обращения: 20.05.2018).
// С. И. Левченков. Краткий очерк истории химии/ ЮФУ.

Металл Тантал открыт довольно недавно, а именно в 1802 году. Обнаружить этот металл посчастливилось шведскому химику А.Г. Экебергу. При исследовании двух новых минералов, которые были найдены в скандинавских странах, выяснилось, что помимо известных элементов содержится и ранее неизученный. Ученому так и не удалось выделить металл из минерала в чистом виде, так как с этим возникли большие трудности.

В связи с этим, неисследованный металл получил название в честь героя из мифологии Древней Греции, и по которому был написан миф о Тантале . После этого, на протяжении 40 с лишним лет, считалось, что тантал и ниобий – это один и тот же металл. Однако один немецкий химик доказал различие металлов, а после этого еще один немец выделил тантал в чистом виде, и произошло это только в 1903 году.

Серийное производство проката и изделий из тантала началось только в ходе Второй Мировой войны. Сегодня этому элементу присвоено название «умного металла», так как без него не обходись в интенсивно развивающейся электронике.

Описание и свойства тантала

Тантал – это металл с высокой твердость и атомной плотностью. В периодической химических элементов, тантал расположился на 73 позиции. В мировой практике принято обозначать этот металл сочетанием двух букв, а именно Ta. При атмосферном давлении и комнатной температуре тантал имеет характерный серебристо-металлический цвет. Образовывающаяся на поверхности оксидная пленка на металле придет ему свинцовый оттенок.

Тантал элемент при комнатной температуре малоактивный. Окисление воздухом поверхности этого металла возможно только при температурах свыше 280 градусов. С галогенами тантал реагирует при температуре на 30 градусов ниже, чем с воздухом. При этом на поверхности образуется защитная пленка, которая препятствует дальнейшему проникновению окисляющих элементов по глубине металла.

Тантал химический элемент с довольно высокой температурой плавления. Так, она составляет 3290 К, а температура кипения достигает 5731 К. Несмотря на высокую плотность (16,7 г/см 3) и твердость, он достаточно пластичен. По пластичности тантал можно сравнить с . С чистым металлом очень просто и удобно работать.

Он прост в механической обработке, например, его можно раскатать в прокат с толщиной в 1-10 мкм. Также необходимо заметить, что тантал является парамагнетиком. Интересная особенность этого металла начинает проявляться при температуре 800 градусов: тантал поглощает 740 своих объемов газа.

В мировой практике есть уже целый ряд фактов, которые говорят о превосходной стойкости этого металла в очень агрессивных средах. Например, известно, что тантал не повреждается даже 70% азотной кислотой. Серная кислота до 150 градусов также не приводит к коррозионному разрушению, но уже при 200 градусах металл начнет растворяться со скоростью 0,006 мм/год.

Некоторые производственные факты говорят и том, что тантал намного более стойкий, чем нержавеющие стали аустенитного класса. Поэтому поводу известен случай, в котором детали из тантала проработали на 20 лет дольше деталей из нержавеющей стали.

Еще одним интересным фактом является то, что тантал используется для каталитического выделения и золота. Из него делаются катоды, на которые в свою очередь осаждается благородный металл, а после смывается царской водкой. При этом катод и тантала благодаря своей восхитительной стойкости к кислотам, остается целым.

Применение тантала

Когда давно этот металл, использовался для производства нитей в лампы накаливания. Сегодня же тантал и сплавы тантала используются в следующих отраслях и изделиях:

— при выплавке жаропрочных и коррозионностойких сплавов (например, деталей авиационных двигателей);

— в химической промышленности для создания коррозионностойкой аппаратуры;

— в металлургическом производстве по производству редкоземельных металлов;

— при сооружении ядерных реакторов (тантал является самым устойчивым металлом к парам цезия);

— за счет своей высокой биосовместимости, тантал используется для изготовления медицинских имплантатов и протезов;

— для производства сверхпроводников — криотронов (это элементы вычислительной техники);

— используется в военной промышленности для изготовления снарядов. Использование этого металла увеличивает пробивную способность боеприпасов;

— из тантала делаются более эффективные конденсаторы низкого напряжения;

— в последнее время тантал прочно вошел в дело. Это связано с возможностью металла образовывать прочные пленки оксидов на поверхности, которые могут быть различных цветов и оттенков;

— большое количество модификаций тантала накапливается в ядерных реакторах. В лабораторных или военных целях эта модификация металла может использоваться в качестве источника гамма излучения;

— этот металл используется в качестве основного (после платины) для изготовления эталонов массы, которые обладают повышенной точностью;

— некоторые интерметаллидные соединения тантала имеют очень высокую твердость и прочность, а также повышенную устойчивость к окислению. Эти соединения используются в авиационно и космической отраслях;

— карбиды тантала используются для изготовления режущего инструмента повышенной красностойкости. Инструмент получается методом спекания смеси порошков карбидов. Используются данные инструменты в очень тяжелых условиях, например, при ударном бурении;

— пятивалентный оксид тантала необходим для сварки стекол атомной техники.

Месторождения и добыча тантала

Тантал относится к редким металлам. Его количество в земной коре составляет всего 0,0002 %. В это количество входят две модификации металла: стабильная и радиоактивная. Этот редкий металл встречается в виде собственных соединений и входит в состав многих минералов. Если тантал входит в минерал, то он постоянно будет вместе с ниобием.

Месторождения танталовых соединений и минералов есть во многих странах. Самое большое месторождение этого элемента в Европе находится во Франции. На африканском континенте больше всего тантала в Египте. Также высокими запасами этого металла располагают Китай и Таиланд. Месторождения меньшего размера расположены в СНГ, Нигерии, Канаде, Австралии и других странах. Однако самые крупные залежи, открытые на сегодняшний день находятся в Австралии.

В год в мире добывается около 420 тонн тантала. Основные перерабатывающие комбинаты этого металла расположены в США и ФРГ. Стоит отметить, что мировое сообщество заявляет о необходимости увеличения добычи этого редкого металла. Такие заявления в-первую очередь связаны с увеличением выпуска электроники, в которой интенсивно используется этот элемент.

Таким образом, количество разрабатываемых месторождений с каждым годом увеличивается. Так, например, к основным мировым, разрабатываемым месторождениям, добавились еще места в Бразилии, США и ЮАР. Однако стоит отметить, тот факт, что в последнее 10-ти летите, наблюдается интенсивное снижение добычи тантала . Самый низкий показатель в 21 веке по добыче пришелся на 2010 год.

Цена тантала

Стоимость тантала за последние 15 лет колебалась очень сильно. Так, в 2002-2003 годах купить тантал можно было по самой минимальной цене. В текущем году цена тантала колебалась от 340 до 375 долларов за килограмм. В России на сегодняшний день можно купить тантал, цена которого составляет 2950 рублей за один килограмм.

Тантал - это разумный выбор для всех сфер применения, где требуется высокая коррозионная стойкость. Хотя тантал и не относится к благородным металлам, он сравним с ними по своей химической устойчивости. Кроме того, тантал легко поддается формовке даже при температуре ниже комнатной благодаря своей объемноцентрированной кубической кристаллической структуре. Высокая коррозионная стойкость тантала делает его ценным материалом для использования в самых различных химических средах. Мы используемый наш «неподатливый» материал, например, для теплообменников для сектора приборостроения, загрузочных поддонов для строительства печей, имплантатов для медицинской техники и компонентов конденсаторов для электронной промышленности.

Гарантированная чистота

Вы можете быть уверенными в качестве нашей продукции. Мы изготавливаем наши продукты из тантала сами - от металлического порошка до готового продукта. В качестве исходного материала мы используем только чистейший танталовый порошок. Так мы гарантируем вам чрезвычайно высокую чистоту материала.

Мы гарантируем качество чистоты спеченного тантала - 99,95 % (чистота металла без ниобия). Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

Элемент Стандартное макс. значение [мкг/г] Гарантированное макс. значение
[мкг/г]
Fe 17 50
Mo 10 50
Nb 10 100
Ni 5 50
Si 10 50
Ti 1 10
W 20 50
C 11 50
H 2 15
N 5 50
O 81 150
Cd 5 10
Hg* -- 1
Pb 5 10

Мы гарантируем качество чистоты тантала полученного путем плавки - 99,95 % (чистота металла без ниобия) Согласно химическим анализам, остаточное содержание состоит из следующих элементов:

Элемент Типичное значение макс. [мкг/г] Гарантированное значение [мкг/г]
Fe 5 100
Mo 10 100
Nb 19 400
Ni 5 50
Si 10 50
Ti 1 50
W 20 100
C 10 30
H 4 15
N 5 50
O 13 100
Cd -- 10
Hg* -- 1
Pb -- 10

Присутствие Сr(VI) и органических примесей исключено производственным процессом (многократная термообработка при температуре выше 1000 °C в атмосфере высокого вакуума). * Исходная величина.

Материал с особыми талантами

Насколько уникальны свойства нашего тантала, настолько же специфичны и сферы его применения в промышленности. Ниже мы кратко представим вам две из них:

Индивидуально подобранные химические и электрические свойства.

Благодаря чрезвычайно мелкой микроструктуре тантал является идеальным материалом для производства ультратонкой проволоки с безупречной, исключительно чистой поверхностью для использования в танталовых конденсаторах. Мы можем с высокой степенью точности определять химические, электрические и механические свойства такой проволоки. Так, мы обеспечиваем нашим клиентам индивидуально подобранные и стабильные свойства компонентов, которые мы постоянно развиваем и улучшаем.

Превосходная стойкость и высокая пластичность в холодном состоянии

Превосходная стойкость в сочетании с отличной формуемостью и свариваемостью делают тантал идеальным материалом для теплообменников. Наши танталовые теплообменники исключительно стабильны и устойчивы в целом ряду агрессивных сред. Обладая многолетним опытом обработки тантала, мы также можем изготовлять продукты сложной геометрии, точно отвечающие вашим требованиям.

Чистый тантал или все же сплав?

Мы оптимальным образом подготавливаем наш тантал к любым применениям. При помощи различных легирующих элементов мы можем изменять следующие свойства вольфрама:

  • физические свойства (например, температура плавления, давление пара, плотность, электропроводность, теплопроводность, тепловое расширение, теплоемкость)
  • механические свойства (например, прочность, механизм разрушения, пластичность)
  • химические свойства (например, коррозионная стойкость, травимость)
  • обрабатываемость (например, машинная обработка, формуемость, свариваемость)
  • структура и характеристики рекристаллизации (например, температура рекристаллизации, склонность к появлению хрупкости, эффект старения, размер зерен)

И это еще не все: используя наши специальные технологии производства, мы можем изменять различные другие свойства тантала в широком диапазоне. Результат: две различные технологии производства тантала и сплавы, обладающие различными свойствами, точно отвечающие требованиям конкретного применения.

Тантал, полученный спеканием (TaS).

Чистый тантал, полученный спеканием, и чистый тантал, полученный плавкой, обладают следующими общими характеристиками:

  • высокая температура плавления, составляющая 2996 °C
  • превосходная пластичность в холодном состоянии
  • рекристаллизация при температуре от 900 до 1450 °C (в зависимости от степени деформации и чистоты)
  • превосходная стойкость в водных растворах и расплавах металлов
  • сверхпроводимость
  • высокий уровень биологической совместимости

Когда предстоит чрезвычайно тяжелая работа, поможет наш тантал, полученный спеканием: благодаря используемому нами методу порошковой металлургии тантал, полученный спеканием , (TaS) обладает чрезвычайно мелкозернистой структурой и высокой чистотой. В связи с этим материал и отличается высочайшим качеством поверхности и хорошими механическими свойствами.

Для использования в конденсаторах мы рекомендуем одну из разновидностей нашего тантала с чрезвычайно высоким качеством поверхности (TaK ). Такой тантал используется в виде проволоки в танталовых конденсаторах. Высокую емкость, низкий ток утечки и низкое сопротивление можно гарантировать только тогда, когда используется проволока, не имеющая дефектов и примесей.

Тантал, полученный плавкой (TaM)

Не всегда требуется лучшее из лучшего. Тантал, полученный плавкой , (TaM), как правило, более экономичен в производстве, чем тантал, полученный спеканием, а его качества достаточно для многих сфер применения. Однако этот материал не такой мелкозернистый и однородный, как тантал, полученный спеканием. Просто свяжитесь с нами. Мы будем рады проконсультировать вас.

Стабилизированный тантал (TaKS)

Мы легируем наш спеченный стабилизированный тантал кремнием , что позволяет предотвратить рост зерен даже при высокой температуре. Это делает наш тантал пригодным для использования даже при крайне высокой температуре. Мелкозернистая микроструктура остается стабильной даже после отжига при температуре до 2000 °C. Этот процесс позволяет сохранить превосходные механические свойства материала, такие как его пластичность и прочность. Стабилизированный тантал в виде проволоки или листов идеально подходит для производства танталовых анодов методом спекания или для использования в секторе строительства печей.

Тантал-вольфрам (TaW) отличается хорошими механическими свойствами и превосходной коррозионной стойкостью. Мы добавляем от 2,5 до 10 процентов по весу вольфрама в чистый тантал. Хотя полученный сплав в 1,4 раза прочнее чистого тантала, его легко обрабатывать при температурах до 1600 °C. Поэтому наш сплав TaW особенно хорошо подходит для теплообменников и нагревательных элементов, используемых в химической промышленности.

Хорош во всех отношениях. Характеристики тантала.

Тантал относится к группе тугоплавких металлов . Тугоплавкие металлы имеют температуру плавления выше температуры плавления платины (1772 °C). Энергия, связывающая отдельные атомы, чрезвычайно высока. Высокая температура плавления тугоплавких металлов сочетается с низким давлением пара. Тугоплавкие металлы также отличаются высокой плотностью и низким коэффициентом теплового расширения.

В периодической таблице тантал находится в том же периоде, что и вольфрам. Как и вольфрам, тантал имеет очень высокую плотность - 16,6 г/см 3 . Однако, в отличие от вольфрама, тантал становится хрупким во время производственных операций с участием водородной атмосферы. Поэтому материал производится в высоком вакууме.

Тантал, несомненно, является наиболее устойчивым из тугоплавких металлов . Он устойчив во всех кислотах и основаниях и обладает крайне специфическими свойствами:

Свойства
Атомное число 73
Атомная масса 180,95
Температура плавления 2996 °C/3269 °K
Температура кипения 5458 °C/5731 °K
Атомный объем 1,80 · 10 -29 [м 3 ]
Давление пара при 1800 °C
при 2200 °C
5 · 10 -8 [Па]
7 · 10 -5 [Па]
Плотность при 20 °C (293 °K) 16,65 [г/см 3 ]
Кристаллическая структура объемноцентрированная кубическая
Постоянная кристаллической решетки 330 [пм]
Твердость при 20 °C (293 °K) деформированный
рекристаллизованный
120–220
80–125
Модуль упругости при 20 °C (293 °K) 186 [ГПa]
Коэффициент Пуассона 0,35
Коэффициент линейного теплового расширения при 20 °C (293 °K) 6,4 · 10 -6 [м/(м·K)]
Теплопроводность при 20 °C (293 °K) 57,5 [Вт/(м K)]
Удельная теплоемкость при 20 °C (293 °K) 0,14 [Дж/(г·K)]
Электропроводность при 20 °C (293 °K) 8 · 10 6
Удельное электрическое сопротивление при 20 °C (293 °K) 0,125 [(Ом·мм 2)/м]
Скорость звука при 20 °C (293 °K) Продольная волна
Поперечная волна
4100 [м/с]
2900 [м/с]
Работа выхода электрона 4,3 [эВ]
Сечение захвата тепловых нейтронов 2,13 · 10 -27 [м 2 ]
Температура рекристаллизации (продолжительность отжига: 1 час) 900–1450 °C
Сверхпроводящий (температура перехода) < -268,65 °C / < 4,5 °K

Термофизические свойства

Тугоплавкие металлы, как правило, имеют низкий коэффициент теплового расширения и относительно высокую плотность . Это касается и тантала. Хотя теплопроводность тантала ниже, чем у вольфрама и молибдена, материал имеет более высокий коэффициент теплового расширения, чем многие другие металлы.

Теплофизические свойства тантала изменяются при изменении температуры. На графиках ниже показаны кривые изменения наиболее важных переменных:

Механические свойства

Даже малые количества таких элементов, образующих твердый раствор внедрения, как кислород, азот, водород и углерод, могут изменить механические свойства тантала. Кроме того, для изменения его механических свойств используются такие факторы, как чистота металлического порошка, технология производства (спекание или плавка), степень холодной обработки и тип термической обработки.

Как и вольфрам и молибден, тантал имеет объемноцентрированную кубическую кристаллическую решетку . Температура хрупко-вязкого перехода тантала составляет -200 °C, что значительно ниже комнатной температуры. Благодаря этому металл крайне легко поддается формовке . В процессе холодной обработки повышается предел прочности и твердость металла, но одновременно снижается удлинение при разрыве. Хотя материал теряет пластичность, он не становится хрупким.

Термостойкость материала ниже, чем у вольфрама, но сравнима с термостойкостью чистого молибдена. Для повышения термостойкости мы добавляем в наш тантал тугоплавкие металлы, например, вольфрам.

Модуль упругости тантала ниже, чем у вольфрама и молибдена, и сравним с модулем упругости чистого железа. Модуль упругости снижается при повышении температуры.

Механические свойства

Благодаря высокой пластичности тантал оптимально подходит для формовочных процессов , таких как гибка, штамповка, прессование или глубокая вытяжка. Тантал с трудом поддается машинной обработке . Стружка плохо отделяется. По этой причине мы рекомендуем использовать стружкоотводные ступеньки. Тантал отличается превосходной свариваемостью в сравнении с вольфрамом и молибденом.

У вас есть вопросы о механической обработке тугоплавких металлов? Мы будем рады помочь вам, используя наш многолетний опыт.

Химические свойства

Поскольку тантал является стойким к любым типам химических веществ, этот материал часто сравнивают с драгоценными металлами. Однако в термодинамическом отношении тантал является основным металлом, который, тем не менее, может образовывать стабильные соединения с широким спектром элементов. При воздействии воздуха тантал образует очень плотный оксидный слой (Ta 2 O 5), который защищает основной материал от агрессивного воздействия. Этот оксидный слой делает тантал устойчивым к коррозии .

При комнатной температуре тантал не является устойчивым только в следующих неорганических веществах: концентрированная серная кислота, фтор, фтороводород, фтористоводородная кислота и растворы кислот, содержащие ионы фтора. Щелочные растворы, расплавленный гидроксид натрия и гидроксид калия также оказывают химическое воздействие на тантал. В то же время материал устойчив в водном растворе аммиака. Если тантал подвергается химическому воздействию, водород проникает в его кристаллическую решетку, и материал становится хрупким. Коррозионная стойкость тантала постепенно снижается при повышении температуры.

Тантал является инертным по отношению ко многим растворам. Однако, если тантал подвергается воздействию смешанного раствора, то его коррозионная стойкость может снизиться, даже если он устойчив в отдельных компонентах такого раствора. У вас есть сложные вопросы по коррозии? Мы будем рады помочь вам, используя наш опыт и нашу собственную лабораторию по исследованию коррозии.

Коррозионная стойкость в воде, водных растворах и в среде неметаллов
Вода Горячая вода < 150 °C стойкий
Неорганические кислоты Соляная кислота < 30 % до 190 °C
Серная кислота < 98 % до 190 °C
Азотная кислота < 65 % до 190 °C
Фтористо-водородная кислота < 60 %
Фосфорная кислота < 85 % до 150 °C
стойкий
стойкий
стойкий
нестойкий
стойкий
Органические кислоты Уксусная кислота < 100 % до 150 °C
Щавелевая кислота < 10 % до 100 °C
Молочная кислота < 85 % до 150 °C
Винная кислота < 20 % до 150 °C
стойкий
стойкий
стойкий
стойкий
Щелочные растворы Гидроксид натрия < 5 % до 100 °C
Гидроксид калия < 5 % до 100 °C
Аммиачные растворы < 17 % до 50 °C
Карбонат натрия < 20 % до 100 °C
стойкий
стойкий
стойкий
стойкий
Соляные растворы Хлорид аммония < 150 °C
Хлорид кальция < 150 °C
Хлорид железа < 150 °C
Хлорат калия < 150 °C
Биологические жидкости < 150 °C
Сульфат магния < 150 °C
Нитрат натрия < 150 °C
Хлорид олова < 150 °C
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
Неметаллы Фтор
Хлор < 150 °C
Бром < 150 °C
Йод < 150 °C
Сера < 150 °C
Фосфор < 150 °C
Бор < 1000 °C
не стойкий
стойкий
стойкий
стойкий
стойкий
стойкий
стойкий

Тантал устойчив в некоторых расплавах металлов, таких как Ag, Bi, Cd, Cs, Cu, Ga, Hg, °K, Li, Mg, Na и Pb, при условии что эти расплавы содержат малое количество кислорода. Однако этот материал подвержен воздействию Al, Fe, Be, Ni и Co.

Коррозионная стойкость в расплавах металлов
Алюминий нестойкий Литий стойкий при
< 1000 °C
Бериллий нестойкий Магний стойкий при температуре < 1150 °C
Свинец стойкий при
< 1000 °C
Натрий стойкий при
< 1000 °C
Кадмий стойкий при
< 500 °C
Никель нестойкий
Цезий стойкий при температуре < 980 °C Ртуть стойкий при температуре < 600 °C
Железо нестойкий Серебро стойкий при
< 1200 °C
Галлий стойкий при температуре < 450 °C Висмут стойкий при температуре < 900 °C
Калий стойкий при
< 1000 °C
Цинк стойкий при
< 500 °C
Медь стойкий при температуре < 1300 °C Олово стойкий при температуре < 260 °C
Кобальт нестойкий

Когда неблагородный металл, например тантал, вступает в контакт с благородными металлами, например платиной, очень быстро возникает химическая реакция. В связи с этим необходимо учитывать реакцию тантала с другими материалами, присутствующими в системе, особенно при высокой температуре.

Тантал не вступает в реакцию с инертными газами. По этой причине инертные газы высокой чистоты могут использоваться в качестве защитных газов. Однако при повышении температуры тантал активно вступает в реакцию с кислородом или воздухом и может поглощать большое количество водорода и азота. Это делает материал хрупким. Устранить эти примеси позволяет отжиг тантала в высоком вакууме. Водород исчезает при температуре 800 °C, а азот - при 1700 °C.

В высокотемпературных печах тантал может вступать в реакцию с деталями конструкции, изготовленными из тугоплавких оксидов или графита. Даже очень устойчивые оксиды, такие как оксид алюминия, магния или циркония, могут подвергаться восстановлению при высокой температуре, если они вступают в контакт с танталом. При контакте с графитом может образовываться карбид тантала, что приводит к повышению хрупкости тантала. Хотя обычно тантал можно легко комбинировать с другими тугоплавкими металлами, например, молибденом или вольфрамом, он может вступать в реакцию с гексагональным нитридом бора и нитридом кремния.

В таблице ниже указана коррозионная стойкость материала по отношению к термостойким материалам, используемым при строительстве промышленных печей. Указанные предельные температуры действительны для вакуума. При использовании защитного газа эти температуры примерно на 100–200 °C ниже.

Коррозионная стойкость по отношению к термостойким материалам, используемым при строительстве промышленных печей
Оксид алюминия стойкий при температуре < 1900 °C Молибден стойкий
Оксид бериллия стойкий при температуре < 1600 °C Нитрид кремния стойкий при
< 700 °C
Гексагональный. нитрид бора стойкий при
< 700 °C
Оксид тория стойкий при температуре < 1900 °C
Графит стойкий при
< 1000 °C
Вольфрам стойкий
Оксид магния стойкий при температуре < 1800 °C Оксид циркония стойкий при температуре < 1600 °C