Удельная теплота плавления разных веществ. Молекулярная физика

Что вещество может быть в одном из состояний - газообразном, жидком, твердом. И может переходить из одного в другое. Самый простой пример - кусок льда тает, превращается в жидкость и затем в пар. Во всем этом процессе превращения в пар очень интересен этап плавления и один из его параметров - удельная теплота плавления.

Если вспомнить, как проходит плавление, то можно выделить несколько этапов. Возьмем в качестве примера свинец. На первом этапе происходит нагрев свинца, температура поднимается до 327 (температура плавления). После того, как плавление началось, долгое время ничего не происходит.

Температура свинца, несмотря на подводимое к нему тепло, остается постоянной и держится такой, пока не закончится весь процесс. И только после этого при продолжающемся нагреве температура начинает опять повышаться. Из наблюдаемой картины следуют некоторые выводы. У твердого тела все молекулы находятся в определенном порядке и жестко связаны с соседними молекулами.

Для того чтобы они могли свободно перемещаться на другое место, связи с соседними молекулами надо разорвать, что и происходит в процессе плавления. Для этого телу надо передать определенную норму тепла, называемую теплотой плавления. Для каждого вещества потребуется разное количество тепла. Причина обусловлена таким свойством вещества, как удельная теплота плавления, которая определяется как количество тепла, затрачиваемое на расплавление одного килограмма вещества. Единицей измерения является Джоуль/килограмм.

Как уже упоминалась, для каждого материала эта величина своя. плавления свинца отличается от той же величины для льда. И здесь возникает очень любопытный момент. Удельная теплота плавления стали составляет в среднем 85 кДж/кг, а у воды (льда) тот же параметр составляет в среднем 335 кДж/кг. У льда высокое значение этого параметра можно считать большим подарком от природы.

Ведь благодаря этому весь снег, лед не тает мгновенно, а все происходит продолжительное время. В противном случае снег растаял бы очень быстро, и паводки были ли бы более многоводными и разрушительными. Кроме того, такие уникальные свойства воды способствуют стабилизации климата на планете.

Имеются таблицы с данными об удельной теплоте плавления отдельных материалов. Зная эту величину, рассчитывается, сколько тепла нужно для того, чтобы расплавить материал, и определить, сколько нужно топлива для проведения плавки. Если тело нагрето до температуры плавления, то теплота нужна только на плавление, а если его температура ниже температуры плавления, то теплота необходима на нагрев вещества до

Такие расчеты чрезвычайно полезны в промышленности для расчета затрат на производстве.

Кстати, при остывании расплавленного вещества происходит обратный плавлению процесс - кристаллизация. В этом случае при остывании вещества восстанавливаются разорванные связи между молекулами и выделяется тепло.

Рассматривая процесс плавления вещества и проходящие при этом явления, было определено такое понятие, как удельная теплота плавления. Проведено сравнение данного показателя для разных веществ, определено, каким образом высокое значение этого параметра у льда благотворно влияет на климат планеты.

При плавлении происходит разрушение пространственной решетки кристаллического тела. На этот процесс расходуется определенное количество энергии от какого-нибудь внешнего источника. В результате внутренняя энергия тела в процессе плавления увеличивается.

Количество теплоты, необходимое для перехода тела из твердого состояния в жидкое при температуре плавления, называется теплотой плавления.

В процессе отвердевания тела, наоборот, внутренняя энергия тела уменьшается. Тело отдает теплоту окружающим телам. Согласно закону сохранения энергии количество теплоты, поглощенное телом при плавлении (при температуре плавления), равно количеству теплоты, отданному этим телом при отвердевании (при температуре отвердевания).

Удельная теплота плавления

Теплота плавления зависит от массы плавящегося вещества и его свойств. Зависимость теплоты плавления от рода вещества характеризуют удельной теплотой плавления этого вещества.

Удельной теплотой плавления вещества называется отношение теплоты плавления тела из этого вещества к массе тела.

Обозначим теплоту плавления через Q пл , массу тела буквой т и удельную теплоту плавления буквой λ. Тогда

Таким образом, чтобы расплавить кристаллическое тело массой m , взятое при температуре плавления, необходимо количество теплоты, равное

(8.8.2)

Теплота кристаллизации

Согласно закону сохранения энергии количество теплоты, выделяемое при кристаллизации тела (при температуре кристаллизации), равно

(8.8.3)

Из формулы (8.8.1) следует, что удельная теплота плавления в СИ выражается в джоулях на килограмм.

Довольно велика удельная теплота плавления льда 333,7 кДж/кг. Удельная теплота плавления свинца всего лишь 23 кДж/кг, а золота - 65,7 кДж/кг.

Формулы (8.8.2) и (8.8.3) используются при решении задач на составление уравнений теплового баланса в тех случаях, когда мы имеем дело с плавлением и отвердеванием кристаллических тел.

Роль теплоты плавления льда и кристаллизации воды в природе

Поглощение теплоты при таянии льда и выделение ее при замерзании воды оказывают значительное влияние на изменение температуры воздуха, особенно вблизи водоемов. Все вы, вероятно, замечали, что во время обильных снегопадов обычно наступает потепление.

Очень важно большое значение удельной теплоты плавления льда. Еще в конце XVIII в. шотландский ученый Д. Блэк (1728-1799), открывший существование теплоты плавления и кристаллизации, писал: «Если бы лед не обладал значительной теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота из воздуха непрерывно передается льду. Но тогда последствия этого были бы ужасны: ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда и снега».

Сопло космической ракеты

Приведем интересный технический пример практического использования теплоты плавления и парообразования. При изготовлении сопла для космической ракеты следует учитывать, что струя газов, выходящая из сопла ракеты, имеет температуру около 4000 °С. В природе практически отсутствуют материалы, которые в чистом виде могли бы выдержать такую температуру. Поэтому приходится прибегать ко всякого рода ухищрениям, чтобы охладить материал сопла во время горения топлива.

Сопло изготавливают методом порошковой металлургии. В полость формы закладывается порошок тугоплавкого металла (вольфрам). Затем его подвергают сдавливанию. Порошок спекается, получается пористая структура типа пемзы. Затем эта «пемза» пропитывается медью (ее температура плавления всего 1083 °С).

Полученный материал называется псевдосплавом. На рисунке 8.31 показана фотография микроструктуры псевдосплава. На белом фоне вольфрамового каркаса видны медные включения неправильной формы. Этот сплав может, как это ни невероятно, кратковременно работать даже при температуре газов, образующихся при сгорании топлива, т. е. выше 4000°С.

Происходит это следующим образом. Вначале температура сплава растет, пока не достигнет температуры плавления меди t 1 (рис. 8.32). После этого температура сопла не будет меняться, пока вся медь не расплавится (промежуток времени от τ 1 до τ 2 ). В дальнейшем температура опять возрастает до тех пор, пока медь не закипит. Это происходит при температуре t 2 = 2595 °С, меньшей температуры плавления вольфрама (3380 °С). Пока вся медь не выкипит, температура сопла опять меняться не будет, так как испаряющаяся медь забирает теплоту от вольфрама (промежуток времени от τ 3 до τ 4 ). Конечно, сколько угодно долго сопло работать не будет. После испарения меди вольфрам опять начнет нагреваться. Однако двигатель ракеты работает всего лишь несколько минут, а за это время сопло не успеет перегреться и расплавиться.

На графике (рис. 198) очень наглядно показано, что, пока нафталин плавится, температура его не меняется. И лишь после того, как он весь расплавится, температура образовавшейся жидкости начинает повышаться. Но ведь и во время процесса плавления нафталин получает энергию от сгорающего в нагревателе топлива. А из закона сохранения энергии следует, что она не может исчезнуть. На что же расходуется энергия топлива во время процесса плавления?

На этот вопрос можно ответить, если вспомнить, что при плавлении происходит разрушение кристалла. На это и расходуется энергия.

Следовательно, энергия, которую получает кристаллическое тело, после того как оно уже нагрето до температуры плавления, расходуется на изменение его внутренней энергии при переходе в жидкое состояние.

Количество теплоты, необходимое для превращения при температуре плавления твердого кристаллического вещества массой 1 кг в жидкость, называют удельной теплотой плавления.

Удельную теплоту плавления измеряют в Дж/кг и обозначают буквой λ.

Определяют удельную теплоту плавления на опыте. Так, опытным путем было установлено, что удельная теплота плавления льда равна 3,4 10 5 Дж/кг. Это означает, что для превращения куска льда массой 1 кг, взятого при 0°С, в воду такой же температуры требуется затратить 3,4 10 5 Дж.

Следовательно, при температуре плавления внутренняя энергия вещества массой 1 кг в жидком состоянии больше внутренней энергии такой же массы вещества в твердом состоянии на удельную теплоту плавления.

Например, внутренняя энергия воды массой 1 кг при температуре 0°С на 3,4 10 5 Дж больше внутренней энергии льда массой 1 кг при той же температуре.

Пример. Для приготовления лая турист положил в котелок 2 кг льда, имеющего температуру 0°С. Какое количество теплоты необходимо для превращения этого льда в кипяток при температуре 100 °С?

Сколько теплоты понадобилось бы, если вместо льда турист взял из проруби 2 кг воды при температуре 0 °С?

Если бы вместо льда было взято 2 кг воды при 0°С, то понадобилось бы количество теплоты, необходимое только для ее нагревания от 0 до 100 °С, т. е. Q2= 8,4 10 5 Дж.

Вопросы. 1. Чем объяснить, что в течение всего времени процесса плавления кристаллического тела температура его не меняется? 2. На что расходуется энергия сгорающего в нагревателе топлива при плавлении кристаллического тела? 3. Что такое удельная теплота плавления? 4. В каких единицах выражают удельную теплоту плавления?

Упражнения. На рисунке 199 изображены графики зависимости изменения температуры от времени двух тел одинаковой массы. У какого из тел выше точка плавления? У какого больше теплота плавления ? Одинаковы ли удельные теплоемкости тел?

Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты. Количество теплоты зависит от массы тела, от разности температур тела и от рода вещества.

[Q]=Дж или калориях

1 кал – это количество теплоты, которое необходимо для нагревания 1 г воды на 1 о С.

Удельная теплоемкость – физическая величина, равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 о С.

[C] = Дж/кг о С

Удельная теплоемкость воды 4200 Дж/кг о С. Это значит, что для нагревания воды массой 1 кг на 1 о С необходимо затратить 4200 Дж теплоты.

Удельная теплоемкость вещества, находящегося в различных агрегатных состояниях, различна. Так, теплоемкость льда 2100 Дж/кг о С. Удельная теплоемкость воды самая большая. В связи с этим вода в морях и океанах, нагреваясь летом, поглощает большое количество теплоты. Зимой вода остывает и отдает большое количество теплоты. Поэтому в районах, расположенных вблизи водоемов, летом не бывает очень жарко, а зимой очень холодно. Из-за высокой теплоемкости воду широко применяют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, медицине (грелках) и т.д.

С возрастанием температуры твердых тел и жидкостей возрастает кинетическая энергия их частиц: они начинают колебаться с большей скоростью. При некоторой температуре, вполне определенной для данного вещества, силы притяжения между частицами уже не в состоянии удержать их в узлах кристаллической решетки (дальний порядок превращается в ближний), и кристалл начинает плавиться, т.е. вещество начинает переходить в жидкое состояние.

Плавление процесс перехода вещества из твердого состояния в жидкое.

Отвердевание (кристаллизация) процесс перехода вещества из жидкого состояния в твердое.

В процессе плавления температура кристалла остается постоянной. Эта температура называется температурой плавления . У каждого вещества есть своя температура плавления. Находят по таблице.

Постоянство температуры при плавлении имеет большое практическое значение, поскольку позволяет градуировать термометры, изготавливать плавкие предохранители и индикаторы, которые расплавляются при строго заданной температуре. Знание температуры плавления различных веществ важно и с чисто бытовой точки зрения: в противном случае кто поручится за то, что эта кастрюля или сковородка не расплавится на огне газовой горелки?

Температура плавления и равная ей температура отвердевания - характерный признак вещества. Ртуть плавится и затвердевает при температуре -39 о С, поэтому в районах Крайнего Севера ртутные термометры не используют. Вместо ртутных термометров в этих широтах используют спиртовые (-114 о С). Самым тугоплавким металлом является вольфрам (3420 о С).

Количество теплоты, необходимое для плавления вещества, определяют по формуле:

Где m – масса вещества, - удельная теплота плавления.

Дж/кг

Удельная теплота плавления – такое количество теплоты, которое необходимо для расплавления 1 кг вещества, взятого при температуре плавления. У каждого вещества своя. Её находят по таблице.

Температура плавления вещества зависит от давления. Для веществ, у которых объем при плавлении возрастает, повышение давления повышает температуру плавления и наоборот. У воды объем при плавлении уменьшается, и при повышении давления лед плавится при более низкой температуре.

Билет № 14


Похожая информация:

  1. Question»Количественная нетарифная мера ограничения экспорта или импорта товара определенным количеством или суммой на определенный промежуток времени
  2. А знаете, как соотносится количество вещества в атоме с объемом самого атома?
  3. Б. В том, что провизор называет первый входящий в пропись ингредиент, а фармацевт по памяти называет все взятые им ингредиенты и их количество.