Удельное сопротивление меди при 0. Что такое удельное электрическое сопротивление

Вещества и материалы, способные проводить электрический ток, называют проводниками. Остальные относят к диэлектрикам. Но чистых диэлектриков не бывает, все они тоже проводят ток, но его величина очень мала.

Но и проводники по-разному проводят ток. Согласно формуле Георга Ома, ток, протекающий через проводник, линейно пропорционален величине приложенного к нему напряжения, и обратно пропорционален величине, называемой сопротивлением.

Единицу измерения сопротивления назвали Омом в честь ученого, открывшего эту зависимость. Но выяснилось, что проводники, изготовленные из разных материалов и имеющие одинаковые геометрические размеры, обладают разным электрическим сопротивлением. Чтобы определить сопротивление проводника известного длины и сечения, ввели понятие удельного сопротивления — коэффициента, зависящего от материала.


В итоге сопротивление проводника известной длины и сечения будет равно


Удельное сопротивление применимо не только к твердым материалам, но и к жидкостям. Но его величина зависит еще и от примесей или других компонентов в исходном материале. Чистая вода не проводит электрический ток, являясь диэлектриком. Но в природе дистиллированной воды не бывает, в ней всегда встречаются соли, бактерии и другие примеси. Этот коктейль – проводник электрического тока, обладающий удельным сопротивлением.


Внедряя в металлы различные добавки, получают новые материалы – сплавы , удельное сопротивление которых отличается от того, что было у исходного материала, даже если добавка в него в процентном соотношении незначительна.

Зависимость удельного сопротивления от температуры

Удельные сопротивления материалов приводятся в справочниках для температуры, близкой к комнатной (20 °С). При увеличении температуры увеличивается сопротивление материала. Почему так происходит?

Электрического тока внутри материала проводят свободные электроны . Они под действием электрического поля отрываются от своих атомов и перемещаются между ними в направлении, заданным этим полем. Атомы вещества образуют кристаллическую решетку, между узлами которой и движется поток электронов, называемый еще «электронным газом». Под действием температуры узлы решетки (атомы) колеблются. Сами электроны тоже движутся не по прямой, а по запутанной траектории. При этом они часто сталкиваются с атомами, изменяя траекторию движения. В некоторые моменты времени электроны могут двигаться в сторону, обратную направлению электрического тока.

С увеличением температуры амплитуда колебаний атомов увеличивается. Соударение электронов с ними происходит чаще, движение потока электронов замедляется. Физически это выражается в увеличении удельного сопротивления.

Примером использования зависимости удельного сопротивления от температуры служит работа лампы накаливания. Вольфрамовая спираль, из которой сделана нить накала, в момент включения имеет малое удельное сопротивление. Бросок тока в момент включения быстро ее разогревает, удельное сопротивление увеличивается, а ток – уменьшается, становясь номинальным.

Тот же процесс происходит и с нагревательными элементами из нихрома. Поэтому и рассчитать их рабочий режим, определив длину нихромовой проволоки известного сечения для создания требуемого сопротивления, не получается. Для расчетов нужно удельное сопротивление нагретой проволоки, а в справочниках приведены значения для комнатной температуры. Поэтому итоговую длину спирали из нихрома подгоняют экспериментально. Расчетами же определяют примерную длину, а при подгонке понемногу укорачивают нить участок за участком.

Температурный коэффициент сопротивления

Но не во всех устройствах наличие зависимости удельного сопротивления проводников от температуры приносит пользу. В измерительной технике изменение сопротивления элементов схемы приводит к появлению погрешности.

Для количественного определения зависимости сопротивления материала от температуры введено понятие температурного коэффициента сопротивления (ТКС) . Он показывает, насколько изменяется сопротивление материала при изменении температуры на 1°С.

Для изготовления электронных компонентов – резисторов, используемых в схемах измерительной аппаратуры, применяются материалы с низким ТКС. Они стоят дороже, но зато параметры устройства не изменяются в широком диапазоне температур окружающей среды.

Но свойства материалов с высоким ТКС тоже используются. Работа некоторых датчиков температуры основана на изменении сопротивления материала, из которого изготовлен измерительный элемент. Для этого нужно поддерживать стабильное напряжение питания и измерять ток, проходящий через элемент. Откалибровав шкалу прибора, измеряющего ток, по образцовому термометру, получают электронный измеритель температуры. Этот принцип используется не только для измерений, но и для датчиков перегрева. Отключающих устройство при возникновении ненормальных режимов работы, приводящих к перегреву обмоток трансформаторов или силовых полупроводниковых элементов.

Используются в электротехнике и элементы, изменяющие свое сопротивление не от температуры окружающей среды, а от тока через них – терморезисторы . Пример их использования – системы размагничивания электронно-лучевых трубок телевизоров и мониторов. При подаче напряжения сопротивление резистора минимально, ток через него проходит в катушку размагничивания. Но этот же ток нагревает материал терморезистора. Его сопротивление увеличивается, уменьшая ток и напряжение на катушке. И так – до полного его исчезновения. В итоге на катушку подается синусоидальное напряжение с плавно уменьшающейся амплитудой, создающее в ее пространстве такое же магнитное поле. Результат – к моменту разогрева нити накала трубки она уже размагничена. А схема управления остается в запертом состоянии, пока аппарат не выключат. Тогда терморезисторы остынут и будут готовы к работе снова.

Явление сверхпроводимости

А что будет, если температуру материала уменьшать? Удельное сопротивление будет уменьшаться. Есть предел, до которого уменьшается температура, называемый абсолютным нулем . Это —273°С . Ниже этого предела температур не бывает. При этом значении удельное сопротивление любого проводника равно нулю.

При абсолютном нуле атомы кристаллической решетки перестают колебаться. В итоге электронное облако движется между узлами решетки, не соударяясь с ними. Сопротивление материала становится равным нулю, что открывает возможности для получения бесконечно больших токов в проводниках небольших сечений.

Явление сверхпроводимости открывает новые горизонты для развития электротехники. Но пока еще существуют сложности, связанные с получением в бытовых условиях сверхнизких температур, необходимых для создания этого эффекта. Когда проблемы будут решены, электротехника перейдет на новый уровень развития.

Примеры использования значений удельного сопротивления при расчетах

Мы уже познакомились с принципами расчета длины нихромовой проволоки для изготовления нагревательного элемента. Но есть и другие ситуации, когда необходимы знания удельных сопротивлений материалов.

Для расчета контуров заземляющих устройств используются коэффициенты, соответствующие типовым грунтам. Если же тип грунта в месте устройства контура заземления неизвестен, то для правильных расчетов предварительно измеряют его удельное сопротивление. Так результаты расчетов оказываются точнее, что исключает подгонку параметров контура при изготовлении: добавление числа электродов, приводящее к увеличению геометрических размеров заземляющего устройства.


Удельное сопротивление материалов, из которых изготовлены кабельные линии и шинопроводы, используется для расчетов их активного сопротивления. В дальнейшем при номинальном токе нагрузки с его помощью рассчитывается величина напряжения в конце линии . Если его величина окажется недостаточной, то заблаговременно увеличивают сечения токопроводов.

Каждое вещество способно проводить ток в разной степени, на эту величину влияет сопротивление материала. Обозначается удельное сопротивление меди, алюминия, стали и любого другого элемента буквой греческого алфавита ρ. Эта величина не зависит от таких характеристик проводника, как размеры, форма и физическое состояние, обычное же электросопротивление учитывает эти параметры. Измеряется удельное сопротивление в Омах, умноженных на мм² и разделенных на метр.

Категории и их описание

Любой материал способен проявлять два типа сопротивления в зависимости от подаваемого на него электричества. Ток бывает переменным или постоянным, что значительно влияет на технические показатели вещества. Так, существуют такие сопротивления:

  1. Омическое. Проявляется под воздействием постоянного тока. Характеризует трение, которое создается движением электрически заряженных частиц в проводнике.
  2. Активное. Определяется по такому же принципу, но создается уже под действием переменного тока.

В связи с этим определений удельной величины тоже два. Для постоянного тока она равна сопротивлению, которое оказывает единица длины проводящего материала единичной фиксированной площади сечения. Потенциальное электрополе воздействует на все проводники, а также полупроводники и растворы, способные проводить ионы. Эта величина определяет проводящие свойства самого материала. Форма проводника и его размеры не учитываются, поэтому ее можно назвать базовой в электротехнике и материаловедении.

При условии прохождения переменного тока удельная величина рассчитывается с учетом толщины проводящего материала. Здесь уже происходит воздействие не только потенциального, но и вихревого тока, кроме того, принимается во внимание частота электрических полей. Удельное сопротивление этого типа больше, чем при постоянном токе, поскольку здесь идет учет положительной величины сопротивления вихревому полю. Также эта величина зависит от формы и размеров самого проводника. Именно эти параметры и определяют характер вихревого движения заряженных частиц.

Переменный ток вызывает в проводниках определенные электромагнитные явления. Они очень важны для электротехнических характеристик проводящего материала:

  1. Скин-эффект характеризуется ослаблением электромагнитного поля тем больше, чем дальше оно проникает в среду проводника. Это явление также носит название поверхностного эффекта.
  2. Эффект близости снижает плотность тока благодаря близости соседних проводов и их влиянию.

Эти эффекты являются очень важными при расчете оптимальной толщины проводника, так как при использовании провода, у которого радиус больше глубины проникновения тока в материал, остальная его масса останется незадействованной, а следовательно, такой подход будет неэффективным. В соответствии с проведенными расчетами эффективный диаметр проводящего материала в некоторых ситуациях будет следующим:

  • для тока в 50 Гц - 2,8 мм;
  • 400 Гц - 1 мм;
  • 40 кГц - 0,1 мм.

Ввиду этого для высокочастотных токов активно применяется использование плоских многожильных кабелей, состоящих из множества тонких проводов.

Характеристики металлов

Удельные показатели металлических проводников содержатся в специальных таблицах. По этим данным можно производить необходимые дальнейшие расчеты. Пример такой таблицы удельных сопротивлений можно увидеть на изображении.

На таблице видно, что наибольшей проводимостью обладает серебро - это идеальный проводник среди всех существующих металлов и сплавов. Если рассчитать, сколько потребуется провода из этого материала для получения сопротивления в 1 Ом, то выйдет 62,5 м. Проволоки из железа для такой же величины понадобится целых 7,7 м.

Какими бы замечательными свойствами ни обладало серебро, оно является слишком дорогим материалом для массового использования в электросетях, поэтому широкое применение в быту и промышленности нашла медь. По величине удельного показателя она стоит на втором месте после серебра, а по распространенности и простоте добычи намного лучше его. Медь обладает и другими преимуществами, позволившими ей стать самым распространенным проводником. К ним относятся:

Для применения в электротехнике используют рафинированную медь, которая после плавки из сульфидной руды проходит процессы обжигания и дутья, а далее обязательно подвергается электролитической очистке. После такой обработки можно получить материал очень высокого качества (марки М1 и М0), который будет содержать от 0,1 до 0,05% примесей. Важным нюансом является присутствие кислорода в крайне малых количествах, так как он негативно влияет на механические характеристики меди.

Часто этот металл заменяют более дешевыми материалами - алюминием и железом, а также различными бронзами (сплавами с кремнием, бериллием, магнием, оловом, кадмием, хромом и фосфором). Такие составы обладают более высокой прочностью по сравнению с чистой медью, хотя и меньшей проводимостью.

Преимущества алюминия

Хоть алюминий обладает большим сопротивлением и более хрупок, его широкое использование объясняется тем, что он не настолько дефицитен, как медь, а следовательно, стоит дешевле. Удельное сопротивление алюминия составляет 0,028, а его низкая плотность обеспечивает ему вес в 3,5 раза меньше, чем медь.

Для электрических работ применяют очищенный алюминий марки А1, содержащий не более 0,5% примесей. Более высокую марку АВ00 используют для изготовления электролитических конденсаторов, электродов и алюминиевой фольги. Содержание примесей в этом алюминии составляет не более 0,03%. Существует и чистый металл АВ0000 , включающий не более 0,004% добавок. Имеют значение и сами примеси: никель, кремний и цинк незначительно влияют на проводимость алюминия, а содержание в этом металле меди, серебра и магния дает ощутимый эффект. Наиболее сильно уменьшают проводимость таллий и марганец.

Алюминий отличается хорошими антикоррозийными свойствами. При контакте с воздухом он покрывается тонкой пленкой окиси, которая и защищает его от дальнейшего разрушения. Для улучшения механических характеристик металл сплавляют с другими элементами.

Показатели стали и железа

Удельное сопротивление железа по сравнению с медью и алюминием имеет очень высокие показатели, однако благодаря доступности, прочности и устойчивости к деформациям материал широко используют в электротехническом производстве.

Хоть железо и сталь, удельное сопротивление которой еще выше, имеют существенные недостатки, изготовители проводникового материала нашли методы их компенсирования. В частности, низкую стойкость к коррозии преодолевают путем покрытия стальной проволоки цинком или медью.

Свойства натрия

Металлический натрий также очень перспективен в проводниковом производстве. По показателям сопротивления он значительно превышает медь, однако имеет плотность в 9 раз меньше, чем у неё. Это позволяет использовать материал в изготовлении сверхлёгких проводов.

Металлический натрий очень мягкий и совершенно неустойчив к любого рода деформационным воздействиям, что делает его использование проблемным - провод из этого металла должен быть покрыт очень прочной оболочкой с крайне малой гибкостью. Оболочка должна быть герметичной, так как натрий проявляет сильную химическую активность в самых нейтральных условиях. Он моментально окисляется на воздухе и демонстрирует бурную реакцию с водой, в том числе и с содержащейся в воздухе.

Еще одним плюсом использования натрия является его доступность. Его можно получить в процессе электролиза расплавленного хлористого натрия, которого в мире существует неограниченное количество. Другие металлы в этом плане явно проигрывают.

Чтобы рассчитать показатели конкретного проводника, необходимо произведение удельного числа и длины проволоки разделить на площадь ее сечения. В результате получится значение сопротивления в Омах. Например, чтобы определить, чему равно сопротивление 200 м проволоки из железа с номинальным сечением 5 мм², нужно 0,13 умножить на 200 и разделить полученный результат на 5. Ответ - 5,2 Ом.

Правила и особенности вычисления

Для измерения сопротивления металлических сред пользуются микроомметрами. Сегодня их выпускают в цифровом варианте, поэтому проведенные с их помощью измерения отличаются точностью. Объяснить ее можно тем, что металлы обладают высоким уровнем проводимости и имеют крайне маленькое сопротивление. Для примера, нижний порог измерительных приборов имеет значение 10 -7 Ом.

С помощью микроомметров можно быстро определить, насколько качественен контакт и какое сопротивление проявляют обмотки генераторов, электродвигателей и трансформаторов, а также электрические шины. Можно вычислить присутствие включений другого металла в слитке. Например, вольфрамовый кусок, покрытый позолотой, показывает вдвое меньшую проводимость, чем полностью золотой. Тем же способом можно определить внутренние дефекты и полости в проводнике.

Формула удельного сопротивления выглядит следующим образом: ρ = Ом · мм 2 /м . Словами ее можно описать как сопротивление 1 метра проводника , имеющего площадь сечения 1 мм². Температура подразумевается стандартная - 20 °C.

Влияние температуры на измерение

Нагревание или охлаждение некоторых проводников оказывает значительное влияние на показатели измерительных приборов. В качестве примера можно привести следующий опыт: необходимо подключить к аккумулятору спирально намотанную проволоку и подключить в цепь амперметр.

Чем сильнее нагревается проводник, тем меньше становятся показания прибора. Сила тока имеет обратно пропорциональную зависимость от сопротивления. Следовательно, можно сделать вывод, что в результате нагрева проводимость металла уменьшается. В большей или меньшей степени так ведут себя все металлы, однако изменения проводимости у некоторых сплавов практически не наблюдается.

Примечательно, что жидкие проводники и некоторые твердые неметаллы имеют тенденцию уменьшать свое сопротивление с повышением температуры. Но и эту способность металлов ученые обратили себе на пользу. Зная температурный коэффициент сопротивления (α) при нагреве некоторых материалов, можно определять внешнюю температуру. Например, проволоку из платины, размещенную на каркасе из слюды, помещают в печь, после чего проводят измерение сопротивления. В зависимости от того, насколько оно изменилось, делают вывод о температуре в печи. Такая конструкция называется термометром сопротивления.

Если при температуре t 0 сопротивление проводника равно r 0, а при температуре t равно rt , то температурный коэффициент сопротивления равен

Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200 °C).

Содержание:

Появление электрического тока наступает при замыкании цепи, когда на зажимах возникает разность потенциалов. Перемещение свободных электронов в проводнике осуществляется под действием электрического поля. В процессе движения, электроны сталкиваются с атомами и частично передают им свою накопившуюся энергию. Это приводит к уменьшению скорости их движения. В дальнейшем, под влиянием электрического поля, скорость движения электронов снова увеличивается. Результатом такого сопротивления становится нагревание проводника, по которому течет ток. Существуют различные способы расчетов этой величины, в том числе и формула удельного сопротивления, применяющаяся для материалов с индивидуальными физическими свойствами.

Электрическое удельное сопротивление

Суть электрического сопротивления заключается в способности того или иного вещества превращать электрическую энергию в тепловую во время действия тока. Данная величина обозначается символом R, а в качестве единицы измерения используется Ом. Значение сопротивления в каждом случае связано со способностью того или иного .

В процессе исследований была установлена зависимость от сопротивления. Одним из основных качеств материала становится его удельное сопротивление, меняющееся в зависимости от длины проводника. То есть, с увеличением длины провода, возрастает и значение сопротивления. Данная зависимость определяется как прямо пропорциональная.

Другим свойством материала является площадь его поперечного сечения. Она представляет собой размеры поперечного среза проводника, независимо от его конфигурации. В этом случае получается обратно пропорциональная связь, когда с увеличением площади поперечного сечения уменьшается .

Еще одним фактором, влияющим на сопротивление, является сам материал. Во время проведения исследований была обнаружена различная сопротивляемость у разных материалов. Таким образом, были получены значения удельных электрических сопротивлений для каждого вещества.

Выяснилось, что самыми лучшими проводниками являются металлы. Среди них самой низкой сопротивляемостью и высокой проводимостью обладают и серебро. Они применяются в наиболее ответственных местах электронных схем, к тому же медь имеет сравнительно низкую стоимость.

Вещества, удельное сопротивление которых очень высокое, считаются плохими проводниками электрического тока. Поэтому они используются в качестве изоляционных материалов. Диэлектрические свойства более всего присущи фарфору и эбониту.

Таким образом, удельное сопротивление проводника имеет большое значение, поскольку с его помощью можно определить материал, из которого был изготовлен проводник. Для этого измеряется площадь сечения, определяется сила тока и напряжение. Это позволяет установить значение удельного электрического сопротивления, после чего, с помощью специальной таблицы можно легко определить вещество. Следовательно, удельное сопротивление относится к наиболее характерным признакам того или иного материала. Этот показатель позволяет определить наиболее оптимальную длину электрической цепи так, чтобы соблюдался баланс .

Формула

На основании полученных данных можно сделать вывод, что удельным сопротивлением будет считаться сопротивление какого-либо материала с единичной площадью и единичной длиной. То есть сопротивление, равное 1 Ом возникает при напряжении 1 вольт и силе тока 1 ампер. На этот показатель оказывает влияние степень чистоты материала. Например, если к меди добавить всего лишь 1% марганца, то ее сопротивляемость увеличится в 3 раза.

Удельное сопротивление и проводимость материалов

Проводимость и удельное сопротивление рассматриваются как правило при температуре 20 0 С. Эти свойства будут отличаться у различных металлов:

  • Медь . Чаще всего применяется для изготовления проводов и кабелей. Она обладает высокой прочностью, стойкостью к коррозии, легкой и простой обработкой. В хорошей меди доля примесей составляет не более 0,1%. В случае необходимости медь может использоваться в сплавах с другими металлами.
  • Алюминий . Его удельный вес меньше, чем у меди, однако у него более высокая теплоемкость и температура плавления. Чтобы расплавить алюминий, потребуется энергии значительно больше, чем для меди. Примеси в качественном алюминии не превышают 0,5%.
  • Железо . Наряду с доступностью и дешевизной, этот материал обладает высоким удельным сопротивлением. Кроме того, у него низкая устойчивость к коррозии. Поэтому практикуется покрытие стальных проводников медью или цинком.

Отдельно рассматривается формула удельного сопротивления в условиях низких температур. В этих случаях свойства одних и тех же материалов будут совершенно другими. У некоторых из них сопротивляемость может упасть до нулевой отметки. Такое явление получило название сверхпроводимости, при которой оптические и структурные характеристики материала остаются неизменными.

Для каждого проводника существует понятие удельного сопротивления. Эта величина состоит из Омов, умножаемых на квадратный миллиметр, далее, делимое на один метр. Иными словами, это сопротивление проводника, длина которого составляет 1 метр, а сечение - 1 мм 2 . То же самое представляет собой и удельное сопротивление меди - уникального металла, получившего широкое распространение в электротехнике и энергетике.

Свойства меди

Благодаря своим свойствам этот металл одним из первых начал применяться в области электричества. Прежде всего, медь является ковким и пластичным материалом с отличными свойствами электропроводимости. До сих пор в энергетике нет равноценной замены этому проводнику.

Особенно ценятся свойства специальной электролитической меди, обладающей высокой чистотой. Этот материал позволил выпускать провода с минимальной толщиной в 10 микрон.

Кроме высокой электропроводности, медь очень хорошо поддается лужению и другим видам обработки.

Медь и ее удельное сопротивление

Любой проводник оказывает сопротивление, если через него пропустить электрический ток. Значение зависит от длины проводника и его сечения, а также от действия определенных температур. Поэтому, удельное сопротивление проводников зависит не только от самого материала, но и от его определенной длины и площади поперечного сечения. Чем легче материал пропускает через себя заряд, тем ниже его сопротивление. Для меди, показатель удельного сопротивления составляет 0,0171 Ом х 1 мм 2 /1 м и лишь немного уступает серебру. Однако, использование серебра в промышленных масштабах экономически невыгодно, поэтому, медь является лучшим проводником, используемым в энергетике.

Удельное сопротивление меди связано и с ее высокой проводимостью. Эти величины прямо противоположны между собой. Свойства меди, как проводника, зависят и от температурного коэффициента сопротивления. Особенно, это касается сопротивление, на которое оказывает влияние температура проводника.

Таким образом, благодаря своим свойствам, медь получила широкое распространение не только в качестве проводника . Этот металл используется в большинстве приборов, устройств и агрегатов, функционирование которых связано с электрическим током.

  • проводники;
  • диэлектрики (с изоляционными свойствами);
  • полупроводники.

Электроны и ток

В основе современного представления об электрическом токе лежит предположение о том, что он состоит из материальных частиц - зарядов. Но различные физические и химические опыты дают основания утверждать, что эти носители заряда могут быть различного типа в одном и том же проводнике. И эта неоднородность частиц влияет на плотность тока. Для вычислений, которые связаны с параметрами электротока, применяются определенные физические величины. Среди них важное место занимают проводимость вместе с сопротивлением.

  • Проводимость связана с сопротивлением взаимной обратной зависимостью.

Известно, что при существовании некоторого напряжения, приложенного к электрической цепи, в ней появляется электрический ток, величина которого связана с проводимостью этой цепи. Это фундаментальное открытие сделал в свое время немецкий физик Георг Ом. С тех пор в ходу закон, называемый законом Ома. Он существует для разных вариантов цепей. Поэтому формулы для них могут быть непохожими друг на друга, поскольку соответствуют совсем разным условиям.

В любой электрической цепи имеется проводник. Если в нем находится один тип частиц-носителей заряда, ток в проводнике подобен потоку жидкости, который имеет определенную плотность. Она определяется по такой формуле:

Большинство металлов соответствуют однотипности заряженных частиц, благодаря которым существует электрический ток. Для металлов вычисление удельной электрической проводимости производится по такой формуле:

Поскольку можно вычислить проводимость, определить удельное электрическое сопротивление теперь труда не составит. Выше уже было упомянуто, что удельное сопротивление проводника - это величина, обратная проводимости. Следовательно,

В этой формуле буква греческого алфавита ρ (ро) используется для обозначения удельного электрического сопротивления. Такое обозначение наиболее часто используется в технической литературе. Однако можно встретить и несколько иные формулы, с помощью которых вычисляется удельное сопротивление проводников. Если для расчетов применять классическую теорию металлов и электронную проводимость в них, удельное сопротивление вычисляется по такой формуле:

Однако есть одно «но». На состояние атомов в металлическом проводнике влияет продолжительность процесса ионизации, которое осуществляется электрическим полем. При однократном ионизирующем воздействии на проводник атомы в нем получат однократную ионизацию, которая создаст баланс между концентрацией атомов и свободных электронов. И величины этих концентраций получатся равными. В этом случае имеют место такие зависимости и формулы:

Девиации удельных проводимостей и сопротивлений

Далее рассмотрим, от чего зависит удельная проводимость, связанная обратной зависимостью с удельным сопротивлением. Удельное сопротивление вещества - это довольно-таки абстрактная физическая величина. Каждый проводник существует в виде конкретного образца. Для него характерно наличие различных примесей и дефектов внутренней структуры. Они учитываются как отдельные слагаемые выражения, определяющего удельное сопротивление в соответствии с правилом Маттиссена. Это правило также учитывает рассеяние движущегося потока электронов на колеблющихся в зависимости от температуры узлах кристаллической решетки образца.

Наличие внутренних дефектов, таких как вкрапление различных примесей и микроскопические пустоты, также увеличивает удельное сопротивление. Для определения количества примесей в образцах удельное сопротивление материалов измеряется для двух значений температуры материала образца. Одна температурная величина - комнатная, а другая соответствует жидкому гелию. По отношению результата измерения при комнатной температуре к результату при температуре жидкого гелия получают коэффициент, который иллюстрирует структурное совершенство материала и его химическую чистоту. Коэффициент обозначается буквой β.

Если в качестве проводника электрического тока рассматривается металлический сплав со структурой твердого раствора, которая неупорядочена, величина остаточного удельного сопротивления может быть существенно больше удельного сопротивления. Такая особенность металлических сплавов из двух составляющих, не относящихся к редкоземельным элементам, так же, как и к переходным элементам, охватывается специальным законом. Его называют законом Нордгейма.

Современные технологии в электронике все больше стремятся в сторону миниатюризации. Причем настолько, что вскоре появится слово «наносхема» взамен микросхемы. Проводники в таких устройствах настолько тонкие, что правильным будет называть их пленками из металла. Вполне понятно то, что пленочный образец своим удельным сопротивлением будет отличаться в большую сторону от более крупного проводника. Малая толщина металла в пленке приводит к появлению в нем свойств полупроводников.

Начинает проявляться соразмерность толщины металла со свободным пробегом электронов в этом материале. Места для движения электронов остается мало. Потому они начинают мешать друг другу двигаться упорядоченно, что и приводит к увеличению удельного сопротивления. Для пленок из металла удельное сопротивление рассчитывают по специальной формуле, полученной на основе экспериментов. Формула названа именем Фукса - ученого, который изучал удельное сопротивление пленок.

Пленки - это весьма специфические образования, которые сложно повторить так, чтобы свойства нескольких образцов были одинаковыми. Для приемлемой точности в оценке пленок применяют специальный параметр - удельное поверхностное сопротивление.

Из металлических пленок на подложке микросхем формируются резисторы. По этой причине расчеты удельного сопротивления - это весьма востребованная задача в микроэлектронике. Величина удельного сопротивления, очевидно, имеет влияние со стороны температуры и связана с ней зависимостью прямой пропорциональности. Для большинства металлов эта зависимость имеет некоторый линейный участок в определенном температурном диапазоне. В таком случае удельное сопротивление определяется формулой:

В металлах электроток возникает по причине большого числа свободных электронов, концентрация которых относительно велика. Причем, электроны так же определяют и большую теплопроводность металлов. По этой причине между удельной электрической проводимостью и удельной теплопроводностью установлена связь особым законом, который был обоснован экспериментальным путем. Этот закон Видемана-Франца характерен такими формулами:

Заманчивые перспективы сверхпроводимости

Однако самые удивительные процессы происходят при минимальной технически достижимой температуре жидкого гелия. При таких условиях охлаждения все металлы практически утрачивают свое удельное сопротивление. Провода из меди, охлажденные до температуры жидкого гелия, оказываются способными проводить токи многократно большие по сравнению с обычными условиями. Если бы на практике такое стало возможным, экономический эффект получился бы неоценимо большим.

Еще более удивительным оказалось открытие высокотемпературных проводников. Эти разновидности керамики при обычных условиях были очень далеки по своему удельному сопротивлению от металлов. Но при температуре примерно на три десятка градусов выше жидкого гелия они становились сверхпроводниками. Открытие такого поведения неметаллических материалов стало мощным стимулом для исследований. Из-за величайших экономических последствий практического применения сверхпроводимости на это направление были брошены весьма значительные финансовые ресурсы, начались масштабные исследования.

Но пока что, как говорится, «воз и ныне там»… Керамические материалы оказались непригодными для практического применения. Условия поддержания состояния сверхпроводимости требовали таких больших расходов, что уничтожалась вся выгода от ее использования. Но эксперименты со сверхпроводимостью продолжаются. Прогресс налицо. Уже получена сверхпроводимость при температуре 165 градусов Кельвина, однако для этого требуется высокое давление. Создание и поддержание таких особых условий опять-таки отрицает коммерческое использование этого технического решения.

Дополнительные факторы влияния

В настоящее время все продолжает идти своим путем, и для меди, алюминия и некоторых других металлов удельное сопротивление продолжает обеспечивать их промышленное использование для изготовления проводов и кабелей. В заключение стоит добавить еще немного информации о том, что не только удельное сопротивление материала проводника и температура окружающей среды влияют на потери в нем при прохождении электротока. Весьма значима геометрия проводника при использовании его на повышенной частоте напряжения и при большой силе тока.

В этих условиях электроны стремятся сосредотачиваться вблизи поверхности провода, и его толщина как проводника утрачивает смысл. Поэтому можно оправданно уменьшить в проводе количество меди, изготовив из нее только наружную часть проводника. Еще одним фактором увеличения удельного сопротивления проводника является деформация. Поэтому, несмотря на высокие показатели некоторых электропроводящих материалов, в определенных условиях они могут не проявиться. Следует правильно подбирать проводники для конкретных задач. В этом помогут таблицы, показанные далее.