В каком случае сохраняется импульс. Импульс

Задачи урока:

  1. Продолжить формирование понятий об импульсе тела и импульсе силы, а также умений применять их к анализу явления взаимодействия тел в простейших случаях;
  2. Добиться усвоения учащимися формулировки закона сохранения импульса, научить школьников записывать уравнение закона в векторной форме для двух взаимодействующих тел;
  3. Требовать от учащихся анализа механического взаимодействия тел; умения выделять признаки явления, по которым оно обнаруживается; указывать условия, при которых происходит рассматриваемое явление; объяснять примеры использования явления;
  4. Повторить принцип относительности Галилея, раскрыть смысл относительности в применении к закону сохранения импульса;
  5. Ознакомить учащихся с применением закона сохранения импульса в военной и космической технике, объяснить принцип реактивного движения.

План урока:

  1. Повторение темы: “Импульс тела”.
  2. Изучение нового материала.
  3. Введение понятия о механической системе.
  4. Теоретический вывод закона сохранения импульса.
  5. Условия применения закона сохранения импульса.
  6. Обоснование утверждения: закон сохранения импульса справедлив во всех инерциальных системах отсчета.
  7. Закон сохранения импульса в технике и природе.
  8. Закрепление.
  9. Задание на дом.

Методы и приемы:

  1. Тестирование. Беседа, обсуждение результатов тестирования. Работа с учебником.
  2. Абстрагирование, моделирование.
  3. Беседа. Демонстрация опытов. Работа с учебником.
  4. Беседа. Работа с учебником. Компьютерный эксперимент.
  5. Работа с учебником. Наблюдения. Обобщение наблюдений. Выдвижение гипотезы. Теоретическое предвидение. Эксперимент.
  6. Беседа. Наблюдения. Обобщение наблюдений.
  7. Демонстрация. Наблюдение. Компьютерное моделирование.
  8. Повторение основных моментов урока. Обсуждение качественных вопросов.
  9. Записи в дневниках.

Актуализация:

Учитель: На предыдущем уроке мы познакомились с одним из основных понятий механики – импульсом: импульсом силы и импульсом тела. Что означает в переводе на русский язык слово “импульс”?

Ученик: Импульс в переводе с латинского языка означает “толчок, удар, побуждение”. Раньше использовался термин “количество движения”.

Учитель: Кто впервые ввел в физику понятие количества движения?

Ученик: Понятие количества движения впервые было введено в физику в XVII в. французским ученым Р. Декартом при изучении им законов механического движения.

Учитель: Эффекты, производимые ударом, толчком всегда вызывали удивление:

  • почему тяжелый молот, лежащий на куске железа, только прижимает его к опоре, а тот же молот, ударяя по металлу, изменяет форму изделия?
  • в чем секрет циркового фокуса, когда сокрушительный удар молота по массивной наковальне не наносит никакого вреда человеку, на груди которого установлена эта наковальня?
  • каким образом движется медуза, кальмар и т.п.?
  • почему ракета применяется для космических полетов, от чего она отталкивается при своем движении?

На эти и другие подобные вопросы, вы сможете ответить, узнав на уроке об одном из основных законов физики – законе сохранения импульса, применяемом не только в механике, но и в других областях физики, и имеющем огромное значение для научной и практической деятельности человека. К обсуждению некоторых из этих вопросов мы вернемся в конце урока.

Ученикам объявляется тема урока: “Закон сохранения импульса”, а также цели урока:

  • еще раз вспомним, что такое импульс силы и импульс тела, повторим, как связаны эти физические величины между собой;
  • изучим закон сохранения импульса и рассмотрим условия его применимости;
  • узнаем, какое значение имеет этот закон в живой природе и как он применяется в авиационной и космической технике.

Повторение темы “Импульс материальной точки”

Для проверки знаний по теме “Импульс материальной точки” используется тест, состоящий из четырех вопросов в двух вариантах. Каждый вопрос демонстрируется на экране в PowerPoint: <Приложение 1 >. Время, отведенное на выполнение каждого задания, ограничено, вопросы сменяются автоматически на экране. Ответы ученики выставляют в двух бланках, выданных заранее. Один из бланков сдается после окончания работы учителю, второй ученики оставляют для проверки результата и анализа своей работы. После окончания работы на экране демонстрируются варианты правильных ответов и, в случае необходимости учитель может вернуться с помощью гиперссылок к вопросам или прокомментировать правильный ответ. Предложенные вопросы теста проверяют следующие элементы знаний:

  • понятие “импульс тела” и “импульс силы”, направление импульса;
  • связь импульса силы и импульса тела;
  • векторный характер импульса, упругий и неупругий удар, направление изменения импульса;
  • принцип Галилея и относительность импульса тела в ИСО.

Изложение нового материала:

Учитель: Скажите, почему необходимо было ввести в физику понятие импульса?

Ученик: Основную задачу механики – определение положения тела в любой момент времени – можно решить с помощью законов Ньютона, если заданы начальные условия и силы, действующие на тело, как функции координат, скоростей и времени. Для этого необходимо записать второй закон Ньютона: ученик записывает на доске и поясняет запись: <Рисунок 1>.

Ученик: Из этой записи видно, что сила, требуемая для изменения скорости движущегося тела за определенный промежуток времени, прямо пропорциональна как массе тела, так и величине изменения его скорости.

Учитель: Какой вывод еще можно сделать из полученной записи II закона Ньютона?

Ученик: Импульс тела изменяется под действием данной силы одинаково у всех тел, если время действия силы одинаково.

Учитель: Верно. Это очень важный вывод и эта форма записи II закона Ньютона используется при решении многих практических задач, в которых требуется определить конечный результат действия силы. И, кроме того, эта запись позволяет связать действие силы непосредственно с начальными и конечными скоростями тел, не выясняя промежуточного состояния системы взаимодействующих тел, так как на практике это, как правило, не всегда возможно. Таким образом ясно, что переоценить роль механического удара в технике трудно. Неудивительно, что закономерности (но не теория) удара были установлены эмпирически задолго до открытия основных принципов динамики.

Демонстрируется в PowerPoint историческая справка “Изучение упругих и неупругих ударов”: <Приложение 2 >. В процессе сообщения исторической справки демонстрируются результаты исследований упругого и неупругого удара: <Рисунок 2>.

В опыте “а” доказывается, что при скатывании шара с наклонного желоба с лотком, импульс, приобретаемый шаром в т. А, пропорционален дальности его полета в горизонтальном направлении, а значит и скорости в этом направлении.

В опыте “б” показывается, что при упругом столкновении одинаковых шаров, находящихся на горизонтальном участке лотка в момент удара в т. А, происходит обмен импульсами.

В опыте “в” показывается, что при неупругом центральном столкновении шаров одинаковой массы (между ними помещается небольшой кусочек пластилина) оба шара проходят одинаковые расстояния, т.е. общий импульс шаров до удара и после удара одинаков.

Введение понятия о механической системе

Учитель: Поскольку одной из основных наших целей на уроке является вывод закона сохранения импульса взаимодействующих тел и выяснение границ его применимости, то начнем рассмотрение этого вопроса с анализа взаимодействия двух тел в замкнутой системе. Учитель анализирует рисунок 104 из : <Рисунок 3 >. На доске делаются дополнительные рисунки: <Рисунок 4>.

Учитель: Физическая система считается замкнутой, если внешние силы не действуют на эту систему. Однако реально создать такую систему невозможно, так как, например, действие гравитационных сил простирается до бесконечности, поэтому будем считать, что замкнутая система – система тел, в которой действие внешних сил компенсируется. Но, строго говоря, даже в этом случае замкнутая система является абстракцией, т.к. действие некоторых внешних сил (например, силу трения), не всегда возможно компенсировать. В этом случае подобными силами, как правило, пренебрегают.

Вывод закона сохранения импульса

Учитель: Исследуем физическую модель абсолютно упругого взаимодействия двух шаров, образующих замкнутую систему: учащиеся работают с учебником, анализируя рисунок 104 из учебника , который дублируется на доске в PowerPoint: <Рисунок 3>.

Учитель: Назовите основные черты рассматриваемой модели физического явления?

Шары считаем материальными точками (или удар центральный);

Удар абсолютно упругий, что означает, что деформации нет: суммарная кинетическая энергия тел до удара равна суммарной кинетической энергии тел после удара;

Пренебрегаем действием сил сопротивления и тяжести, а также другими возможными внешними силами.

Учитель: Действие каких сил, и в какой момент показано на чертеже?

Ученик: При столкновении шаров между ними действуют силы упругости F 12 и F 21 , которые по III закону Ньютона равны по модулю и противоположны по направлению.

Учитель: Запишите это математически.

Ученик на доске записывает выражение: <Рисунок 5>

Учитель: Что можно сказать о времени действия этих сил на тела?

Ученик: Время действия тел друг на друга при взаимодействии одинаково.

Учитель: Применяя второй закон Ньютона, перепишите полученное равенство, используя, начальные и конечные импульсы взаимодействующих тел.

Ученик на доске, комментируя, выводит закон сохранения импульса: <Рисунок 6>

Учитель: К какому выводу вы пришли?

Ученик: Геометрическая сумма импульсов тел после взаимодействия равна геометрической сумме импульсов этих тел до взаимодействия.

Учитель: Да, действительно, это утверждение и является законом сохранения импульса: Суммарный импульс замкнутой системы тел остается постоянным при любых взаимодействиях тел системы между собой.

Учитель: Прочитайте формулировку закона сохранения импульса на стр. 128 учебника и ответьте на вопрос: Могут ли внутренние силы системы изменить общий импульс системы?

Ученик: Внутренние силы системы не могут изменить импульс системы.

Учитель: Верно. Посмотрите опыт и объясните его.

Эксперимент: На гладкой горизонтальной поверхности демонстрационного стола располагают четыре одинакового катка параллельно друг другу. На них кладут полосу плотного картона длиной около 80 см. Механическая игрушка движется в одну сторону, а картон в противоположную.

Учитель обращает внимание учащихся на то, что в этом опыте при обмене импульсами между телами в замкнутой системе центр масс этой системы не меняет своего положения в пространстве. Движущееся тело и опора составляют замкнутую систему взаимодействующих тел. При взаимодействии этих тел возникают внутренние силы, тела обмениваются импульсами, а общий импульс системы не меняется, это видно по тому, что центр масс системы не меняет своего положения в пространстве. Внутренние силы изменяют импульсы отдельных тел системы, но изменить импульс всей системы они не могут.

Условия применимости закона сохранения импульса

Учитель: Мы сформулировали закон сохранения импульса с учетом введенного ограничения в виде модели взаимодействующих тел замкнутой системы. Но все реальные системы, строго говоря, не являются замкнутыми. Тем не менее, во многих случаях закон сохранения импульса можно применять. Как вы считаете, в каких случаях это допустимо?

Ученик 1: Если внешние силы малы по сравнению с внутренними силами системы, и их действием можно пренебречь.

Ученик 2: Когда внешние силы компенсируют друг друга.

Учитель: К сказанному надо добавить, что закон сохранения импульса можно применять еще и в том случае, если начальные и конечные состояния системы отделены малым интервалом времени (например, взрыв гранаты, выстрел из орудия и т.п.). За это время такие внешние силы, как силы тяжести и трения, заметно не изменят импульс системы.

Но и это еще не все возможные условия применения закона сохранения импульса. Скажите, будет ли система тел на Земле или вблизи поверхности Земли являться замкнутой, например, два шарика и тележка?

Ученик: Нет, так как на эти тела действует сила тяжести, которая является внешней силой.

Учитель: Это утверждение верное, запомним его и проделаем три опыта: <Рисунок 7>

В первом опыте будем наблюдать падение шарика в тележку, скатившегося по правому желобу. Затем повторим опыт, отпуская шарик с той же высоты по левому желобу. И, наконец, оба шарика с одинаковой высоты падают вдоль обоих желобов в ту же тележку. Объясните, почему тележка в первых двух опытах двигалась, а в третьем осталась неподвижной.

Ученик: В первых двух опытах тележка перемещалась в разные стороны, но на одинаковое расстояние. Она получала импульсы при взаимодействии с каждым из шаров.

Учитель: Правильно. Что вы можете сказать о горизонтальных проекциях импульсов шаров. Объясните результаты третьего опыта.

Ученик: Так как шарики движутся с одинаковой высоты и имеют равные массы, то горизонтальные проекции их импульсов равны и противоположно направлены. Следовательно, их сумма равна нулю, поэтому тележка остается неподвижной.

Учитель: Это происходит потому, что в горизонтальном направлении на тела не действует сила тяжести, а сила трения и сила сопротивления воздуха малы. В подобных случаях применяют закон сохранения импульса, так как система тел считается замкнутой вдоль определенного направления.

Далее по учебнику (стр. 129 пример: система “винтовка – пуля”) показывается, что: Закон сохранения импульса можно применить, если проекция равнодействующей внешних сил на выбранное направление равна нулю.

Относительность закона сохранения импульса

Учитель: Попытаемся ответить на вопрос: во всех ли инерциальных системах отсчета справедлив закон сохранения импульса? Может система отсчета, связанная с Землей, обладать преимуществом по сравнению с другими системами отсчета?

Далее демонстрируется опыт по взаимодействию тел на неподвижной и движущейся платформе. Равномерное движение обеспечивается технической игрушкой с электромотором. На экране результаты эксперимента дублируются в заранее приготовленной демонстрационной презентации: <Приложение 3 >.

Учитель: Одинаковы ли импульсы тел в системах отсчета “Земля” и “платформа”?

Ученик: Нет, так скорости тележек относительно Земли и платформы различны.

Учитель: Верно. В этом проявляется относительность импульса. Запишите импульсы взаимодействующих на платформе тел, используя введенные на рисунке обозначения.

Ученик: (комментируя):

В системе отсчета “Земля”: <Рисунок 8>

В системе отсчета “Платформа”: <Рисунок 9>

Учитель: Что нам известно об импульсе системы тел относительно Земли?

Ученик: Импульс замкнутой системы тел относительно Земли сохраняется.

Учитель: Выразите скорости тел относительно платформы через скорость тел относительно Земли и проанализируйте полученное выражение.

Ученик: (комментируя): <Рисунок 10>

таким образом: <Рисунок 11>

Так как: <Рисунок 12> , (m 1 + m 2) и v 0 тоже не меняются со временем, то значит импульс тел в системе отсчета “Платформа” также сохраняется: <Рисунок 13>

Учитель: Итак, мы показали, что закон сохранения импульса выполняется во всех инерциальных системах отсчета. Это соответствует принципу относительности Галилея.

Закон сохранения импульса в технике и природе

На экране в PowerPoint демонстрируются примеры реактивного движения в технике и природе <Приложение 4 >.

Учитель: Что общего у кальмара, личинки стрекозы и космического челнока “Space Shatll”?

Ученик: Все рассмотренные тела при своем движении используют принцип реактивного движения.

Учитель: Верно. Рассмотрим подробнее принцип реактивного движения, изученный ранее в 9-м классе. Реактивное движение – движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Демонстрируется реактивное движение на примере движения воздушного шарика на платформе: <Рисунок 14>.

Учитель: Рассмотрим модель реактивного движения.

Учитель: Смоделируем действие реактивного двигателя: <Приложение 6 >.

Пренебрегая взаимодействием ракеты с внешними телами, будем считать систему “ракета – газы” замкнутой;

Топливо и окислитель выгорают сразу;

М – масса оболочки, v – скорость оболочки, m – масса газа, выбрасываемого из сопла, u – скорость истечения газов.

Оболочка ракеты и продукты сгорания образуют замкнутую систему. Следовательно, оболочка вместе со второй ступенью приобретает импульс p 0 = Mv , а истекающий из сопла газ приобретает импульс p г = - mu . Так как до старта импульс оболочки и газа был равен 0, то p 0 = - p г и оставшаяся часть ракеты будет двигаться со скоростью v = mu/M в направлении, противоположном направлению истечения продуктов сгорания. После того как полностью сгорает топливо первой ступени и расходуется окислитель, баки горючего и окислителя этой ступени превращаются в лишний балласт. Поэтому они автоматически отбрасываются, и дальше разгоняется уже меньшая оставшаяся масса корабля. Уменьшение массы позволяет получить существенную экономию топлива и окислителя во второй ступени и увеличить ее скорость.

После этого рассматривается “Краткая история запуска космических кораблей”. Доклад осуществляет ученик с использованием слайдов PowerPoint: <Приложение 7 >.

Закон сохранения импульса в живой природе

Учитель: Заметим, что по существу почти всякое изменение характера движения - это реактивное движение и происходит оно по закону сохранения импульса. В самом деле, когда человек идет или бежит, он отталкивает ногами Землю назад. За счет этого он сам продвигается вперед. Конечно, скорость Земли при этом оказывается во столько же раз меньше скорости человека, во сколько раз масса Земли больше массы человека. Именно поэтому мы движение Земли не замечаем. А вот если вы из лодки прыгнете на берег, то откат лодки в противоположном направлении будет вполне заметен.

Очень часто применяется принцип реактивного движения в живой природе, например кальмары, осьминоги, каракатицы используют именной подобный тип движения.

Медуза при своем движении набирает воду в полость тела, а затем резко выбрасывает ее из себя и движется вперед за счет силы отдачи.

Закрепление, обобщение

Вопросы для закрепления демонстрируются на экране в PowerPoint: <Приложение 8 >

Заключение

Завершая урок, хотелось бы сказать, что законы в физике нельзя рассматривать как истину в последней инстанции; к ним надо относиться как к моделям, которые можно применять к решению отдельных задач и к отысканию таких решений, которые находятся в хорошем согласии с опытом, подтвержденным специально поставленными экспериментами. Сегодня на уроке мы изучили одну из наиболее фундаментальных моделей: закон сохранения импульса. Мы убедились, что использование этого закона позволяет объяснять и предсказывать явления не только механики, что говорит о большом философском смысле этой модели. Закон сохранения импульса служит доказательством единства материального мира: он подтверждает неуничтожимость движения материи.

Список использованной литературы

1. Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в ВУЗы: Учебное пособие. – 2-е изд., испр. – М.: Наука, 1982.

2. Голин Г.М., Филонович С.Р. Классики физической науки (с древнейших времен до начала XX века): Справ. пособие. – М.: Высшая школа, 1989.

3. Гурский И.П. Элементарная физика с примерами решения задач: Учебное руководство /Под ред. Савельева И.В. – 3-е изд., перераб. – М.: Наука, 1984.

4. Иванова Л.А. Активизация познавательной деятельности учащихся при изучении физики: Пособие для учителей. – М.: Просвещение, 1983.

5. Касьянов В.А. Физика.10-й кл.: Учебник для общеобразовательных учебных заведений. – 5-е изд., стереотип. – М.: Дрофа, 2003.

6. Методика преподавания физики в средней школе: Механика; пособие для учителя. Под ред. Э.Е. Эвенчик. Издание второе, переработанное. – М.: Просвещение, 1986.

7. Современный урок физики в средней школе /В.Г. Разумовский, Л.С. Хижнякова, А.И. Архипова и др.; Под ред. В.Г. Разумовского, Л.С. Хижняковой. – М.: Просвещение, 1983.

И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Вывод из законов Ньютона

Рассмотрим выражение определения силы

Перепишем его для системы из N частиц:

где суммирование идет по всем силам, действующим на n-ю частицу со стороны m-ой. Согласно третьему закону Ньютона, силы вида и будут равны по абсолютному значению и противоположны по направлению, то есть Тогда после подстановки полученного результата в выражение (1) правая часть будет равна нулю, то есть:

Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

(постоянный вектор).

То есть суммарный импульс системы частиц есть величина постоянная. Нетрудно получить аналогичное выражение для одной частицы.

Следует учесть, что вышеприведенные рассуждения справедливы лишь для замкнутой системы.

Также стоит подчеркнуть, что изменение импульса зависит не только от действующей на тело силы, но и от продолжительности её действия.

Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокуп­ность материальных точек (тел), рассматриваемых как единое целое, называется механической системой . Силы взаимодействия между материальными точками механичес­кой системы называются - внутренними . Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними . Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной ). Если мы имеем механическую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и проти­воположно направлены, т. е. геометрическая сумма внутренних сил равна нулю.

Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равны m 1 , m 2 , .... m n , и v 1 , v 2 ,..., v n . Пусть - равнодейст­вующие внутренних сил, действующих на каждое из этих тел, a - равно­действующие внешних сил. Запишем второй закон Ньютона для каждого из n тел механической системы:

Складывая почленно эти уравнения, получаем

Но так как геометрическая сумма внутренних сил механической системы по третьему закону Ньютона равна нулю, то

где - импульс системы. Таким образом, производная по времени от им­пульса механической системы равна геометрической сумме внешних сил, действующих на систему.

В случае отсутствия внешних сил (рассматриваем замкнутую систему)

Последнее выражение и является законом сохранения импульса : импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выпол­няется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон сохранения импуль­са - фундаментальный закон природы.

Закон сохранения импульса является следствием определенного свойства симмет­рии пространства - его однородности. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

Отметим, что, согласно (9.1), импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю.

В механике Галилея-Ньютона из-за независимости массы от скорости импульс системы может быть выражен через скорость ее центра масс. Центром масс (или центром инерции ) системы материальных точек называется воображаемая точка С ,положение которой характеризует распределение массы этой системы. Ее ра­диус-вектор равен

где m i и r i - соответственно масса и радиус-вектор i -й материальной точки; n - число материальных точек в системе; – масса системы. Скорость центра масс

Учитывая, что pi = m i v i , a есть импульс р системы, можно написать

т. е. импульс системы равен произведению массы системы на скорость ее центра масс.

Подставив выражение (9.2) в уравнение (9.1), получим

(9.3)

т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе. Выражение (9.3) представляет собойзакон движения центра масс.

На этом уроке все желающие смогут изучить тему «Импульс. Закон сохранения импульса». Вначале мы дадим определение понятию импульса. Затем определим, в чём заключается закон сохранения импульса - один из главных законов, соблюдение которого необходимо, чтобы ракета могла двигаться, летать. Рассмотрим, как он записывается для двух тел и какие буквы и выражения используются в записи. Также обсудим его применение на практике.

Тема: Законы взаимодействия и движения тел

Урок 24. Импульс. Закон сохранения импульса

Ерюткин Евгений Сергеевич

Урок посвящен теме «Импульс и «закон сохранения импульса». Чтобы запускать спутники, нужно строить ракеты. Чтобы ракеты двигались, летали, мы должны совершенно точно соблюдать законы, по которым эти тела будут двигаться. Самым главным законом в этом смысле является закон сохранения импульса. Чтобы перейти непосредственно к закону сохранения импульса, давайте сначала определимся с тем, что такое импульс .

называют произведение массы тела на его скорость: . Импульс - векторная величина, направлен он всегда в ту сторону, в которую направлена скорость. Само слово «импульс» латинское и переводится на русский язык как «толкать», «двигать». Импульс обозначается маленькой буквой , а единицей измерения импульса является .

Первым человеком, который использовал понятие импульс, был . Импульс он попытался использовать как величину, заменяющую силу. Причина такого подхода очевидна: измерять силу достаточно сложно, а измерение массы и скорости - вещь достаточно простая. Именно поэтому часто говорят, что импульс - это количество движения. А раз измерение импульса является альтернативой измерения силы, значит, нужно связать эти две величины.

Рис. 1. Рене Декарт

Эти величины - импульс и силу - связывает между собой понятие . Импульс силы записывается как произведение силы на время, в течение которого эта сила действует: импульс силы . Специального обозначения для импульса силы нет.

Давайте рассмотрим взаимосвязь импульса и импульса силы. Рассмотрим такую величину, как изменение импульса тела, . Именно изменение импульса тела равно импульсу силы. Таким образом, мы можем записать: .

Теперь перейдем к следующему важному вопросу - закону сохранения импульса . Этот закон справедлив для замкнутой изолированной системы.

Определение: замкнутой изолированной системой называют такую, в которой тела взаимодействуют только друг с другом и не взаимодействуют с внешними телами.

Для замкнутой системы справедлив закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной.

Обратимся к тому, как записывается закон сохранения импульса для системы из двух тел: .

Эту же формулу мы можем записать следующим образом: .

Рис. 2. Суммарный импульс системы из двух шариков сохраняется после их столкновения

Обратите внимание: данный закон дает возможность, избегая рассмотрения действия сил, определять скорость и направление движения тел. Этот закон дает возможность говорить о таком важном явлении, как реактивное движение.

Вывод второго закона Ньютона

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела можно получить второй и третий законы Ньютона. Импульс силы равен изменению импульса тела: . Затем массу выносим за скобки, в скобках остается . Перенесем время из левой части уравнения в правую и запишем уравнение следующим образом: .

Вспомните, что ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло. Если теперь вместо выражения подставить символ ускорения , то мы получаем выражение: - второй закон Ньютона.

Вывод третьего закона Ньютона

Запишем закон сохранения импульса: . Перенесем все величины, связанные с m 1 , в левую часть уравнения, а с m 2 - в правую часть: .

Вынесем массу за скобки: . Взаимодействие тел происходило не мгновенно, а за определенный промежуток. И этот промежуток времени для первого и для второго тел в замкнутой системе был величиной одинаковой: .

Разделив правую и левую часть на время t, мы получаем отношение изменения скорости ко времени - это будет ускорение первого и второго тела соответственно. Исходя из этого, перепишем уравнение следующим образом: . Это и есть хорошо известный нам третий закон Ньютона: . Два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Список дополнительной литературы:

А так ли хорошо знакомо вам количество движения? // Квант. — 1991. — №6. — С. 40-41. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. школы. — М.: Просвещение, 1990. — С. 110-118 Кикоин А.К. Импульс и кинетическая энергия // Квант. — 1985. — № 5. — С. 28-29. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. - C. 284-307.

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​\(p \) ​, единицы измерения – (кг·м)/с .

Импульс тела – это количественная мера движения тела.
Направление импульса тела всегда совпадает с направлением скорости его движения.
Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​\(p_0 \) ​ – начальный импульс тела,
​\(p \) ​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​\(F\!\Delta t \) ​, единицы измерения - Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

Силы и ускорения: ​\(\vec{F}\uparrow\uparrow\vec{a} \) ​;
импульса тела и скорости: \(\vec{p}\uparrow\uparrow\vec{v} \) ​;
изменения импульса тела и силы: \(\Delta\vec{p}\uparrow\uparrow\vec{F} \) ;
изменения импульса тела и ускорения: \(\Delta\vec{p}\uparrow\uparrow\vec{a} \) .

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой .

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.
​\(F_1,F_2,F_3 \) ​ – внешние силы, действующие на тела;
\(F_{12}, F_{23}, F_{31}, F_{13}, F_{21}, F_{32} \) ​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​\(\Delta t \) ​.
Обозначим: ​\(v_0 \) ​ – начальные скорости тел, а ​\(v^{\prime} \) ​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.
Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.
Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели
Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.
Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.
Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.
Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​\(A \) ​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​\(\alpha \) ​

  • \(\alpha=0^{\circ},\, \cos\alpha=1,\, A=FS,\,A>0; \)

  • \(0^{\circ}<\alpha<90^{\circ},\, A=FS\cos\alpha,\,A>0; \)

  • \(\alpha=90^{\circ},\, \cos\alpha=0,\, A=0; \)

  • \(90^{\circ}<\alpha<180^{\circ},\, A=FS\cos\alpha,\,A<0; \)


\(\alpha=180^{\circ},\, \cos\alpha=-1,\, A=-FS,\,A<0; \)

Геометрический смысл механической работы

На графике зависимости ​\(F=F(S) \) ​ работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Формулы для вычисления работы различных сил

Работа силы тяжести:

Работа силы упругости:

Коэффициент полезного действия механизма (КПД) - это физическая величина, равная отношению полезной работы, совершенной механизмом, ко всей затраченной при этом работе.
Обозначение – ​\(\eta \) ​, единицы измерения – %.

​\(A_{\mathit{пол.}} \) ​ – полезная работа – это та работа, которую нужно сделать;
​\(A_{\mathit{зат.}} \) – затраченная работа – это та работа, что приходится делать на самом деле.

Важно!
КПД любого механизма не может быть больше 100%.

Мощность

Мощность – это количественная мера быстроты совершения работы.

Обозначение – ​\(N \) ​, единицы измерения – Вт (Ватт).
Мощность равна отношению работы к времени, за которое она была совершена: .

1 Вт – это мощность, при которой за 1 с совершается работа в 1 Дж:

1 л. с. (лошадиная сила) = 735 Вт.

Связь между мощностью и скоростью равномерного движения:

Таким образом, мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов.

Важно!
Если интервал времени стремится к нулю, то выражение представляет собой мгновенную мощность, определяемую через мгновенную скорость.

Работа как мера изменения энергии

Если система тел может совершать работу, то она обладает энергией.

Работа и изменение кинетической энергии (теорема о кинетической энергии)

Если под действием силы тело совершило перемещение и вследствие этого его скорость изменилась, то работа силы равна изменению кинетической энергии.
Силы, работа которых не зависит от формы траектории, называются консервативными .

Работа и изменение потенциальной энергии тела, поднятого над землей

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

Работа и изменение потенциальной энергии упруго деформированного тела

Работа силы упругости равна изменению потенциальной энергии, взятому с противоположным знаком.

Кинетическая энергия

Кинетическая энергия – это энергия, которой обладает тело вследствие своего движения.

Обозначение – ​\(W_k (E_k) \) ​, единицы измерения – Дж.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Важно!
Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от выбора системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел или частей одного и того же тела.

Обозначение – ​\(W_p (E_p) \) ​, единицы измерения – Дж.

Потенциальная энергия тела, поднятого на некоторую высоту над землей, равна произведению массы тела, ускорения свободного падения и высоты, на которой он находится:

Потенциальная энергия упруго деформированного тела равна половине произведения жесткости на квадрат удлинения:

Важно!
Величина потенциальной энергии зависит от выбора нулевого уровня. Нулевым называется уровень, на котором потенциальная энергия равна нулю. Нулевой уровень выбирается произвольно, исходя из удобства решения задачи.

Полная механическая энергия – это энергия, равная сумме кинетической и потенциальной энергий.

Обозначение – ​\(W (E) \) ​, единицы измерения – Дж.

Закон сохранения механической энергии
В замкнутой системе тел, между которыми действуют только консервативные силы, механическая энергия сохраняется, т. е. не изменяется с течением времени:

Если между телами системы действуют кроме сил тяготения и упругости другие силы, например сила трения или сопротивления, действие которых приводит к превращению механической энергии в тепловую, то в такой системе тел закон сохранения механической энергии не выполняется.

Важно!
В случае, если кроме консервативных сил (тяжести, упругости, тяготения) существуют еще и неконсервативные силы, например сила трения, а также внешние силы, то

Теорема о кинетической энергии справедлива для сил любой природы:

Если на систему тел действуют неконсервативные и внешние силы, то изменение полной энергии равно сумме работ неконсервативных и внешних сил.

Закон сохранения и превращения энергии
Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому.

Основные формулы по теме «Законы сохранения в механике»