Чему равен модуль х 2. Решение уравнений с модулем

Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?

На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.

Но для начала вспомним определение модуля . Итак, модулем числа a называется само это число, если a неотрицательно и -a , если число a меньше нуля. Записать это можно так:

|a| = a, если a ≥ 0 и |a| = -a, если a < 0

Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее координата. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.

Теперь перейдем непосредственно к решению уравнений.

1. Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.

Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:

{±c, если с > 0

Если |x| = c, то x = {0, если с = 0

{нет корней, если с < 0

1) |x| = 5, т.к. 5 > 0, то x = ±5;

2) |x| = -5, т.к. -5 < 0, то уравнение не имеет корней;

3) |x| = 0, то x = 0.

2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b< 0, решений не будет.

1) |x + 2| = 4, т.к. 4 > 0, то

x + 2 = 4 или x + 2 = -4

2) |x 2 – 5| = 11, т.к. 11 > 0, то

x 2 – 5 = 11 или x 2 – 5 = -11

x 2 = 16 x 2 = -6

x = ± 4 нет корней

3) |x 2 – 5x| = -8 , т.к. -8 < 0, то уравнение не имеет корней.

3. Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:

f(x) = g(x) или f(x) = -g(x) .

1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.

1. О.Д.З. 5x – 10 ≥ 0

2. Решение:

2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)

3. Объединяем О.Д.З. и решение, получаем:

Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.

Ответ: x = 3

2) |x – 1| = 1 – x 2 .

1. О.Д.З. 1 – x 2 ≥ 0. Решим методом интервалов данное неравенство:

(1 – x)(1 + x) ≥ 0

2. Решение:

x – 1 = 1 – x 2 или x – 1 = -(1 – x 2)

x 2 + x – 2 = 0 x 2 – x = 0

x = -2 или x = 1 x = 0 или x = 1

3. Объединяем решение и О.Д.З.:

Подходят только корни x = 1 и x = 0.

Ответ: x = 0, x = 1.

4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).

1) |x 2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:

x 2 – 5x + 7 = 2x – 5 или x 2 – 5x +7 = -2x + 5

x 2 – 7x + 12 = 0 x 2 – 3x + 2 = 0

x = 3 или x = 4 x = 2 или x = 1

Ответ: x = 1, x = 2, x = 3, x = 4.

5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:

x 2 – 6|x| + 5 = 0. По свойству модуля x 2 = |x| 2 , поэтому уравнение можно переписать так:

|x| 2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:

t 2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:

|x| = 1 или |x| = 5

x = ±1 x = ± 5

Ответ: x = -5, x = -1, x = 1, x = 5.

Рассмотрим еще один пример:

x 2 + |x| – 2 = 0. По свойству модуля x 2 = |x| 2 , поэтому

|x| 2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:

t 2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:

|x| = -2 или |x| = 1

Нет корней x = ± 1

Ответ: x = -1, x = 1.

6. Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.

1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:

3 – |x| = 4 или 3 – |x| = -4.

Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.

Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1 < 0, а во втором x = ±7.

Ответ x = -7, x = 7.

2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:

3 + |x + 1| = 5 или 3 + |x + 1| = -5

|x + 1| = 2 |x + 1| = -8

x + 1 = 2 или x + 1 = -2. Нет корней.

Ответ: x = -3, x = 1.

Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = - х, х

Модуль нулю, а модуль любого положительного числа – ему . Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных равны: |-х| = |х| = х.


Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.



Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.


Возведенный в степень аргумент одновременно находится под знаком корня того же порядка – он решается при помощи : √a² = |a| = ±a.


Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| >

Модуль нуля равен нулю, а модуль любого положительного числа – ему самому. Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных чисел равны: |-х| = |х| = х.

Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя целое положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.

Отрицательным модуль быть не может, поэтому любое отрицательное число преобразуется в положительное: |-x| = x, |-2| = 2, |-1/7| = 1/7, |-2,5| = 2,5.

Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается изменение порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.

Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| > 0, то в итоге получится 2 * |4-b| = 2 *(4 - b). В качестве неизвестного элемента также может быть задано конкретное число, которое следует принимать во внимание, т.к. оно будет влиять на знак выражения.

МБОУ СОШ №17 г. Иванова

«Уравнения с модулем»
Методическая разработка

Составлена

учителем математики

Лебедевой Н.В.

20010 г.

Пояснительная записка

Глава 1. Введение

Раздел 2. Основные свойства Раздел 3. Геометрическая интерпретация понятия модуля числа Раздел 4. График функции у = |х| Раздел 5. Условные обозначения

Глава 2. Решение уравнений, содержащих модуль

Раздел 1.Уравнения вида |F(х)| = m (простейшие) Раздел 2. Уравнения вида F(|х|) = m Раздел 3. Уравнения вида |F(х)| = G(х) Раздел 4. Уравнения вида |F(х)| = ± F(х) (красивейшие) Раздел 5. Уравнения вида |F(х)| = |G(х)| Раздел 6. Примеры решения нестандартных уравнений Раздел 7. Уравнения вида |F(х)| + |G(х)| = 0 Раздел 8. Уравнения вида |а 1 х ± в 1 | ± |а 2 х ± в 2 | ± …|а n х ± в n | = m Раздел 9. Уравнения, содержащие несколько модулей

Глава 3. Примеры решения различных уравнений с модулем.

Раздел 1. Тригонометрические уравнения Раздел 2. Показательные уравнения Раздел 3. Логарифмические уравнения Раздел 4. Иррациональные уравнения Раздел 5. Задания повышенной сложности Ответы к упражнениям Список литературы

Пояснительная записка.

Понятие абсолютной величины (модуля) действительного числа является одной из существенных его характеристик. Это понятие имеет широкое распространение в различных разделах физико-математических и технических наук. В практике преподавания курса математики в средней школе в соответствии с Программой МО РФ понятие «абсолютная величина числа» встречается неоднократно: в 6 – м классе вводиться определение модуля, его геометрический смысл; в 8 – м классе формируется понятие абсолютной погрешности, рассматривается решение простейших уравнений и неравенств, содержащих модуль, изучаются свойства арифметического квадратного корня; в 11 – м классе понятие встречается в разделе «Корень n -ой степени». Опыт преподавания показывает, что учащиеся часто сталкиваются с трудностями при решении заданий, требующих знания данного материала, а нередко пропускают, не приступая к выполнению. В текстах экзаменационных заданий за курс 9 – ого и 11 – ого классов также включены подобные задания. Кроме того, требования, которые предъявляют к выпускникам школ Вузы отличаются, а именно, более высокого уровня, чем требования школьной программы. Для жизни в современном обществе очень важным является формирование математического стиля мышления, проявляющегося в определённых умственных навыках. В процессе решения задач с модулями требуется умение применять такие приёмы, как обобщение и конкретизация, анализ, классификация и систематизация, аналогия. Решение подобных заданий позволяет проверить знание основных разделов школьного курса, уровень логического мышления, первоначальные навыки исследовательской деятельности. Данная работа посвящена одному из разделов – решению уравнений, содержащих модуль. Она состоит из трёх глав. В первой главе вводятся основные понятия и наиболее важные теоретические выкладки. Во второй главе предлагаются девять основных типов уравнений, содержащих модуль, рассматриваются методы их решения, разбираются примеры разного уровня сложности. В третьей главе предлагаются более сложные и нестандартные уравнения (тригонометрические, показательные, логарифмические и иррациональные). К каждому типу уравнений есть упражнения для самостоятельного решения (ответы и указания прилагаются). Основное назначение данной работы – это оказание методической помощи преподавателям при подготовке к урокам и при организации факультативных курсов. Материал также может быть использован в качестве учебного пособия для старшеклассников. Задания, предлагаемые в работе, интересны и не всегда просты в решении, что позволяет сделать учебную мотивацию учащихся более осознанной, проверить свои способности, повысить уровень подготовки выпускников школ к поступлению в Вузы. Дифференцированный подбор предлагаемых упражнений предполагает переход от репродуктивного уровня усвоения материала к творческому, а также возможность научить применять свои знания при решении нестандартных задач.

Глава 1. Введение.

Раздел 1. Определение абсолютной величины .

Определение : Абсолютной величиной (модулем) действительного числа а называется неотрицательное число: а или –а. Обозначение: а Запись читается следующим образом: «модуль числа а» или «абсолютная величина числа а»

а, если а > 0

а│ = │ 0, если а = 0 (1)

- а, если а
Примеры: 1) │2,5│ = 2,5 2) │-7│ = 7 3) │1 - √2│ = √2 – 1
    Раскрыть модуль выражения:
а) │х - 8│, если х > 12 б) │2х + 3│, если х ≤ -2 │х – 8│= х – 8 │ 2х + 3│= - 2х – 3

Раздел 2. Основные свойства.

Рассмотрим основные свойства абсолютной величины. Свойство №1: Противоположные числа имеют равные модули, т.е. │а│=│- а│ Покажем верность равенства. Запишем определение числа – а : │- а│ = (2) Сравним совокупности (1) и (2). Очевидно, что определения абсолютных величин чисел а и – а совпадают. Следовательно, │а│=│- а│
При рассмотрении следующих свойств ограничимся их формулировкой, так как их доказательство приводится в Свойство №2: Абсолютная величина суммы конечного числа действительных чисел не превосходит суммы абсолютных величин слагаемых: │а 1 + а 2 +…+ а n │ ≤│а 1 │+│а 2 │+ … + │а n │ Свойство №3: Абсолютная величина разности двух действительных чисел не превосходит суммы их абсолютных величин: │а - в│ ≤│а│+│в│ Свойство №4: Абсолютная величина произведения конечного числа действительных чисел равна произведению абсолютных величин множителей: │а · в│=│а│·│в│ Свойство №5: Абсолютная величина частного действительных чисел равна частному их абсолютных величин:

Раздел 3. Геометрическая интерпретация понятия модуля числа.

Каждому действительному числу можно поставить в соответствие точку на числовой прямой, которая будет геометрическим изображением данного действительного числа. Каждой точке на числовой прямой соответствует её расстояние от начала отсчёта, т.е. длина отрезка от начала отсчёта до данной точки. Это расстояние рассматривается всегда как величина неотрицательная. Поэтому длина соответствующего отрезка и будет геометрической интерпретацией абсолютной величины данного действительного числа

Представленная геометрическая иллюстрация наглядно подтверждает свойство №1, т.е. модули противоположных чисел равны. Отсюда легко понимается справедливость равенства: │х – а│= │а - х│. Также более очевидным становиться решение уравнения │х│= m, где m ≥ 0, а именно х 1,2 = ± m. Примеры: 1) │х│= 4 х 1,2 = ± 4 2) │х - 3│= 1
х 1,2 = 2; 4

Раздел 4. График функции у = │х│

Область определения данной функции все действительные числа.

Раздел 5. Условные обозначения.

В дальнейшем при рассмотрении примеров решения уравнений будут использованы следующие условные обозначения: { - знак системы [ - знак совокупности При решение системы уравнений (неравенств) находится пересечение решений входящих в систему уравнений (неравенств). При решении совокупности уравнений (неравенств) находится объединение решений входящих в совокупность уравнений (неравенств).

Глава 2. Решение уравнений, содержащих модуль.

В этой главе мы рассмотрим алгебраические способы решения уравнений, содержащих один или более модуль.

Раздел 1. Уравнения вида │F (х)│= m

Уравнение данного вида называется простейшим. Оно имеет решение тогда и только тогда, когда m ≥ 0. По определению модуля, исходное уравнение равносильно совокупности двух уравнений: │F (х)│= m
Примеры:
1. Решите уравнение: │7х - 2│= 9


Ответ: х 1 = - 1; х 2 = 1 4 / 7 2
│х 2 + 3х + 1│= 1

х 2 + 3х + 2 = 0 х 2 +3х = 0 х 1 = -1; х 2 = -2 х · (х + 3) = 0 х 1 = 0; х 2 = -3 Ответ: сумма корней равна - 2 .3
│х 4 -5х 2 + 2│= 2 х 4 – 5х 2 = 0 х 4 – 5х 2 + 4 = 0 х 2 · (х 2 – 5) = 0 обозначим х 2 = m, m ≥ 0 х = 0; ±√5 m 2 – 5m + 4 = 0 m = 1; 4 – оба значения удовлетворяют условию m ≥ 0 х 2 = 1 х 2 = 4 х = ± 1 х = ± 2 Ответ: количество корней уравнения 7. Упражнения:
1. Решите уравнение и укажите сумму корней: │х - 5│= 32 . Решите уравнение и укажите меньший корень: │х 2 + х│= 03 . Решите уравнение и укажите больший корень: │х 2 – 5х + 4│= 44 .Решите уравнение и укажите целый корень: │2х 2 – 7х + 6│= 15 .Решите уравнение и укажите количество корней: │х 4 – 13х 2 + 50│= 14

Раздел 2. Уравнения вида F(│х│) = m

Аргумент функции в левой части находится под знаком модуля, а правая часть не зависит от переменной. Рассмотрим два способа решения уравнений данного вида.1 способ: По определению абсолютной величины исходное уравнение равносильно совокупности двух систем. В каждой из которых накладывается условие на подмодульное выражение. F (│х│) = m
Так как функция F(│х│) – чётная на всей области определения, то корни уравнений F(х) = m и F(- х) = m – это пары противоположных чисел. Поэтому достаточно решить одну из систем (при рассмотрении примеров указанным способом будет приводиться решение одной системы).2 способ: Применение метода введения новой переменной. При этом вводиться обозначение │х│= а, где а ≥ 0. Данный способ менее объёмный по оформлению.
Примеры: 1 . Решите уравнение: 3х 2 – 4│х│= - 1 Воспользуемся введением новой переменной. Обозначим │х│= а, где а ≥ 0. Получим уравнение 3а 2 - 4а + 1 = 0 Д = 16 – 12 = 4 а 1 = 1 а 2 = 1 / 3 Возвращаемся к исходной переменной: │х│=1 и │х│= 1 / 3 . Каждое уравнение имеет два корня. Ответ: х 1 = 1; х 2 = - 1; х 3 = 1 / 3 ; х 4 = - 1 / 3 . 2. Решите уравнение: 5х 2 + 3│х│- 1 = 1 / 2 │х│ + 3х 2
Найдём решение первой системы совокупности: 4х 2 + 5х – 2 =0 Д = 57 х 1 = -5+√57 / 8 х 2 = -5-√57 / 8 Заметим, что х 2 не удовлетворяет условию х ≥ 0. Решением второй системы будет число, противоположное значению х 1 . Ответ: х 1 = -5+√57 / 8 ; х 2 = 5-√57 / 8 .3 . Решите уравнение: х 4 – │х│= 0 Обозначим │х│= а, где а ≥ 0. Получим уравнение а 4 – а = 0 а · (а 3 – 1) = 0 а 1 = 0 а 2 = 1 Возвращаемся к исходной переменной: │х│=0 и │х│= 1 х = 0; ± 1 Ответ: х 1 = 0; х 2 = 1; х 3 = - 1.
Упражнения: 6. Решите уравнение: 2│х│ - 4,5 = 5 – 3 / 8 │х│ 7 . Решите уравнение, в ответе укажите количество корней: 3х 2 - 7│х│ + 2 = 0 8 . Решите уравнение, в ответе укажите целые решения: х 4 + │х│ - 2 = 0

Раздел 3. Уравнения вида │F(х)│ = G(х)

Правая часть уравнения данного вида зависит от переменной и, следовательно, имеет решение тогда и только тогда, когда правая часть функция G(х) ≥ 0. Исходное уравнение можно решить двумя способами:1 способ: Стандартный, основан на раскрытии модуля исходя из его определения и заключается в равносильном переходе к совокупности двух систем. │F (х)│ = G (х)

Данный способ рационально использовать в случае сложного выражения для функции G(x) и мене сложного – для функции F(х), так как предполагается решение неравенств с функцией F(х).2 способ: Состоит в переходе к равносильной системе, в которой накладывается условие на правую часть. │F (x )│= G (x )

Данный способ удобнее применять, если выражение для функции G(х) мене сложное, чем для функции F(х), так как предполагается решение неравенства G(х) ≥ 0. Кроме того, в случае нескольких модулей этот способ рекомендуется применять второй вариант. Примеры: 1. Решите уравнение: │х + 2│= 6 -2х
(1 способ) Ответ: х = 1 1 / 3 2.
│х 2 – 2х - 1│= 2·(х + 1)
(2 способ) Ответ: Произведение корней – 3.
3. Решите уравнение,в ответе укажите сумму корней:
│х - 6│= х 2 - 5х + 9

Ответ: сумма корней равна 4.
Упражнения: 9. │х + 4│= - 3х10. Решите уравнение, в ответе укажите число решений:│х 2 + х - 1│= 2х – 111 . Решите уравнение, в ответе укажите произведение корней:│х + 3│= х 2 + х – 6

Раздел 4. Уравнения вида │F(x)│= F(x) и │F(x)│= - F(x)

Уравнения данного вида иногда называют «красивейшими». Так как правая часть уравнений зависит от переменной, решения существуют тогда и только тогда, когда правая часть неотрицательна. Поэтому исходные уравнения равносильны неравенствам:
│F(x)│= F(x) F(x) ≥ 0 и │F(x)│= - F(x) F(x) Примеры: 1 . Решите уравнение, в ответе укажите меньший целый корень: │5х - 3│= 5х – 3 5х – 3 ≥ 0 5х ≥ 3 х ≥ 0,6 Ответ: х = 1 2. Решите уравнение, в ответе укажите длину промежутка: │х 2 - 9│= 9 – х 2 х 2 – 9 ≤ 0 (х – 3) (х + 3) ≤ 0 [- 3; 3] Ответ: длина промежутка равна 6. 3 . Решите уравнение, в ответе укажите число целых решений: │2 + х – х 2 │= 2 + х – х 2 2 + х – х 2 ≥ 0 х 2 – х – 2 ≤ 0 [- 1; 2] Ответ: 4 целых решения. 4 . Решите уравнение, в ответе укажите наибольший корень:
│4 – х -
│= 4 – х –
х 2 – 5х + 5 = 0 Д = 5 х 1,2 =
≈ 1,4

Ответ: х = 3.

Упражнения: 12. Решите уравнение, в ответе укажите целый корень: │х 2 + 6х + 8│= х 2 + 6х + 813. Решите уравнение, в ответе укажите число целых решений: │13х – х 2 - 36│+ х 2 – 13х + 36 = 014. Решите уравнение, в ответе укажите целое число, не являющееся корнем уравнения:

Раздел 5. Уравнения вида │F(x)│= │G(x)│

Так как обе части уравнения неотрицательные, то решение предполагает рассмотрение двух случаев: подмодульные выражения равны или противоположны по знаку. Следовательно, исходное уравнение равносильно совокупности двух уравнений: │F (x )│= │ G (x )│
Примеры: 1. Решите уравнение, в ответе укажите целый корень: │х + 3│=│2х - 1│
Ответ: целый корень х = 4. 2. Решите уравнение:х – х 2 - 1│=│2х – 3 – х 2 │
Ответ: х = 2. 3 . Решите уравнение, в ответе укажите произведение корней:




Корниуравнения 4х 2 + 2х – 1 = 0 х 1,2 = - 1±√5 / 4 Ответ: произведение корней равно – 0,25. Упражнения: 15 . Решите уравнение, в ответе укажите целое решение:│х 2 – 3х + 2│= │х 2 + 6х - 1│ 16. Решите уравнение, в ответе укажите меньший корень:│5х - 3│=│7 - х│ 17 . Решите уравнение, в ответе укажите сумму корней:

Раздел 6. Примеры решения нестандартных уравнений

В данном разделе мы рассмотрим примеры нестандартных уравнений, при решении которых абсолютная величина выражения раскрывается по определению. Примеры:

1. Решите уравнение, в ответе укажите сумму корней: х · │х│- 5х – 6 = 0
Ответ: сумма корней равна 1 2. . Решите уравнение, в ответе укажите меньший корень: х 2 - 4х ·
- 5 = 0
Ответ: меньший корень х = - 5. 3. Решите уравнение:

Ответ: х = -1. Упражнения: 18. Решите уравнение и укажите сумму корней: х · │3х + 5│= 3х 2 + 4х + 3
19. Решите уравнение: х 2 – 3х =

20. Решите уравнение:

Раздел 7. Уравнения вида │F(x)│+│G(x)│=0

Нетрудно заметить, что в левой части уравнения данного вида сумма неотрицательных величин. Следовательно, исходное уравнение имеет решение тогда и только тогда, когда оба слагаемых одновременно равны нулю. Уравнение равносильно системе уравнений: │F (x )│+│ G (x )│=0
Примеры: 1 . Решите уравнение:
Ответ: х = 2. 2. Решите уравнение: Ответ: х = 1. Упражнения: 21. Решите уравнение: 22 . Решите уравнение, в ответе укажите сумму корней: 23 . Решите уравнение, в ответе укажите количество решений:

Раздел 8. Уравнения вида │а 1 х + в 1 │±│а 2 х + в 2 │± … │а n х +в n │= m

Для решения уравнений данного вида применяется метод интервалов. Если его решать последовательным раскрытием модулей, то получим n совокупностей систем, что очень громоздко и неудобно. Рассмотрим алгоритм метода интервалов: 1). Найти значения переменной х , при которых каждый модуль равен нулю (нули подмодульных выражений):
2). Найденные значения отметить на числовой прямой, которая разбивается на интервалы (количество интервалов соответственно равно n +1 ) 3). Определить, с каким знаком раскрывается каждый модуль на каждом из полученных интервалов (при оформлении решения можно использовать числовую прямую, отметив на ней знаки) 4). Исходное уравнение равносильно совокупности n +1 систем, в каждой из которых указывается принадлежность переменной х одному из интервалов. Примеры: 1 . Решите уравнение, в ответе укажите наибольший корень:
1). Найдём нули подмодульных выражений: х = 2; х = -3 2). Отметим найденные значения на числовой прямой и определим, с каким знаком раскрывается каждый модуль на полученных интервалах:
х – 2 х – 2 х – 2 - - + - 3 2 х 2х + 6 2х + 6 2х + 6 - + + 3)
- нет решений Уравнение имеет два корня. Ответ: наибольший корень х = 2. 2. Решите уравнение, в ответе укажите целый корень:
1). Найдём нули подмодульных выражений: х = 1,5; х = - 1 2). Отметим найденные значения на числовой прямой и определим, с каким знаком раскрывается каждый модуль на полученных интервалах: х + 1 х + 1 х + 1 - + +
-1 1,5 х 2х – 3 2х – 3 2х – 3 - - +
3).
Последняя система не имеет решений, следовательно, уравнение имеет два корня. В ходе решения уравнения следует обратить внимание на знак « - » перед вторым модулем. Ответ: целый корень х = 7. 3. Решите уравнение, в ответе укажите сумму корней: 1). Найдём нули подмодульных выражений: х = 5; х = 1; х = - 2 2). Отметим найденные значения на числовой прямой и определим, с каким знаком раскрывается каждый модуль на полученных интервалах: х – 5 х – 5 х – 5 х – 5 - - - +
-2 1 5 х х – 1 х – 1 х – 1 х – 1 - - + + х + 2 х + 2 х + 2 х + 2 - + + +
3).
Уравнение имеет два корня х = 0 и 2. Ответ: сумма корней равна 2. 4 . Решите уравнение: 1). Найдём нули подмодульных выражений: х = 1; х = 2; х = 3. 2). Определим, с каким знаком раскрывается каждый модуль на полученных интервалах. 3).
Объединим решения первых трёх систем. Ответ: ; х = 5.
Упражнения: 24. Решите уравнение:
25. Решите уравнение, в ответе укажите сумму корней: 26. Решите уравнение, в ответе укажите меньший корень:27. Решите уравнение, в ответе укажите больший корень:

Раздел 9. Уравнения, содержащие несколько модулей

Уравнения, содержащие несколько модулей, предполагают наличие абсолютных величин в подмодульных выражениях. Основной принцип решения уравнений данного вида – это последовательное раскрытие модулей, начиная с «внешнего». В ходе решения используются приёмы, рассмотренные в разделах №1, №3.

Примеры: 1. Решите уравнение:
Ответ: х = 1; - 11. 2. Решите уравнение:
Ответ: х = 0; 4; - 4. 3. Решите уравнение, в ответе укажите произведение корней:
Ответ: произведение корней равно – 8. 4. Решите уравнение:
Обозначим уравнения совокупности (1) и (2) и рассмотрим решение каждого из них отдельно для удобства оформления. Так как оба уравнения содержат более одного модуля, то удобнее осуществить равносильный переход к совокупностям систем.(1)

(2)


Ответ:
Упражнения: 36. Решите уравнение, в ответе укажите сумму корней: 5 │3х-5│ = 25 х 37. Решите уравнение, если корней более одного, в ответе укажите сумму корней: │х + 2│ х – 3х – 10 = 1 38. Решите уравнение: 3 │2х -4│ = 9 │х│ 39. Решите уравнение, в ответе укажите количество корней на : 2 │ sin х│ = √2 40 . Решите уравнение, в ответе укажите количество корней:

Раздел 3. Логарифмические уравнения.

Перед решением следующих уравнений необходимо повторить свойства логарифмов и логарифмической функции. Примеры: 1. Решите уравнение, в ответе укажите произведение корней: log 2 (х+1) 2 + log 2 │x+1│ = 6 О.Д.З. х+1≠0 х≠ - 1

1 случай: если х ≥ - 1, то log 2 (x+1) 2 + log 2 (x+1) = 6 log 2 (x+1) 3 = log 2 2 6 (x+1) 3 = 2 6 x+1 = 4 x = 3 – удовлетворяет условию х ≥ - 1 2 случай: если х log 2 (x+1) 2 + log 2 (-x-1) = 6 log 2 (x+1) 2 + log 2 (-(x+1)) = 6 log 2 (-(x+1) 3) = log 2 2 6- (x+1) 3 = 2 6- (x+1) = 4 x = - 5 – удовлетворяет условию х - 1
Ответ: произведение корней равно – 15.
2. Решите уравнение, в ответе укажите сумму корней: lg
О.Д.З.



Ответ: сумма корней равна 0,5.
3. Решите уравнение: log 5
О.Д.З.

Ответ: х = 9. 4. Решите уравнение: │2 + log 0,2 x│+ 3 = │1 + log 5 x│ О.Д.З. х > 0 Воспользуемся формулой перехода к другому основанию. │2 - log 5 x│+ 3 = │1 + log 5 x│
│2 - log 5 x│- │1 + log 5 x│= - 3 Найдём нули подмодульных выражений: х = 25; х = Эти числа делят область допустимых значений на три интервала, поэтому уравнение равносильно совокупности трёх систем.
Ответ: }